SUBDIRECTLY IRREDUCIBLE NON-IDEMPOTENT LEFT SYMMETRIC LEFT DISTRIBUTIVE GROUPOIDS

EMIL JEŘÁBEK, TOMÁŠ KEPKA, DAVID STANOVSKÝ

Abstract

We study groupoids satisfying the identities $x \cdot x y=y$ and $x \cdot y z=$ $x y \cdot x z$. Particularly, we focus our attention at subdirectly irreducible ones, find a description a charecterize small ones

1. Introduction

A left symmetric left distributive groupoid (shortly an LSLD groupoid) is a nonempty set equipped with a binary operation (usually denoted multiplicatively) satisfying the equations:
(left symmetry)

$$
x \cdot x y=y
$$

$$
\text { (left distributivity) } \quad x \cdot y z=x y \cdot x z
$$

An LSLDI groupoid is an idempotent LSLD groupoid, i.e. an LSLD groupoid satisfying the equation $x x=x$. For example, given a group G, the derived operation $x * y=x y^{-1} x$, usually called the core of G, is left symmetric, left distributive and idempotent. LSLDI groupoids were introduced in [10] and they (and their applications) were studied by several authors mainly in 1970's and 1980's. A reader is referred to the survey [8] for details. For a long time, it seemed that the non-idempotent case did not play any significant role in self-distributive structures (whether symmetric or not). This was certainly true for the two-sided case, but recently, due to the book [2] of P. Dehornoy, one-sided non-idempotent selfdistributive groupoids enjoyed certain attention. The purpose of the present note is to continue the investigations of non-idempotent LSLD groupoids started in [4] and, in particular, to get a better insight into the structure of subdirectly irreducible ones. Our main results are Theorems 4.2, 4.3 and 5.9.

As far as we know, the only papers concerning non-idempotent LSLD groupoids are [4] and [9]. Subdirectly irreducible idempotent left symmetric medial groupoids were characterized by B. Roszkowska [7] and simple idempotent LSLD groupoids by D. Joyce [3].

Our notation is rather standard and usually follows the book [1]. A reader can look at [5] for various notions concerning groupoids (i.e. sets with a single binary operation).

[^0]Let G be a groupoid. For every $a \in G$, we denote L_{a} the selfmapping of G defined by $L_{a}(x)=a x$ for all $x \in G$ and call it the left translation by a in G. By an involution we mean a permutation of order two.
Lemma 1.1. Let G be a groupoid. Then
(1) G is LSLD, iff every left translation in G is either the identity, or an involutive automorphism of G;
(2) if G is $L S L D$, then $L_{\varphi(a)}=\varphi L_{a} \varphi^{-1}$ for every $a \in G$ and every automorphism φ of G.
(3) if G is LSLD, then the mapping $\lambda: a \mapsto L_{a}$ is a homomorphism of G into the core of the symmetric group over G.

Proof. (1) Left symmetry says that every left translation L_{a} satisfies $L_{a}^{2}=i d_{G}$. Left distributivity says that every L_{a} is an endomorphism.
(2) Since $\varphi L_{a}(b)=\varphi(a b)=\varphi(a) \varphi(b)=L_{\varphi(a)} \varphi(b)$ for every $a, b \in G$, we have $\varphi L_{a}=L_{\varphi(a)} \varphi$ and thus $L_{\varphi(a)}=\varphi L_{a} \varphi^{-1}$.
(3) It follows from (2) for $\varphi=L_{a}$ that $L_{a b}=L_{a} L_{b} L_{a}^{-1}=L_{a} L_{b} L_{a}$.

Example. The following are all (up to an isomorphism) two-element LSLD groupoids (one idempotent, the other not).

\mathbf{S}	0	1				
0	0	1				
1	0	1	\quad	\mathbf{T}	0	1
:---:	:---:	:---:				
0	$\widetilde{0}$	0				
$\widetilde{0}$	$\widetilde{0}$	0				

Example. The following are all (up to an isomorphism) three-element idempotent LSLD groupoids. \mathbf{S}_{1} is a right zero groupoid, \mathbf{S}_{2} is a dual differential groupoid and \mathbf{S}_{3} is a commutative distributive quasigroup and it forms the smallest Steiner triple system. \mathbf{S}_{3} is simple and \mathbf{S}_{2} is subdirectly irreducible.

\mathbf{S}_{1}	0	1	2
0	0	1	2
1	0	1	2
2	0	1	2

\mathbf{S}_{2}	0	1	2
0	0	2	1
1	0	1	2
2	0	1	2

\mathbf{S}_{3}	0	1	2
0	0	2	1
1	2	1	0
2	1	0	2

Example. The following are all (up to an isomorphism) three-element non-idempotent LSLD groupoids. Both are subdirectly irreducible.

$$
\begin{array}{c|cccc|ccc}
\mathbf{T}_{1} & e & 0 & \widetilde{0} & \mathbf{T}_{2} & e & 0 & \widetilde{0} \\
\hline e & e & 0 & \widetilde{0} & e & e & \widetilde{0} & 0 \\
0, \widetilde{0} & e & \widetilde{0} & 0 & 0, \widetilde{0} & e & \widetilde{0} & 0
\end{array}
$$

Example. We define an operation \circ on the Prüfer 2-group $\mathbb{Z}_{2^{\infty}}(+)$ by $x \circ y=$ $2 x-y+a$, where $a \in \mathbb{Z}_{2^{\infty}}$ is an element satisfying $a \neq 0=2 a$. The groupoid $\mathbb{Z}_{2 \infty}(\circ)$ is an infinite subdirectly irreducible idempotent-free LSLD groupoid.

A non-empty subset J of a groupoid G is called a left ideal of G, if $a b \in J$ for every $a \in G$ and $b \in J$. Note that the set consisting of all left ideals in a left symmetric groupoid and the empty set is closed under intersection, union and complements. If $\{a\}$ is a left ideal of G, we call the element a right zero.

Let G be an LSLD groupoid. We put

$$
I d_{G}=\{x \in G: x x=x\} \quad \text { and } \quad K_{G}=\{x \in G: x x \neq x\} .
$$

Each of $I d_{G}$ and K_{G} is either empty or a left ideal of G. Further, we define relations

$$
\begin{aligned}
p_{G} & =\left\{(x, y) \in G \times G: L_{x}=L_{y}\right\} \\
q_{G} & =\left\{(a, b) \in I d_{G} \times I d_{G}:\left.L_{a}\right|_{K_{G}}=\left.L_{b}\right|_{K_{G}}\right\} \cup i d_{G} \\
i p_{G} & =\{(x, x x): x \in G\} \cup i d_{G}
\end{aligned}
$$

and a mapping $o_{G}: G \rightarrow G$ by $o_{G}(x)=x x$.
Lemma 1.2. Let G be an LSLD groupoid. Then
(1) p_{G} and q_{G} are congruences of G and $i p_{G} \subseteq p_{G}$;
(2) $i p_{G}$ is a congruence of $G, G / i p_{G}$ is idempotent and $i p_{G}$ is the smallest congruence such that the corresponding factor is idempotent; moreover, every non-trivial block of $i p_{G}$ is isomorphic to \mathbf{T};
(3) o_{G} is either the identity, or an involutive automorphism of G.

Proof. (1) The relation p_{G} is the kernel of the homomorphism λ from Lemma 1.1(3), hence it is a congruence.

The relation q_{G} is an equivalence, so consider $a, b \in I d_{G}$ such that $\left.L_{a}\right|_{K_{G}}=$ $\left.L_{b}\right|_{K_{G}}$. Then $\left.L_{a z}\right|_{K_{G}}=\left.L_{b z}\right|_{K_{G}}$ for all $z \in G$, since for every $k \in K_{G}$ we have $a z \cdot k=a(z \cdot a k)=a(z \cdot b k)=b(z \cdot b k)=b z \cdot k$ (because $z \cdot b k \in K_{G}$). And also $\left.L_{z a}\right|_{K_{G}}=\left.L_{z b}\right|_{K_{G}}$ for all $z \in G$, because for every $k \in K_{G}$ we have $z a \cdot k=$ $z(a \cdot z k)=z(b \cdot z k)=z b \cdot k$ (because $\left.z k \in K_{G}\right)$. Consequently, q_{G} is a congruence.

Finally, $x y=x(x \cdot x y)=x x \cdot(x \cdot x y)=x x \cdot y$ for every $x, y \in G$ and thus $i p_{G} \subseteq p_{G}$.
(2) Since $x x \cdot x x=x \cdot x x=x$ for every $x \in G$, the relation $i p_{G}$ is symmetric and transitive and every non-trivial block of $i p_{G}$ consists of two elements and thus is isomorphic to T. Further, $x z=x x \cdot z$ for every $z \in G$ due to (1) and $(z x, z \cdot x x) \in i p_{G}$ because $z \cdot x x=z x \cdot z x$; hence $i p_{G}$ is a congruence. Clearly, $G / i p_{G}$ is idempotent and $i p_{G}$ is the smallest congruence with this property.
(3) o_{G} is an involution (or the identity) according to (2) and $o_{G}(x y)=x y \cdot x y=$ $x \cdot y y=x x \cdot y y=o_{G}(x) o_{G}(y)$ for all $x, y \in G$.

Corollary 1.3. T is the only (up to an isomorphism) simple non-idempotent LSLD groupoid.

Let G be a groupoid, $e \notin G$ and $\varphi: G \rightarrow G$. We denote $G[\varphi]$ the groupoid defined on the set $G \cup\{e\}$ so that G is a subgroupoid of $G[\varphi], e$ is a right zero and $e x=\varphi(x)$ for every $x \in G$.

Lemma 1.4. Let G be an LSLD groupoid, $e \notin G$ and $\varphi: G \rightarrow G$. Then
(1) $G[\varphi]$ is an $L S L D$ groupoid, iff $\varphi=i d_{G}$ or φ is an involutive automorphism of G with $L_{x}=L_{\varphi(x)}$ for all $x \in G$;
(2) $G\left[i d_{G}\right]$ and $G\left[o_{G}\right]$ are $L S L D$ groupoids and $G\left[o_{G}\right]\left[i d_{G\left[o_{G}\right]}\right]$, $G\left[i d_{G}\right]\left[o_{G\left[i d_{G}\right]}\right]$ are isomorphic.

Proof. This is a straightforward calculation.
Note that the three-element non-idempotent LSLD groupoids are isomorphic to $\mathbf{T}\left[i d_{\mathbf{T}}\right]$ and $\mathbf{T}\left[o_{\mathbf{T}}\right]$, respectively. One can check that $\left(\mathbf{T}\left[i d_{\mathbf{T}}\right]\right)\left[o_{\mathbf{T}\left[i d_{\mathbf{T}}\right]}\right]$ is the only four-element subdirectly irreducible non-idempotent LSLD groupoid.

The following technical lemmas become useful later.

Lemma 1.5. Let G be an LSLD groupoid and $\varphi \in\left\{i d_{G}, o_{G}\right\}$. Then the set $A_{\varphi}=$ $\left\{a \in G: L_{a}=\varphi\right\}$ is either empty, or a left ideal of G.
Proof. Let $a \in A_{\varphi}$. By Lemma 1.1 $L_{x a}=L_{x} L_{a} L_{x}$ for every $x \in G$. If $L_{a}=\varphi=$ $i d_{G}$, then $L_{x a}=L_{x} L_{x}=i d_{G}=\varphi$. If $L_{a}=\varphi=o_{G}$, then $L_{x a}(y)=x o_{G}(x y)=$ $x(x y \cdot x y)=x(x \cdot y y)=o_{G}(y)$ for every $y \in G$ and thus $L_{x a}=o_{G}=L_{a}$. Hence A_{φ} is a left ideal.

Lemma 1.6. Let G be an LSLD groupoid and J a left ideal of G. Then the relation $\rho_{J}=\left(\left.\left(i p_{G}\right)\right|_{J}\right) \cup i d_{G}$ is a congruence of G.

Proof. The claim follows from Lemma 1.2.
Lemma 1.7. Let G be an LSLD groupoid and $a \in G$ a right zero. Then
(1) $x \cdot a y=a \cdot x y$ and $x y=a x \cdot y$ for all $x, y \in G$;
(2) the relation $\nu_{a}=\{(x, a x): x \in G\} \cup i d_{G}$ is a congruence of G; moreover, every non-trivial block of ν_{a} has two elements.

Proof. (1) is calculated as follows: $x \cdot a y=x a \cdot x y=a \cdot x y$ and $a x \cdot y=(a x)(a \cdot a y)=$ $a(x \cdot a y)=a(a \cdot x y)=x y$.
(2) Clearly, ν_{a} is both reflexive and symmetric and it follows from (1) that ν_{a} is compatible with the multiplication of G. We show that ν_{a} is transitive. If $(x, y) \in \nu_{a},(y, z) \in \nu_{a}, x \neq y \neq z$, then $y=a x$ and $z=a y=a \cdot a x=x$ and thus $(x, z) \in \nu_{a}$. The rest becomes clear now.

Lemma 1.8. Let G be an LSLD groupoid and let ρ be a congruence of K_{G} such that $(u, v) \in \rho$ implies $(a u, a v) \in \rho$ and $(u a \cdot z, v a \cdot z) \in \rho$ for all $a \in I d_{G}$ and $z \in K_{G}$. Define a relation σ on Id_{G} by $(a, b) \in \sigma$ iff $(a u, b v) \in \rho$ for every pair $(u, v) \in \rho$. Then $\rho \cup \sigma$ is a congruence of G.

Proof. This straightforward calculation is omitted.

2. Basic facts about subdirectly irreducible LSLD groupoids

It is well known that a groupoid G is subdirectly irreducible (shortly $S I$), if and only if G possesses a smallest non-trivial congruence (called the monolith of G), i.e. a congruence $\mu_{G} \neq i d_{G}$ such that $\mu_{G} \subseteq \nu$ for every congruence $\nu \neq i d_{G}$ on G.
Lemma 2.1. Let G be an SI non-idempotent LSLD groupoid. Then
(1) if $J \subseteq K_{G}$ is a left ideal, then $J=K_{G}$;
(2) $i p_{G}$ is the monolith of G;
(3) $\left.L_{a}\right|_{K_{G}} \neq\left. L_{b}\right|_{K_{G}}$ for every $a, b \in I d_{G}$ with $a \neq b$; in other words, $q_{G}=i d_{G}$;
(4) $\left.\varphi\right|_{K_{G}} \neq\left.\psi\right|_{K_{G}}$ for all automorphisms φ, ψ of G with $\varphi \neq \psi$.

Proof. (1) Let $J \subset K_{G}$ be a left ideal. Then $J^{\prime}=K_{G} \backslash J$ is a left ideal too and $\rho_{J}, \rho_{J^{\prime}}$ are non-trivial congruences, since both J and J^{\prime} contain at least two elements. However, $\rho_{J} \cap \rho_{J^{\prime}}=i d_{G}$ yields a contradiction with subdirect irreducibility of G.
(2) We have $\mu_{G} \subseteq i p_{G}$. Put $J=\left\{u \in K_{G}:(u, u u) \in \mu_{G}\right\}$. Then J is a left ideal, because μ_{G} is a congruence, and thus $J=K_{G}$ and $\mu_{G}=i p_{G}$.
(3) According to Lemma 1.2(1), q_{G} is a congruence. It is trivial, because $q_{G} \cap$ $i p_{G}=i d_{G}$.
(4) Assume that $\left.\varphi\right|_{K_{G}}=\left.\psi\right|_{K_{G}}$ and we show that $\left.\varphi\right|_{I d_{G}}=\left.\psi\right|_{I d_{G}}$ too. Observe that $\left.\varphi\right|_{K_{G}}=\left.\psi\right|_{K_{G}}$ iff $\left.\varphi^{-1}\right|_{K_{G}}=\left.\psi^{-1}\right|_{K_{G}}$, because every automorphism of G maps
K_{G} onto itself. Now, given $a \in I d_{G}$ and $u \in K_{G}$, we have $\varphi(a) u=\varphi(a) \varphi \varphi^{-1}(u)=$ $\varphi\left(a \varphi^{-1}(u)\right)$ and, because $a \varphi^{-1}(u)=a \psi^{-1}(u) \in K_{G}$, we have also $\varphi\left(a \varphi^{-1}(u)\right)=$ $\psi\left(a \psi^{-1}(u)\right)=\psi(a) u$. Thus $\left.L_{\varphi(a)}\right|_{K_{G}}=\left.L_{\psi(a)}\right|_{K_{G}}$ and, by $(3), \varphi(a)=\psi(a)$.
Proposition 2.2. Let G be a non-idempotent LSLD groupoid and H a subgroupoid of G such that $K_{G} \subseteq H$. Assume that H is subdirectly irreducible. Then G is subdirectly irreducible, iff $q_{G}=i d_{G}$.

Proof. The direct implication was proved in Lemma 2.1(3). So assume $q_{G}=i d_{G}$ and let ρ be a non-trivial congruence on G. If $\left.\rho\right|_{H} \neq i d_{H}$, then $\left.i p_{H} \subseteq \rho\right|_{H}$. But $i p_{G}=i p_{H} \cup i d_{G}$ and thus $i p_{G} \subseteq \rho$. Hence assume that $\left.\rho\right|_{H}=i d_{H}$. If $(a, b) \in \rho$ for some $a, b \in I d_{G}, a \neq b$, then $a u \neq b u$ for some $u \in K_{G}$ by Lemma 2.1(3) and we have $\left.(a u, b u) \in \rho\right|_{K_{G}}=i d_{K_{G}}$, a contradiction. If $(a, u) \in \rho$ for some $a \in I d_{G}$ and $u \in K_{G}$, then $(a, u u)=(a a, u u) \in \rho$ and, again, $\left.(u, u u) \in \rho\right|_{K_{G}}=i d_{K_{G}}$, a contradiction. Consequently, G is subdirectly irreducible.

Corollary 2.3. Let G be a non-idempotent $L S L D$ groupoid such that K_{G} is subdirectly irreducible. Then G is subdirectly irreducible, iff $q_{G}=i d_{G}$.

Lemma 2.4. Let G be an SI non-idempotent LSLD groupoid and $a, b \in G$ right zeros. Then
(1) $L_{a} \in\left\{i d_{G}, o_{G}\right\}$;
(2) $a=b$, iff $L_{a}=L_{b}$;
(3) G contains at most two right zeros.

Proof. (1) Let ν_{a} be the congruence from Lemma 1.7. If $\nu_{a}=i d_{G}$, then $L_{a}=i d_{G}$. If $\nu_{a} \neq i d_{G}$, then $\mu_{G}=i p_{G} \subseteq \nu_{a}$ and thus $\left.L_{a}\right|_{K_{G}}=\left.o_{G}\right|_{K_{G}}$. Hence $L_{a}=o_{G}$ according to Lemma 2.1(4).

The statement (2) follows from Lemma 2.1(3) and (3) is an immediate consequence of (1) and (2).
Lemma 2.5. Let G be an SI non-idempotent LSLD groupoid and let $a \in G$ be a right zero. Then $H=G \backslash\{a\}$ is an SI non-idempotent LSLD groupoid and it contains no right zero b with $L_{b}=\left.L_{a}\right|_{H}$.

Proof. Clearly, H is a left ideal of G and thus a subgroupoid of G. Moreover, if ρ is a non-trivial congruence of H, then $\sigma=\rho \cup\{(a, a)\}$ is a (non-trivial) congruence of G (because $L_{a} \in\left\{i d_{G}, o_{G}\right\}$) and thus $i p_{G}=\mu_{G} \subseteq \sigma$. So $i p_{H} \subseteq \rho$ and H is subdirectly irreducible. Finally, if b is a right zero in H, then it is also a right zero in G and so $L_{b} \neq\left. L_{a}\right|_{H}$ by Lemma 2.4.

Lemma 2.6. Let G be an SI non-idempotent LSLD groupoid and $\varphi \in\left\{i d_{G}, o_{G}\right\}$. Then $G[\varphi]$ is subdirectly irreducible, iff G contains no right zero a with $L_{a}=\varphi$.
Proof. The direct implication follows from Lemma 2.5. On the contrary, if G contains no right zero a with $L_{a}=\varphi$, then $A_{\varphi}=\emptyset$ (by Lemmas 1.5 and 2.1(3) $\left|A_{\varphi}\right| \leq 1$, hence any element b with $L_{b}=\varphi$ is a right zero), so $q_{G[\varphi]}=i d$ and Proposition 2.2 applies.
Corollary 2.7. Let G be an SI non-idempotent LSLD groupoid with no right zero. Then

$$
G, G\left[i d_{G}\right], G\left[o_{G}\right] \text { and } G\left[i d_{G}\right]\left[o_{G\left[i d_{G}\right]}\right]
$$

are pairwise non-isomorphic SI LSLD groupoids.

Corollary 2.8. Let G be an SI non-idempotent LSLD groupoid and let A be the set of right zeros in G. Then $|A| \leq 2, H=G \backslash A$ is a left ideal of G, H is an $S I$ non-idempotent LSLD groupoid with no right zero and G is isomorphic to exactly one of

$$
H, H\left[i d_{H}\right], H\left[o_{H}\right] \text { and } H\left[i d_{H}\right]\left[o_{H\left[i d_{H}\right]}\right] .
$$

3. Groupoids of involutions

Let ε be a binary relation on a non-empty set X. We denote $\operatorname{Inv}(X, \varepsilon)$ the set of all permutations φ of X such that $\varphi^{2}=i d_{X}$ and $(x, y) \in \varepsilon$ implies $(\varphi(x), \varphi(y)) \in \varepsilon$. It is easy to see that $\operatorname{Inv}(X, \varepsilon)$ is a subgroupoid of the core of the symmetric group over X and thus it is an idempotent LSLD groupoid.

An equivalence ε is called a pairing (a semipairing, resp.), if every block of ε consists of (at most, resp.) two elements. Let $\alpha(m)=|\operatorname{Inv}(m, \varepsilon)|$, where ε is a pairing on a cardinal number $m(\alpha(m)$ is defined for even and infinite cardinals only).

Proposition 3.1. $\alpha(2)=2, \alpha(4)=6$ and $\alpha(m)=2 \alpha(m-2)+(m-2) \alpha(m-4)$ for every even $6 \leq m<\omega$. Further, $\alpha(m)=2^{m}$ for every infinite m.

Proof. Assume that m is finite even and the blocks of ε are the sets $\{2 k, 2 k+1\}^{2}$, $k=0, \ldots, \frac{m}{2}-1$. The claim is trivial for $m \in\{2,4\}$, so assume $m \geq 6$. Let $I_{k}=\{\varphi \in \operatorname{Inv}(m, \varepsilon): \varphi(0)=k\}$ for $0 \leq k \leq m-1$. Then $\operatorname{Inv}(m, \varepsilon)=\bigcup_{k=0}^{m-1} I_{k}$ and I_{k} 's are pairwise disjoint. If $\varphi \in I_{0}$, then $\varphi(1)=1$. If $\varphi \in I_{1}$, then $\varphi(1)=0$. Consequently, $\left|I_{0}\right|=\left|I_{1}\right|=\alpha(m-2)$. On the other hand, if $\varphi \in I_{k}$ for $k \geq 2$, then $\varphi(1)=k^{\prime}$, where $k^{\prime} \neq k$ is such that $\left(k, k^{\prime}\right) \in \varepsilon$, and thus $\varphi(k)=0, \varphi\left(k^{\prime}\right)=1$. Hence $\left|I_{k}\right|=\alpha(m-4)$ and $|\operatorname{Inv}(m, \varepsilon)|=2 \alpha(m-2)+(m-2) \alpha(m-4)$.

If m is infinite, consider all involutions of the form $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \ldots$, where $\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}, \ldots$ are pairwise different blocks of ε. They belong to $\operatorname{Inv}(m, \varepsilon)$ and thus $\alpha(m) \geq 2^{m}$. Hence $\alpha(m)=2^{m}$.

m	2	4	6	8	10	12	14	16	18	20
$\alpha(m)$	2	6	20	76	312	1384	6512	32400	168992	921184

For every semipairing ε on X there is a unique mapping $o_{\varepsilon} \in \operatorname{Inv}(X, \varepsilon)$ such that $\left(x, o_{\varepsilon}(x)\right) \in \varepsilon$ and $o_{\varepsilon}(x)=x$ iff $\{x\}$ is a one-element block of ε. It is easy to see that $i d_{X}$ and o_{ε} are right zeros in $\operatorname{Inv}(X, \varepsilon)$ and that $i d_{X} * \varphi=\varphi$ and $o_{\varepsilon} * \varphi=\varphi$ for every $\varphi \in \operatorname{Inv}(X, \varepsilon)$. Let $\operatorname{Inv}^{-}(X, \varepsilon)=\operatorname{Inv}(X, \varepsilon) \backslash\left\{i d_{X}, o_{\varepsilon}\right\}$. Clearly, it is either empty, or a left ideal of $\operatorname{Inv}(X, \varepsilon)$.

Finally, let $\operatorname{Aut}_{2}(G)=\left\{\varphi \in \operatorname{Aut}(G): \varphi^{2}=i d\right\}$. If G is an LSLD groupoid, then $\operatorname{Aut}_{2}(G)$ is a subgroupoid of $\operatorname{Inv}\left(G, i p_{G}\right), L_{x} \in \operatorname{Aut}_{2}(G)$ for every $x \in G$ and the mapping $x \mapsto L_{x}$ is a homomorphism of G into $\operatorname{Aut}_{2}(G)$. Let $\operatorname{Aut}_{2}^{-}(G)=$ $\operatorname{Aut}_{2}(G) \cap \operatorname{Inv}^{-}\left(G, i p_{G}\right)$.

Proposition 3.2. Let G be an SI non-idempotent LSLD groupoid with at least one idempotent element. Then the mapping

$$
\eta: I d_{G} \rightarrow \operatorname{Aut}_{2}\left(K_{G}\right),\left.\quad a \mapsto L_{a}\right|_{K_{G}}
$$

is an injective homomorphism.
Proof. It follows from Lemmas 1.1 and 2.1(3).

Corollary 3.3. Let G be an SI LSLD groupoid with $\left|K_{G}\right|=m \neq 0$. Then

$$
\left|I d_{G}\right| \leq \alpha(m) \quad \text { and } \quad|G| \leq \alpha(m)+m .
$$

It will be shown in the next section that the upper bound on $\left|I d_{G}\right|$ is best possible.

4. A DESCRIPTION of SUBDIRECTLY IRREDUCIBLE LSLD GROUPOIDS

Lemma 4.1. Let K be an idempotent-free LSLD groupoid and I a subgroupoid of $\operatorname{Aut}_{2}(K)$. Put $G=I \cup K$. Then the following conditions are equivalent.
(1) The operations of I and K can be extended onto G so that G becomes an $L S L D$ groupoid with $\varphi \cdot u=\varphi(u)$ for all $\varphi \in I, u \in K$.
(2) $L_{u} \varphi L_{u} \in I$ for all $\varphi \in I, u \in K$.

Moreover, if the conditions are satisfied, the operation of G is uniquely determined and $u \cdot \varphi=L_{u} \varphi L_{u}$ for all $\varphi \in I, u \in K$.

Proof. Clearly, $u \varphi \in I=I d_{G}$ for every $u \in K, \varphi \in I$. Since $u(\varphi v)=(u \varphi)(u v)$ for every $u, v \in K, \varphi \in I$, we have $L_{u}(\varphi(v))=(u \varphi)\left(L_{u}(v)\right)$ and thus $u \varphi=$ $L_{u} \varphi\left(L_{u}\right)^{-1}=L_{u} \varphi L_{u}$. Indeed, this is possible, iff $L_{u} \varphi L_{u} \in I$ for all $\varphi \in I, u \in K$. We omit the straightforward calculation showing that the resulting groupoid G is LSLD.

The groupoid G from Lemma 4.1 will be denoted by $I \sqcup K$. The groupoid Aut $_{2}(K) \sqcup K$ will be called the full extension of K and denoted $\operatorname{Full}(K)$.

$I \sqcup K$	ψ	v
φ	$\varphi \psi \varphi$	$\varphi(v)$
u	$L_{u} \psi L_{u}$	$u v$

Theorem 4.2. Let G be an SI non-idempotent LSLD groupoid. Then there exists an injective homomorphism $\eta: G \rightarrow \operatorname{Full}\left(K_{G}\right)$ such that

$$
\eta(u)=u \text { for every } u \in K_{G} \quad \text { and } \quad \eta(a)=\left.L_{a}\right|_{K_{G}} \text { for every } a \in I d_{G} .
$$

Thus G is isomorphic (via η) to the subgroupoid $\eta\left(I d_{G}\right) \sqcup K_{G}$ of $\operatorname{Full}\left(K_{G}\right)$.
Proof. It is straightforward to check that η is a homomorphism and it is injective according to Proposition 3.2.

Remark. Let K be an idempotent-free LSLD groupoid and assume the set \mathcal{S} of SI subgroupoids G of $\operatorname{Full}(K)$ with $K_{G}=K$. The set \mathcal{S} is non-empty, iff $\operatorname{Full}(K) \in \mathcal{S}$; in this case, the set \mathcal{S} has minimal elements, say H_{1}, \ldots, H_{k}, and it follows from Proposition 2.2 that $G \in \mathcal{S}$, iff G is a subgroupoid of $\operatorname{Full}(K)$ and $H_{i} \subseteq G$ for at least one $1 \leq i \leq k$.

Theorem 4.3. The following conditions are equivalent for an idempotent-free LSLD groupoid K :
(1) There exists an SI LSLD groupoid G with $K_{G}=K$.
(2) The groupoid $\operatorname{Full}(K)$ is $S I$.
(3) The groupoid Full ${ }^{-}(K)$ is SI.
(4) If ρ is a non-trivial $\operatorname{Aut}_{2}(K)$-invariant congruence of K, then $i p_{K} \subseteq \rho$.

Proof. The implication (1) $\Rightarrow(2)$ follows from Proposition $2.2,(2) \Rightarrow(3)$ follows from Lemma 2.5 and $(3) \Rightarrow(1)$ is trivial.

Now, assume that (4) is true and let σ be a non-trivial congruence of Full(K). If $\left.\sigma\right|_{K} \neq i d_{K}$, then $i p_{K} \subseteq \sigma$ by (4) and thus Full(K) is SI. So assume that $\rho=\left.\sigma\right|_{K}=$ $i d_{K}$. If $(\varphi, \psi) \in \sigma$ for some $\varphi, \psi \in \operatorname{Aut}_{2}(K), \varphi \neq \psi$, then there is at least one $u \in K$ with $\varphi(u) \neq \psi(u)$ and we have $(\varphi(u), \psi(u)) \in \rho$, a contradiction. Thus $(\varphi, u) \in \sigma$ for some $\varphi \in \operatorname{Aut}_{2}(K), u \in K$. In this case, $(\varphi, u u) \in \sigma$ and so $(u, u u) \in \rho$, a contradiction again.

Finally, assume (2) and consider a non-trivial $\mathrm{Aut}_{2}(K)$-invariant congruence ρ of K. Define a relation σ on $\operatorname{Aut}_{2}(K)$ by $(\varphi, \psi) \in \sigma$ iff $(\varphi(u), \psi(v)) \in \rho$ for every pair $(u, v) \in \rho$. According to Lemma 1.8, $\rho \cup \sigma$ is a congruence of $\operatorname{Full}(K)$ and so $i p_{K} \subseteq \rho$.

A groupoid K satisfying the conditions of Theorem 4.3 will be called pre-SI.
Example. Let ε be a pairing on a non-empty set K. We equip the set K with an operation such that $L_{u}=o_{\varepsilon}$ for every $u \in K$. Clearly, K is an idempotent-free LSLD groupoid and $\mathrm{Aut}_{2}(K)=\operatorname{Inv}(K, \varepsilon)$. Using Theorem 4.3, we prove that K is pre-SI and thus $G=\operatorname{Full}(K)$ is an SI LSLD groupoid of size $\alpha\left(\left|K_{G}\right|\right)+\left|K_{G}\right|$ (cf. Corollary 3.3).

Let ρ be a non-trivial $\operatorname{Aut}_{2}(K)$-invariant congruence on K. We claim that $i p_{K}=$ $o_{\varepsilon} \subseteq \rho$. Indeed, if $\left(u, o_{K}(u)\right) \in \rho$ for some $u \in K$, then for every $v \in K$ the involution $\varphi=(u v)\left(o_{K}(u) o_{K}(v)\right)$ belongs to $\operatorname{Aut}_{2}(K)$ and thus $\left(v, o_{K}(v)\right) \in \rho$. Thus $i p_{K} \subseteq \rho$. On the other hand, if $(u, v) \in \rho, u \neq v \neq o_{K}(u)$, then the involution $\psi=\left(v o_{K}(v)\right)$ belongs to $\operatorname{Aut}_{2}(K)$ and thus $(u, o(v))=(\psi(u), \psi(v)) \in \rho$ and so $(v, o(v)) \in \rho$.
Example. Consider the following four-element groupoid K.

$$
\begin{array}{c|cccc}
K & 0 & \widetilde{0} & 1 & \widetilde{1} \\
\hline 0, \widetilde{0} & \widetilde{0} & 0 & \widetilde{1} & 1 \\
1, \widetilde{1} & 0 & \widetilde{0} & \widetilde{1} & 1
\end{array}
$$

One can check that K is an LSLD groupoid, $\operatorname{Aut}_{2}(K)=\left\{i d_{K},(0 \widetilde{0}),(1 \widetilde{1}),(0 \widetilde{0})(1 \widetilde{1})\right\}$ and the relation $\rho=\{(0, \widetilde{0}),(\widetilde{0}, 0)\} \cup i d_{K}$ is an $\operatorname{Aut}_{2}(K)$-invariant congruence of K. However, $i p_{K} \nsubseteq \rho$ and thus K is not pre-SI.

5. Few idempotent elements

In this section, let G be a finite SI non-idempotent LSLD groupoid with $\operatorname{Id}_{G} \neq \emptyset$ and r, s, α, β will denote non-negative integers.

Let $n=\left|I d_{G}\right|$ and $2 m=\left|K_{G}\right|$. We put $K_{1}(a)=\left\{u \in K_{G}: a u=u\right\}, K_{2}(a)=$ $\left\{u \in K_{G}: a u=u u\right\}$ and $K_{3}(a)=K_{G} \backslash\left(K_{1}(a) \cup K_{2}(a)\right)$ for every $a \in I d_{G}$.
Lemma 5.1. $\left|K_{1}(a)\right|,\left|K_{2}(a)\right|$ are even numbers and $\left|K_{3}(a)\right|$ is divisible by 4.
Proof. $\left|K_{1}(a)\right|$ is even, because $u \in K_{1}(a)$, iff $u u \in K_{1}(a)$ (and analogously for $\left.\left|K_{2}(a)\right|\right)$. Furthermore, the sets $\{v, v v, a v, a \cdot v v\}, v \in K_{3}(a)$, are four-element and pairwise disjoint.

Let $r(a)=\frac{1}{2}\left|K_{1}(a)\right|$ and $s(a)=\frac{1}{2}\left|K_{2}(a)\right|$. Hence $m-r(a)-s(a)$ is a (nonnegative) even number.

Lemma 5.2. $r(x a)=r(a)$ and $s(x a)=s(a)$ for all $a \in I d_{G}, x \in G$.

Proof. If $v \in K_{1}(a)$, then $x a \cdot x v=x \cdot a v=x v$ and so $x v \in K_{1}(x a)$. Conversely, if $w \in K_{1}(x a)$, then $x w=x(x a \cdot w)=(x \cdot x a)(x w)=a \cdot x w$ and so $x w \in K_{1}(a)$. Thus L_{x} maps bijectively $K_{1}(a)$ onto $K_{1}(x a)$ and, in particular, $r(a)=\left|K_{1}(a)\right|=$ $\left|K_{1}(x a)\right|=r(x a)$. Analogously, $s(a)=s(x a)$.

Let $I(r, s)=\left\{a \in I d_{G}: r(a)=r, s(a)=s\right\}$. Indeed, if $I(r, s) \neq \emptyset$, then $m-r-s$ is a non-negative even number. It follows from Lemma 5.2 that $I(r, s)$ is either empty, or a left ideal of G.
Lemma 5.3. (1) If $r \geq m$ and $I(r, s) \neq \emptyset$, then $r=m, s=0$ and $|I(r, s)|=1$.
(2) If $s \geq m$ and $I(r, s) \neq \emptyset$, then $r=0, s=m$ and $|I(r, s)|=1$.

Proof. (1) Since $m \geq r+s$, we have $r=m$ and $s=0$. Consequently, $I(r, s)=$ $I(m, 0)=\left\{a \in I d_{G}: a u=u\right.$ for every $\left.u \in K_{G}\right\}$, and hence $|I(r, s)|=1$ by Lemma 2.1(3). (2) is analogous.

Let $K(r, s, \alpha, \beta)$ be the set of all $u \in K_{G}$ such that $\left|\left\{a \in I(r, s): u \in K_{1}(a)\right\}\right|=\alpha$ and $\left|\left\{a \in I(r, s): u \in K_{2}(a)\right\}\right|=\beta$.
Lemma 5.4. Either $K(r, s, \alpha, \beta)=\emptyset$, or $K(r, s, \alpha, \beta)=K_{G}$.
Proof. Assume that $J=K(r, s, \alpha, \beta) \neq \emptyset$. We prove that J is a left ideal. Since $a \cdot x u=x u$ iff $x a \cdot u=u$ for every $u \in J, x \in G, a \in I d_{G}$, we have $L_{x}(\{b \in I(r, s):$ $b \cdot x u=x u\}$) $=\{c \in I(r, s): c u=u\}$ (use the fact that $I(r, s)$ is a left ideal) and, in particular, $\left|\left\{b \in I(r, s): x u \in K_{1}(b)\right\}\right|=\alpha$. Similarly, $\mid\{b \in I(r, s): x u \in$ $\left.K_{2}(b)\right\} \mid=\beta$ and thus $x u \in J$. Consequently, $J=K_{G}$ by Lemma 2.1(1).

Consequently, for every r, s there is a unique pair (α, β) such that $K(r, s, \alpha, \beta)=$ K_{G} and $K\left(r, s, \alpha^{\prime}, \beta^{\prime}\right)=\emptyset$ for all $\left(\alpha^{\prime}, \beta^{\prime}\right) \neq(\alpha, \beta)$.

Lemma 5.5. If $K(r, s, \alpha, \beta)=K_{G}$, then $\alpha m=r t$ and $\beta m=s t$, where $t=|I(r, s)|$.
Proof. Since $|\{a \in I(r, s): a u=u\}|=\alpha$ and $|\{a \in I(r, s): a u=u u\}|=\beta$ for every $u \in K_{G}$, we have $|L|=2 \alpha m$, where $L=\left\{(a, u) \in I(r, s) \times K_{G}: a u=u\right\}$. On the other hand, $|L|=2 r t$ by the definition of $I(r, s)$. Thus $\alpha m=r t$. Considering the set $\left\{(a, u) \in I(r, s) \times K_{G}: a u=u u\right\}$, a similar proof yields $\beta m=s t$.
Lemma 5.6. If $K(r, s, \alpha, \beta)=K_{G}, I(r, s) \neq \emptyset$ and the numbers m and $t=|I(r, s)|$ are relatively prime, then just one of the following cases takes place:
(1) $r=s=\alpha=\beta=0$.
(2) $r=m, s=0, \alpha=1, \beta=0$ and $t=1$.
(3) $r=0, s=m, \alpha=0, \beta=1$ and $t=1$.

Proof. By Lemma 5.5, $\alpha m=r t$ and $\beta m=s t$. If $r=s=0$, then obviously $\alpha=\beta=0$. If $r \geq 1$, then m divides r and thus $r \geq m$. If $s \geq 1$, then m divides s and thus $s \geq m$. In both cases, Lemma 5.3 applies.

Proposition 5.7. If $I(r, s) \neq \emptyset, r+s \geq 1$ and the numbers m and $t=|I(r, s)|$ are relatively prime, then G contains a right zero.
Proof. Choose α, β such that $K(r, s, \alpha, \beta)=K_{G}$. It follows from Lemma 5.6 that $t=1$ and thus $I(r, s)$ consists of a right zero.

Proposition 5.8. If m is not divisible by any prime number $p \in\{2, \ldots, n-2, n\}$, then either G contains a right zero, or $n=3, m$ is even and $u \neq a u \neq u u$ for all $a \in I d_{G}, u \in K_{G}$.

Proof. If $n=1$, then $I d_{G}=\{a\}$ and a is a right zero; so we may assume that $n \geq 2$. Obviously, if $I(r, s)=\emptyset$ for all r, s with $r+s \geq 1$, then $u \neq a u \neq u u$ for all $a \in I d_{G}, u \in K_{G}$, and thus m is divisible by 2 according to Lemma 5.1. Consequently, $2=n-1$ and thus $n=3$.

So assume that there are r, s such that $r+s \geq 1$ and $t=|I(r, s)| \geq 1$. If m and t are relatively prime, then Lemma 5.7 yields the result. If p is a prime dividing both m and t, then $p \leq t \leq n$, and therefore $p=n-1, t=n-1$ and the only $a \in I d_{G} \backslash I(r, s)$ is a right zero.

Theorem 5.9. Let G be a finite SI non-idempotent LSLD groupoid with $\left|K_{G}\right|=$ $2 m \geq 4$ and let p be the least prime divisor of m. If $\left|I d_{G}\right|<p$, then either $I d_{G}$ contains precisely three elements which are not right zeros, or every element of $I d_{G}$ is a right zero and thus $\left|I d_{G}\right| \leq 2$ and K_{G} is subdirectly irreducible.

Proof. Let $H=G \backslash A$, where A is the set of all right zeros of G. According to Corollary 2.8, H is an SI LSLD groupoid with no right zeros. However, if $I d_{H} \neq \emptyset$, then H contains a right zero by Proposition 5.8, a contradiction. The rest follows from Corollary 2.8 too.

6. Small subdirectly irreducible LSLD groupoids

In this section we apply the theory developed above to search for small SI nonidempotent LSLD groupoids. The procedure for finding all SI LSLD groupoids G with $m>0$ non-idempotent elements follows.
(1) We find all $\frac{m}{2}$-element LSLDI groupoids.
(2) We find all m-element idempotent-free LSLD groupoids by extending groupoids found in the first step and check which of them are pre-SI (using Theorem 4.3).
(3) For each pre-SI groupoid K found in the second step, we characterize subgroupoids I of Aut ${ }_{2}^{-} K$ with the property 4.1(2) and check which $I \sqcup K$ are subdirectly irreducible.
(4) Each SI LSLD groupoid found in the third step can be extended by $i d_{G}$, o_{G}, none or both (see Corollary 2.7).

Two non-idempotents. Let G be an SI LSLD groupoid with $\left|K_{G}\right|=2$. Then $K_{G} \simeq \mathbf{T}$ and $I d_{G}$ is either empty, or isomorphic to a subgroupoid of $\operatorname{Aut}_{2}(\mathbf{T})=$ $\operatorname{Inv}\left(\mathbf{T}, i p_{\mathbf{T}}\right)=\left\{i d_{\mathbf{T}}, o_{\mathbf{T}}\right\}$. Hence

$$
\mathbf{T}, \mathbf{T}\left[i d_{\mathbf{T}}\right], \mathbf{T}\left[o_{\mathbf{T}}\right] \text { and } \mathbf{T}\left[i d_{\mathbf{T}}\right]\left[o_{\mathbf{T}\left[i d_{\mathbf{T}}\right]}\right]
$$

are the only (up to an isomorphism) SI LSLD groupoids with two non-idempotent elements.

Four non-idempotents. Let G be an SI LSLD groupoid with $\left|K_{G}\right|=4$. Then $K_{G} / i p_{K_{G}}$ is isomorphic to \mathbf{S}, the only two-element LSLDI groupoid. Clearly, the following groupoids K_{1}, K_{2}, K_{3} are the only (up to an isomorphism) 4-element idempotent-free LSLD groupoids:

$$
\begin{array}{c|ccccc|ccccc|cccc}
K_{1} & 0 & \widetilde{0} & 1 & \widetilde{1} \\
\hline 0, \widetilde{0} & \widetilde{0} & 0 & \widetilde{1} & 1 \\
1, \widetilde{1} & \widetilde{0} & 0 & \widetilde{1} & 1
\end{array} \quad \begin{array}{lllllll}
K_{2} & 0 & \widetilde{0} & 1 & \widetilde{1} \\
\hline 0, \widetilde{0} & \widetilde{0} & 0 & 1 & \widetilde{1} \\
1, \widetilde{1} & 0 & \widetilde{0} & \widetilde{1} & 1
\end{array} \quad \begin{array}{ll}
K_{3} & 0 \\
0 & \widetilde{0} \\
\hline 0, \widetilde{0} & \widetilde{0} \\
1, & \tilde{1} \\
\hline 1 & 0 \\
0 & \widetilde{1} \\
\hline 1 & 1 \\
\hline
\end{array}
$$

K_{1} and K_{2} are pre-SI, K_{3} is not (see the last example in the fourth section). Hence K_{G} is isomorphic to one of K_{1}, K_{2}. Now, we designate $a=(0 \widetilde{0}), b=(1 \widetilde{1})$, $c=\left(\begin{array}{ll}0 & 1\end{array}\right)(\widetilde{0} \widetilde{1}), d=\left(\begin{array}{ll}0 & \widetilde{1})(\widetilde{0} 1) \text { the elements of } I=\operatorname{Aut}_{2}^{-}\left(K_{1}\right)=\operatorname{Aut}_{2}^{-}\left(K_{2}\right) \text {. The }\end{array}\right.$ multiplication table of I is

$$
\begin{array}{c|cccc}
I & a & b & c & d \\
\hline a & a & b & d & c \\
b & a & b & d & c \\
c & b & a & c & d \\
d & b & a & c & d
\end{array}
$$

Thus I contains three non-trivial subgroupoids $I_{1}=\{a, b\}, I_{2}=\{c, d\}$ and $I_{3}=$ $\{a, b, c, d\}$. Neither K_{1} nor K_{2} is SI. Since both $I_{1} \sqcup K_{1}, I_{1} \sqcup K_{2}$ contain the left ideal $\{0, \widetilde{0}\}$, they are not SI. In $I_{2} \sqcup K_{1}$, the element c is a right zero, because $L_{x}=o_{K_{1}}$ for every $x \in K_{1}$, and thus $L_{x} c L_{x}=c$; so $I_{2} \sqcup K_{1}$ is not SI by Corollary 2.8. On the other hand, it is easy to check that $I_{2} \sqcup K_{2}, I_{3} \sqcup K_{1}$ and $I_{3} \sqcup K_{2}$ are SI.

Proposition 6.1. There are 12 (up to an isomorphism) SI LSLD groupoids with four non-idempotent elements:

$$
I_{3} \sqcup K_{1}, \quad I_{2} \sqcup K_{2}, \quad I_{3} \sqcup K_{2}
$$

and their extensions by right zeros.

Six non-idempotents. Let G be an SI LSLD groupoid with $\left|K_{G}\right|=6$. Then $K_{G} / i p_{K_{G}}$ is isomorphic to one of $\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{S}_{3}$ (see the list of three-element LSLDI groupoids in the introduction). \mathbf{S}_{2} cannot be isomorphic to $K_{G} / i p_{K_{G}}$, because the $i p_{K_{G}}$-block corresponding to the element 0 of \mathbf{S}_{2} is always a proper left ideal inside K_{G} (every automorphism of G preserves this block), a contradiction with Lemma 2.1(1). Now, one can check that the following groupoids $K_{4}, K_{5}, K_{6}, K_{7}$ are the only (up to an isomorphism) 6-element idempotent-free LSLD groupoids such that their factorgroupoid over $i p$ is one of $\mathbf{S}_{1}, \mathbf{S}_{3}$.

K_{4}	0	$\widetilde{0}$	1	$\widetilde{1}$	2	$\widetilde{2}$	K_{5}	0	$\widetilde{0}$	1	$\widetilde{1}$	2	$\widetilde{2}$
0,0	0	0	1	1	2	2	0,0	0	0	1	1	2	2
1, 1	0	0	1	1	2	2	1, $\widetilde{\sim}$	0	0	T	1	2	2
$2, \widetilde{2}$	$\widetilde{0}$	0	工	1	$\widetilde{2}$	2	$2, \widetilde{2}$	0	$\widetilde{0}$	1	$\widetilde{1}$	$\widetilde{2}$	2
K_{6}	0	$\widetilde{0}$	1	$\widetilde{1}$	2	$\widetilde{2}$	K_{7}	0	$\widetilde{0}$	1	1	2	$\widetilde{2}$
0, ${ }_{\sim}$		0	1	1	2	2	0,0	0	0	2	2	1	1
1, 1		0	1	1	2	2	1,1	2	2	,	1	0	0
$2, \widetilde{2}$	$\widetilde{0}$	0	1	$\widetilde{1}$	$\widetilde{2}$	2	2, $\widetilde{2}$	$\widetilde{1}$	1	$\widetilde{0}$	0	$\widetilde{2}$	2

K_{4} and K_{5} are pre-SI, K_{6} and K_{7} aren't. Hence K_{G} is isomorphic to one of K_{4}, K_{5}. One can compute that $I=\operatorname{Inv}^{-}\left(K_{4}, i p_{K_{4}}\right)=\operatorname{Aut}_{2}^{-}\left(K_{4}\right)=\operatorname{Aut}_{2}^{-}\left(K_{5}\right)$ contains
the following non-trivial subgroupoids:

$$
\begin{aligned}
& I_{1}=\{(x \widetilde{x}): x=0,1,2\}, \\
& I_{2}=\{(x \widetilde{x})(y \widetilde{y}): x, y=0,1,2, x \neq y\}, \\
& I_{3,1}=\{(x y)(\widetilde{x} \widetilde{y}): x, y=0,1,2, x \neq y\} \text {, } \\
& I_{3,2}=\left\{(0 \widetilde{1})(\widetilde{0} 1),(0 \widetilde{2})(\widetilde{0} 2),\left(\begin{array}{ll}
1 & 2
\end{array}\right)(\widetilde{1} \widetilde{2})\right\},
\end{aligned}
$$

$$
\begin{aligned}
& I_{3,4}=\left\{\left(\begin{array}{ll}
0 & \widetilde{2})(\widetilde{0} 2),(1 \widetilde{2})(\widetilde{1} 2),(01)(\widetilde{0} \widetilde{1})\}, ~
\end{array}\right.\right. \\
& I_{3}=\{(x y)(\widetilde{x} \widetilde{y}),(x \widetilde{y})(\widetilde{x} y): x, y=0,1,2, x \neq y\}=I_{3,1} \cup I_{3,2} \cup I_{3,3} \cup I_{3,4}, \\
& I_{4,1}=\{(x \widetilde{y})(\widetilde{x} y)(z \widetilde{z}):\{x, y, z\}=\{0,1,2\}\}, \\
& I_{4,2}=\left\{\left(\begin{array}{ll}
0 & 1)(\widetilde{0} \widetilde{1})(2 \widetilde{2}),(02)(\widetilde{0} \widetilde{2})(1 \widetilde{1}),(1 \widetilde{2})(\widetilde{1} 2)(0 \widetilde{0})\}, ~
\end{array}\right.\right. \\
& I_{4,3}=\left\{\left(\begin{array}{ll}
0 & 1
\end{array}\right)(\widetilde{0} \widetilde{1})(2 \widetilde{2}),\left(\begin{array}{ll}
1 & 2
\end{array}\right)(\widetilde{1} \widetilde{2})(0 \widetilde{0}),(0 \widetilde{2})(\widetilde{0} 2)(1 \widetilde{1})\right\}, \\
& I_{4,4}=\left\{\left(\begin{array}{ll}
0 & 2
\end{array}\right)(\widetilde{0} \widetilde{2})\binom{1}{1},\left(\begin{array}{ll}
1 & 2
\end{array}\right)(\widetilde{1} \widetilde{2})(0 \widetilde{0}),\left(\begin{array}{ll}
0 & \widetilde{1})(\widetilde{0} 1)(2 \widetilde{2})\},
\end{array}\right.\right. \\
& I_{4}=\{(x \widetilde{y})(\widetilde{x} y)(z \widetilde{z}),(x y)(\widetilde{x} \widetilde{y})(z \widetilde{z}):\{x, y, z\}=\{0,1,2\}\}=I_{4,1} \cup \cdots \cup I_{4,4}, \\
& I_{3, i} \cup I_{4, i}, \quad i=1,2,3,4, \\
& \text { all unions of } I_{1}, I_{2}, I_{3}, I_{4} \text {. }
\end{aligned}
$$

Clearly, $\left|I_{1}\right|=\left|I_{2}\right|=\left|I_{3, i}\right|=\left|I_{4, i}\right|=3, i=1, \ldots, 4$ and $\left|I_{3}\right|=\left|I_{4}\right|=6$. Now, none of K_{4}, K_{5} is SI. The following table shows, which of $J \sqcup K_{4}, J \sqcup K_{5}(J$ a subgroupoid of I) are subdirectly irreducible. (An empty space means it does not satisfy the condition $4.1(2)$.)

\sqcup	I_{1}	I_{2}	$I_{3,1}$	$I_{3,2}, I_{3,3}, I_{3,4}$	I_{3}	$I_{4,1}$	$I_{4,2}, I_{4,3}, I_{4,4}$	I_{4}
K_{4}	-	-	-	-	+	-	-	+
K_{5}	-	-			+			+

\sqcup	$I_{3,1} \cup I_{4,1}$	$I_{3, i} \cup I_{4, i}$	$I_{1} \cup I_{2}$	$I_{i} \cup I_{j}$	$I_{i} \cup I_{j} \cup I_{k}$	I
		$i=2,3,4$		$i \neq j,\{i, j\} \neq\{1,2\}$	$i \neq j \neq k \neq i$	
K_{4}	-	-	-	+	+	+
K_{5}			-	+	+	+

Proposition 6.2. There are 96 (up to an isomorphism) SI LSLD groupoids with six non-idempotent elements: the 24 without right zeros described in the table above and their extensions by right zeros.

The following table displays the number of SI LSLD groupoids with 2, 4 and 6 non-idempotent elements and a respective number of idempotent elements.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	2	1																		
0	0	1	2	3	4	2														
0	0	0	0	0	0	4	8	4	8	16	8	6	12	6	4	8	4	2	4	2

More non-idempotents.

Lemma 6.3. Let G be an SI LSLD groupoid with $\left|K_{G}\right|=8$. Then $K_{G} / i p_{K_{G}}$ is isomorphic to one of R_{1}, R_{2}.

R_{1}	0	1	2	3
0	0	1	2	3
1	0	1	2	3
2	0	1	2	3
3	0	1	2	3

R_{2}	0	1	2	3
0	0	1	3	2
1	0	1	3	2
2	1	0	2	3
3	1	0	2	3

Proof. For every $u \in K_{G}$, let $t(u)$ be the number of $v \in K_{G}$ such that $u v \in\{v, v v\}$. We have $t(u)=t(x u)$ for every $x \in G$ (because $x y \cdot z=z$ iff $y \cdot x z=x z$), hence the set $\left\{u \in K_{G}: t(u)=t\right\}$ is a left ideal of G for every t. Consequently, there is t such that $t(u)=t$ for every $u \in K_{G}$ (see Lemma 2.1(1)) and thus all left translations in $R=K_{G} / i p_{K_{G}}$ have the same number $\frac{t}{2}$ of fixed points. Let us denote the elements of R by $0,1,2,3$. Clearly, $\frac{t}{2} \geq 1$ is an even number. If $\frac{t}{2}=4$, then R is the right zero band R_{1}. Otherwise $\frac{t}{2}=2$ and we may assume that 0,1 are the only fix points of L_{0}, i.e. $L_{0}=(23)$. Then $1 \cdot 0=(0 \cdot 1)(0 \cdot 0)=0(1 \cdot 0)$ (left distributivity) and hence $1 \cdot 0$ is a fix point of L_{0}. Therefore $1 \cdot 0=0$ and so $L_{1}=L_{0}$. Now, $L_{2 \cdot 0}=L_{2} L_{0} L_{2}=L_{2} L_{1} L_{2}=L_{2 \cdot 1}$. Since $L_{2}(0), L_{2}(1) \neq 2$ and $L_{0}=L_{1} \neq L_{3}$ (because $L_{0}(3) \neq L_{3}(3)$), we have $\{2 \cdot 0,2 \cdot 1\}=\{0,1\}$. Hence $L_{2}=(01)$, because it has two fixed points. Analogously also $L_{3}=\left(\begin{array}{ll}0 & 1\end{array}\right)$.

Proposition 6.4. There is no SI idempotent-free LSLD groupoid with 8 elements.
Proof. Since both R_{1}, R_{2} contain proper left ideals, so does any 8 -element SI idempotent-free LSLD groupoid, a contradiction with Lemma 2.1(1).

Lemma 6.5. Let G be an SI LSLD groupoid with $\left|K_{G}\right|=10$. Then $K_{G} / i p_{K_{G}}$ is isomorphic to one of R_{3}, R_{4}.

R_{3}	0	1	2	3	4
0	0	1	2	3	4
1	0	1	2	3	4
2	0	1	2	3	4
3	0	1	2	3	4
4	0	1	2	3	4

R_{4}	0	1	2	3	4
0	0	2	1	4	3
1	3	1	4	0	2
2	4	3	2	1	0
3	2	4	0	3	1
4	1	0	3	2	4

Proof. Proceed similarly as in the proof of Lemma 6.3.

Proposition 6.6. There is no SI idempotent-free LSLD groupoid with 10 elements.
Proof. Assume that $K=\{0, \widetilde{0}, 1, \widetilde{1}, 2, \widetilde{2}, 3, \widetilde{3}, 4, \widetilde{4}\}$ is an idempotent-free LSLD groupoid, where blocks of $i p_{K}$ are the sets $\{k, \widetilde{k}\}$ for every $k=0, \ldots, 4$. Then $K / i p_{K} \simeq$ R_{4} and without loss of generality we put $0 \cdot 1=\widetilde{2}, 0 \cdot 3=\widetilde{4}, 1 \cdot 2=\widetilde{4}, 1 \cdot 0=\widetilde{3}$. Then $\widetilde{1} \cdot \widetilde{0}=3, \widetilde{1} \cdot \widetilde{2}=4$ and thus $2 \cdot 0=\widetilde{4}, 2 \cdot 1=\widetilde{3}$, because L_{0} is an automorphism. Also $3 \cdot 0=\widetilde{2}, 2 \cdot 1=\widetilde{4}, 4 \cdot 0=\widetilde{1}, 4 \cdot 2=\widetilde{3}$, because L_{2} is an automorphism, and the operation on K is determined. We see that $\rho=\{0,1,2,3,4\}^{2} \cup\{\widetilde{0}, \widetilde{1}, \widetilde{2}, \widetilde{3}, \widetilde{4}\}^{2}$ is a congruence on K and $\rho \cap i p_{K}=i d_{K}$. Hence K is not subdirectly irreducible.

Proposition 6.7. The following groupoid is the smallest SI idempotent-free LSLD groupoid with more than two elements.

K_{8}	0	$\widetilde{0}$	1	$\widetilde{1}$	2	$\widetilde{2}$	3	$\widetilde{3}$	4	$\widetilde{4}$	5	$\widetilde{5}$
$0, \widetilde{0}$	0	0	1	1	$\widetilde{4}$	4	$\widetilde{5}$	5	$\widetilde{2}$	2	$\widetilde{3}$	3
$1, \widetilde{1}$	0	$\widetilde{0}$	$\widetilde{1}$	1	$\widetilde{5}$	5	$\widetilde{4}$	4	$\widetilde{3}$	3	$\widetilde{2}$	2
$2, \widetilde{2}$	$\widetilde{4}$	4	$\widetilde{5}$	5	$\widetilde{2}$	2	3	$\widetilde{3}$	$\widetilde{0}$	0	$\widetilde{1}$	1
$3, \widetilde{3}$	$\widetilde{5}$	4	$\widetilde{4}$	2	$\widetilde{2}$	$\widetilde{3}$	3	1	$\widetilde{1}$	0	$\widetilde{0}$	
$4, \widetilde{4}$	$\widetilde{2}$	2	3	$\widetilde{3}$	$\widetilde{0}$	0	1	$\widetilde{1}$	$\widetilde{4}$	4	5	$\widetilde{5}$
$5, \widetilde{5}$	3	$\widetilde{3}$	$\widetilde{2}$	2	$\widetilde{1}$	1	0	$\widetilde{0}$	4	$\widetilde{4}$	$\widetilde{5}$	5

Proof. Subdirect irreducibility of K_{8} can be checked easily from the multiplication table and non-existence of a smaller one was proved above.

7. The group generated by left translations

In the last section, we find another criterion for recognizing that a groupoid is not SI or pre-SI.

Let G be an LSLD groupoid. We denote $\mathrm{L}(G)$ the subgroup of $\operatorname{Aut}(G)$ generated by all left translations in G. For a subset N of $\mathrm{L}(G)$ we define a relation ρ_{N} by $(x, y) \in \rho_{N}$, iff there exists $\varphi \in N$ such that $\varphi(x)=y$.

Lemma 7.1. Let G be an LSLD groupoid and N a normal subgroup of $\mathrm{L}(G)$. Then ρ_{N} is a congruence of G.

Proof. Clearly, ρ_{N} is an equivalence on G. Let $(x, y) \in \rho_{N}$ and $z \in G$. We have $y z=\varphi(x) z=L_{\varphi(x)} L_{x}(x z)=\varphi L_{x} \varphi^{-1} L_{x}(x z)$, and so $(x z, y z) \in \rho_{N}$ via the automorphism $\varphi L_{x} \varphi^{-1} L_{x} \in N$. Further, $z y=z \varphi(x)=z \varphi(z \cdot z x)=L_{z} \varphi L_{z}(z x)$, and so $(z x, z y) \in \rho_{N}$ via the automorphism $L_{z} \varphi L_{z} \in N$.

Proposition 7.2. Let G be an SI non-idempotent or a pre-SI idempotent-free LSLD groupoid and let N be a non-trivial normal subgroup of $\mathrm{L}(G)$. Then for every $u \in G$ there exists $\varphi \in N$ such that $\varphi(u)=u u$.

Proof. If G is SI non-idempotent, then $i p_{G} \subseteq \rho_{N}$, because ρ_{N} is a non-trivial congruence. If G is pre-SI idempotent-free, one must check (in a view of Theorem 4.3) that ρ_{N} is also $\operatorname{Aut}_{2}(G)$-invariant. If $(x, y) \in \rho_{N}, \varphi(x)=y$, and $\psi \in \operatorname{Aut}_{2}(G)$, then $\left(\psi \varphi \psi^{-1}\right)(\psi(x))=\psi \varphi(x)=\psi(y)$, and thus $(\psi(x), \psi(y)) \in \rho_{N}$ via the automorphism $\psi \varphi \psi^{-1} \in N$.

Example. Recall the groupoid K_{3} from the previous section. It is easy to calculate that $\mathrm{L}\left(K_{3}\right)=\{i d,(0 \widetilde{0}),(1 \widetilde{1}),(0 \widetilde{0})(1 \widetilde{1})\}$, and thus $N=\{i d,(0 \widetilde{0})\}$ is a normal subgroup. However, there is no $\varphi \in N$ such that $\varphi(1)=\widetilde{1}$, hence K_{3} is not pre-SI by Proposition 7.2.

Remark. Let G be a simple LSLD groupoid. Then the subgroup of $\mathrm{L}(G)$ generated by all $L_{x} L_{y}, x, y \in G$, is a smallest non-trivial normal subgroup of $\mathrm{L}(G)$ and thus $\mathrm{L}(G)$ is subdirectly irreducible. This is a result of H . Nagao [6] and it can be proved similarly. However, due to Corollary 1.3, it is interesting in the idempotent case only.

References

[1] S. Burris, H.P. Sankappanavar, A course in universal algebra, GTM 78, Springer, 1981.
[2] P. Dehornoy, Braids and self-distributivity, Progress in Math. 192, Birkhäuser Basel, 2000.
[3] D. Joyce, Simple quandles, J. Algebra, 79 (1982), 307-318.
[4] T. Kepka, Non-idempotent left symmetric left distributive groupoids, Comment. Math. Univ. Carolinae, 35 (1994), 181-186.
[5] T. Kepka, P. Němec, Selfdistributive groupoids, Rapport de recherche 1999-9, Université de Caen, 1999.
[6] H. Nagao, A remark on simple symmetric sets, Osaka J. Math., 16 (1979), 349-352.
[7] B. Roszkowska-Lech, Subdirectly irreducible symmetric idempotent entropic groupoids, Demonstratio Math., 32/3 (1999), 469-484.
[8] D. Stanovský, A survey of left symmetric left distributive groupoids, available at http://www.karlin.mff.cuni.cz/~stanovsk/math/survey.pdf
[9] D. Stanovský, Left symmetric left distributive operations on a group, to appear in Algebra Universalis.
[10] M. Takasaki, Abstractions of symmetric functions, Tôhoku Math. Journal, 49 (1943), 143207. (Japanese)

Emil Jeřábek, Mathematical Institute, Academy of Sciences, Prague, Czech Republic E-mail address: jerabek@math.cas.cz

Tomáš Kepka, David Stanovský, Charles University in Prague, Czech Republic
E-mail address: kepka@karlin.mff.cuni.cz, stanovsk@karlin.mff.cuni.cz

[^0]: 1991 Mathematics Subject Classification. Primary: 20N02; Secondary: 08B20.
 Key words and phrases. Groupoid, left distributive, left symmetric, subdirectly irreducible.
 The work is a part of the research project MSM 0021620839 financed by MŠMT ČR and it is partly supported by the grant GAČR 201/05/0002.

