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Institute of Mathematics of the Academy of Sciences
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Abstract

We show that the universally axiomatized, induction-free theory PA− is a sequential
theory in the sense of Pudlák [5], in contrast to the closely related Robinson’s arithmetic.

Ever since Gödel’s [1] arithmetization of syntax in the proof of his incompleteness theorem,
sequence encoding has been an indispensable tool in the study of arithmetical theories and
related areas of mathematical logic. While a common approach is to develop a particular
sequence encoding in a suitable base theory and work with that, a general concept of theories
supporting encoding of sequences of their elements, called sequential theories, was isolated by
Pudlák [4, 5] during his work on interpretability. A similar but weaker notion was defined
earlier by Vaught [7]. More generally, theories with “containers” of various kind were studied
by Visser [8], who includes a discussion of variants of the notion of sequentiality and some
historical remarks.

It is known that fairly weak arithmetical theories can be sequential (e.g., fragments of
bounded arithmetic such as Buss’ S1

2 , cf. Kraj́ıček [3]), nevertheless sequential theories de-
scribed in the literature so far generally involve some form of the induction schema. In-
deed, the common induction-free base arithmetical theory, Robinson’s Q [6], is not sequential
(Visser [8]). This also shows that sequentiality is not preserved by interpretations (even in
the tame form of definable cuts): the sequential theory S1

2 is interpretable on a cut in Q. The
reason is that in a sequential theory, all elements in the universe of the theory have to be
admissible as sequence entries, not just elements from a proper cut. (On the other hand, the
lengths of sequences may be confined to a small cut.)

In this note, we prove sequentiality of the theory PA− of discretely ordered commutative
semirings with the least element (without the subtraction axiom), and therefore of all its
simple extensions. Like Q, PA− is an induction-free theory axiomatized by basic properties
of +, ·,≤, and it (or its slightly stronger variants) is often used as an arithmetical base theory
(see e.g. Kaye [2]). Our version of PA− is purely universally axiomatized. The main result can
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also be adapted in a straightforward way to the theory of discretely ordered (commutative)
rings.

We encode sequences in PA− using the well-known Gödel’s β-function, slightly modified
for a technical reason. Where the usual analysis of Gödel’s β employs induction, we switch
to a shorter cut; the main problem is to ensure we can make do with restricting only the
lengths of sequences to the cut, while allowing arbitrary elements to appear in sequences. We
proceed with the formal details.

Definition 1 Let PA− be the theory of discretely ordered commutative semirings with
the least element. That is, PA− is the first-order theory with equality in the language
〈0, 1,+, ·,≤〉, axiomatized by

x + 0 = x(A1)

x + y = y + x(A2)

(x + y) + z = x + (y + z)(A3)

x · 1 = x(M1)

x · y = y · x(M2)

(x · y) · z = x · (y · z)(M3)

x · (y + z) = x · y + x · z(AM)

x ≤ y ∨ y ≤ x(O1)

(x ≤ y ∧ y ≤ z) → x ≤ z(O2)

x + 1 � x(S1)

x ≤ y → (x = y ∨ x + 1 ≤ y)(S2)

x ≤ y → x + z ≤ y + z(OA)

x ≤ y → x · z ≤ y · z(OM)

Let x < y abbreviate x ≤ y ∧ x 6= y.
Note that many authors (e.g., Kaye [2] or Kraj́ıček [3]) use a stronger definition of PA−,

namely as the theory of nonnegative parts of discretely ordered rings, which includes the
subtraction axiom x ≤ y → ∃z (z + x = y). In contrast, our version of PA− is a universal
theory, hence it does not even prove the existence of predecessors (e.g., the semiring N[x]
of polynomials with nonnegative integer coefficients, ordered lexicographically, is a model of
PA−).

Sequentiality can be defined in several ways. For definiteness, we will follow the (relatively
restrictive) definition of Pudlák [5]: a theory T is sequential if it contains Robinson’s arith-
metic Q relativized to some formula N(x), and there is a formula β(x, i, w) (whose intended
meaning is that x is the ith element of a sequence w) such that T proves
(SEQ)
∀w, x, k ∃w′ ∀i, y [(N(k) ∧ i ≤ k) → [β(y, i, w′) ↔ ((i < k ∧ β(y, i, w)) ∨ (i = k ∧ y = x))]].

A definable set is called inductive if it contains 0 and is closed under successor, and it is
a cut if it is furthermore downward closed.
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We first establish some basic properties of PA− which the reader might have been missing
among the axioms:

Lemma 2 PA− proves

(i) (x ≤ y ∧ y ≤ x) → x = y

(ii) x + z ≤ y + z → x ≤ y

(iii) x · 0 = 0

(iv) 0 ≤ x

(v) (z 6= 0 ∧ x · z ≤ y · z) → x ≤ y

(vi) x ≤ y + 1 ↔ (x ≤ y ∨ x = y + 1)

Proof: (i): Otherwise x + 1 ≤ y by S2, hence x + 1 ≤ x by O2, contradicting S1.
(ii): Otherwise y < x by O1, hence y + 1 ≤ x by S2 and (x + z) + 1 ≤ (y + z) + 1 =

(y + 1) + z ≤ x + z by OA, A2, A3, contradicting (O2 and) S1.
(iii): x · 0 + x = x · 0 + x · 1 = x(0 + 1) = x · 1 = x = 0 + x, hence x · 0 = 0 by (ii) and (i).
(iv): 0 ≤ 1 by S1 and O1, hence 0 = x · 0 ≤ x · 1 = x.
(v): Otherwise y < x, thus y + 1 ≤ x, giving yz ≤ yz + z = (y + 1)z ≤ xz ≤ yz, hence

yz = yz + z by (i), and z = 0 by (ii) and (i).
(vi): Left-to-right: if x < y + 1, then x + 1 ≤ y + 1 by S2, hence x ≤ y. �

Definition 3 Let 〈x, y〉 := (x + y)2 + x, and let

β(x, i, w) :↔ ∃u, v, q [w = 〈u, v〉 ∧ u = q(1 + (i + 1)v) + x ∧ x ≤ (i + 1)v]

be Gödel’s β-function.

Lemma 4 PA− proves:

(i) (dx + y = dx′ + y′ ∧ y, y′ < d) → x = x′ ∧ y = y′

(ii) 〈x, y〉 = 〈x′, y′〉 → (x = x′ ∧ y = y′)

(iii) (β(x, i, w) ∧ β(x′, i, w)) → x = x′

Proof: (i): If x < x′, then dx + y < dx + d = d(x + 1) ≤ dx′ ≤ dx′ + y′ = dx + y, a
contradiction. Thus x ≥ x′, and symmetrically, x′ ≥ x, thus x = x′, which implies y = y′.

(ii): We have (x + y)2 ≤ 〈x, y〉 ≤ (x + y)2 + (x + y) < (x + y + 1)2, and u2 is monotone.
Thus, 〈x, y〉 = 〈x′, y′〉 implies x + y = x′ + y′, which in turn implies x = x′, which implies
y = y′.

(iii): u, v are unique by (ii), and then (q and) x is unique by (i). �
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Definition 5 Let x rem y = z denote z < y ∧ ∃q (x = z + qy) (this is PA−-provably a partial
function by Lemma 4). We write y | x for ∃q (x = qy).

Note that β(x, i, 〈u, v〉) iff x = u rem (1 + (i + 1)v).
One step in the usual proof that Gödel’s β-function works is to show that the numbers

1 + v, 1 + 2v, . . . , 1 + kv are pairwise coprime if v is divisible by 1, . . . , k − 1. The next
lemma can be vaguely thought of as a replacement for this statement in our situation.

Lemma 6 Let

I0(k) :↔ ∀j ≤ i ≤ k ∃d (d + j = i),

I1(k) :↔ I0(k) ∧ ∀v ∃u [∀i ≤ k (1 + iv | u)

∧ ∀i > k [(I0(i) ∧ ∀0 < j ≤ k (i− j | v)) → ∃p (up rem (1 + iv) = 1)]].

Then PA− proves that I0 is a cut and I1 is inductive. Here, i− j denotes the (unique) d such
that d + j = i, which exists because of I0(i).

Proof: That I0 is a cut is easy to see. I1(0) follows by taking u = 1. Assume I1(k), and let
v be given. Let u be the witness for I1(k), and put u′ = (1 + (k + 1)v)u. Clearly 1 + iv | u′

for all i ≤ k + 1. Let i > k + 1 be such that I0(i) and i − j | v for all j ≤ k + 1, j > 0. By
I1(k), there exist p, q such that up = 1 + (1 + iv)q. Moreover, we claim that

(∗)
(
1 + (k + 1)v

)
p′ = 1 + (1 + iv)q′

for some p′, q′. Then u′pp′ = 1 + (1 + iv)
(
q + q′ + qq′(1 + iv)

)
, which completes the proof of

I1(k + 1).
In order to show (∗), write k′ = k + 1, and fix z such that (i− k′)z = v, which exists by

our assumption on i. We have k′v + k′2z = ik′z, hence

(1 + k′v) + (1 + iv)k′2z = 1 + (1 + k′v)ik′z.

We add a suitable multiple of (1 + k′v)(1 + iv) to both sides in order to move 1 + iv to the
right-hand side and 1 + k′v to the left-hand side, as required in (∗):

(1 + k′v)
(
1 + k′ + ik′(i− (k′ + 1))z

)
+ (1 + k′v)ik′z + (1 + iv)k′2z

= (1 + k′v)(1 + k′ + ik′v) + (1 + iv)k′2z

= (1 + k′v) + (1 + iv)k′2z + (1 + k′v)(1 + iv)k′

= 1 + (1 + k′v)ik′z + (1 + iv)(1 + k′v)k′

= 1 + (1 + iv)
(
k′ + k′2(i− (k′ + 1))z

)
+ (1 + iv)k′2z + (1 + k′v)ik′z,

and we can cancel (1+ k′v)ik′z +(1+ iv)k′2z from both sides using Lemma 2. Thus, we have
(∗) with p′ = 1 + k′ + ik′(i− (k′ + 1))z and q′ = k′ + k′2(i− (k′ + 1))z. �

The main point of the following definition of I2(k) is that β-encoded sequences of length k

can be recoded using a different v, as well as expanded by a (k + 1)th element. This is made
more explicit in Lemma 8.
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Lemma 7 Define

I2(k) :↔ I1(k) ∧ ∀u, v, v′, x∃u′

[(∀0 < i ≤ k (i | v′) ∧ v′ ≥ v ∧ (k + 1)v′ ≥ x ∧ ∀i ≤ k ∃r (r = u rem (1 + iv)))

→ (∀i ≤ k ∃r (r = u rem (1 + iv) ∧ r = u′ rem (1 + iv′))

∧ x = u′ rem (1 + (k + 1)v′))].

Then PA− proves that I2 is inductive.

Proof: For k = 0, we can take u′ := x.
Assume I2(k), we will prove I2(k + 1). Let u, v, v′, x be given. By I2(k), we can find a u0

such that there exists u0 rem (1 + iv′) = u rem (1 + iv) for all i ≤ k + 1, using the fact that
u rem (1 + (k + 1)v) ≤ (k + 1)v ≤ (k + 1)v′. Since I1(k + 1) and v′ is divisible by 1, . . . , k + 1,
there are u1, p, q such that 1 + iv′ | u1 for all i ≤ k + 1, and u1p = 1 + (1 + (k + 2)v′)q. Define
u′ := u0 + (x + u0(k + 2)v′)u1p. Then u′ rem (1 + iv′) = u rem (1 + iv) for all i ≤ k + 1, and
x = u′ rem (1 + (k + 2)v′), as

u′ = u0 +
(
x + u0(k + 2)v′

)(
1 + (1 + (k + 2)v′)q

)
=

(
x + u0(k + 2)v′

)
q
(
1 + (k + 2)v′

)
+ u0 + u0(k + 2)v′ + x

=
(
u0 + xq + u0(k + 2)v′q

)(
1 + (k + 2)v′

)
+ x,

and x < 1 + (k + 2)v′. �

Lemma 8 PA− proves: if I2(k) and ∀i < k ∃xβ(x, i, w), then there exists a w′ such that

∀i ≤ k ∀y [β(y, i, w′) ↔ ((i < k ∧ β(y, i, w)) ∨ (i = k ∧ y = x))].

Proof: Let w = 〈u0, v0〉, and write (w)i = x instead of β(x, i, w) for clarity. Applying
I1(k) with v = 1, we see that there exists a v′ > 0 divisible by 1, . . . , k + 1. Pick v1 such
that v1 ≥ v0, v1 ≥ x, and v′ | v1. By I2(k), there exists u1 such that for all i < k,
u1 rem (1 + (i + 1)v1) = u0 rem (1 + (i + 1)v0), and u1 rem (1 + (k + 1)v1) = x. Thus, if we
put w′ := 〈u1, v1〉, then (w′)i = (w)i for all i < k, and (w′)k = x. �

Clearly, Lemmas 7 and 8 almost show that PA− is sequential. However, as PA− does not
prove that division with remainder is total, it may happen for Gödel’s β-function that (w)i is
undefined for some values of i < k, and then the definition of sequentiality requires (w′)i to
be also undefined for the same values of i. This does not seem possible to arrange, as we have
no way of forcing (w′)i to be undefined when building w′. We fix this problem by modifying
the definition of β a little bit.

Definition 9

β′(x, i, w) :↔ [β(x, i, w) ∧ ∀j < i∃y β(y, j, w)] ∨ [x = 0 ∧ ∃j ≤ i¬∃y β(y, j, w)].

Note that β′ is PA−-provably a total function.

5



Lemma 10 PA− proves that

I3(k) :↔ I2(k) ∧ ∀w′ ∃w ∀i < k ∀x (β(x, i, w) ↔ β′(x, i, w′))

is inductive.

Proof: I3(0) is clear. Assuming I3(k), we have I2(k + 1) by Lemma 7. Let w be given,
and write x = (w)i instead of β′(x, i, w) for clarity. Since I3(k), there exists w′ such that
β((w)i, i, w

′) for all i < k. By Lemma 8, there exists w′′ such that β((w)i, i, w
′′) for i < k,

and β((w)k, k, w′′). This shows I3(k + 1). �

By the usual shortening of cuts, let N(x) be such that PA− proves that N is a cut closed
under + and ·, and N(x) → I3(x).

Theorem 11 PA− is a sequential theory with respect to N and β′.

Proof: PA− proves itself relativized to N , as it is a universal theory. Moreover, if x ≤ y and
N(y), there exists z such that z +x = y as I0(y), and we have N(z) as N is downward closed.
Thus, the subtraction axiom holds in N , hence N is an interpretation of Q in PA−.

In order to show (SEQ) for β′, let w, x, k such that N(k) be given, and write (w)i = y for
β′(y, i, w). By the definition of I3, we can find a w′ such that β((w)i, i, w

′) for each i < k.
Then Lemma 8 gives a w′′ such that β((w)i, i, w

′′) for each i < k, and β(x, k, w′′). By the
definition of β′, this implies (w′′)i = (w)i for i < k, and (w′′)k = x. �

In contrast, Robinson’s Q is not sequential, despite that it is fairly close to PA− in strength.
In fact, Visser [8] proved that it does not even support pairing; we include a somewhat different
proof of his result below for completeness:

Theorem 12 Q is not sequential, and it has no pairing operation: i.e., there is no formula
π(x, y, p) such that Q proves

(i) ∀x, y ∃p π(x, y, p),

(ii) ∀x, y, x′, y′, p [(π(x, y, p) ∧ π(x′, y′, p)) → (x = x′ ∧ y = y′)].

Proof: Let M = N ∪̇ {a0, a1}, and define arithmetical operations on M extending the usual
operations on N by ai + x = ai, n + ai = ai, n · ai = ai, ai · 0 = 0, ai · x = ai if x 6= 0, where
x ∈ M , and n ∈ N. Then M � Q, and the function f identical on N such that f(ai) = a1−i

is an automorphism of M . Let π be a pairing operation, and find an x such that π(ai, aj , x).
Since f is an automorphism, π(a1−i, a1−j , f(x)). By unique decoding of pairs, it follows that
f(x) 6= x, i.e., x ∈ {a0, a1}. However, there are only two elements in {a0, a1}, while there are
four pairs of the form 〈ai, aj〉, contradicting uniqueness. �
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