A note on Grzegorczyk's logic

Emil Jeřábek Mathematical Institute, Czech Academy of Sciences jerabek@math.cas.cz

December 1, 2003

Abstract

Grzegorczyk's modal logic (Grz) corresponds to the class of upwards well-founded partially ordered Kripke frames, however all known proofs of this fact utilize some form of the Axiom of Choice; G. Boolos asked in [1], whether it is provable in plain ZF. We answer his question negatively: Grz corresponds (in ZF) to a class of frames, which does *not* provably coincide with upwards well-founded posets in ZF alone.

Definition 1 Grzegorczyk's logic (Grz) [2] is a normal modal logic axiomatized by the schema

$$\Box(\Box(\varphi \to \Box \varphi) \to \varphi) \to \varphi.$$

We denote by \mathcal{K}_1 the class of upwards well-founded posets, \mathcal{K}_3 the class of posets without any strictly increasing infinite chain, and \mathcal{K}_2 the class of posets $\langle W, \leq \rangle$ satisfying

$$\forall X \subseteq W \, (X \neq \emptyset \to \exists x \in X \, \forall y \ge x \, \forall z \ge y \, (z \in X \to y \in X)). \tag{1}$$

Recall that the *Principle of Dependent Choices* (DC) is the following weak version of the Axiom of Choice: let R be a binary relation on a nonempty set A such that $\forall x \in A \exists y \in A \langle x, y \rangle \in R$, then there is an infinite sequence $\{a_n; n \in \omega\} \in A^{\omega}$ such that $\langle a_n, a_{n+1} \rangle \in R$ for every $n \in \omega$.

Lemma 2 ZF proves $\mathcal{K}_1 \subseteq \mathcal{K}_2 \subseteq \mathcal{K}_3$.

Proof: If $\langle W, \leq \rangle \in \mathcal{K}_1$, and $X \subseteq W$ nonempty, then any <-maximal element $x \in X$ witnesses that (1) holds, hence $\langle W, \leq \rangle \in \mathcal{K}_2$. Assume that there is $\langle W, \leq \rangle \in \mathcal{K}_2 \setminus \mathcal{K}_3$. Fix an infinite increasing chain $x_0 < x_1 < x_2 < \cdots$ in W, and put $X = \{x_n; n \text{ odd }\}$. Then for any $x \in X$ there are $z \geq y \geq x$ such that $z \in X$ and $y \notin X$, contradicting (1).

Proposition 3 (*ZF* \vdash :) *A frame* $\mathbf{W} = \langle W, \leq \rangle$ *is a model of Grz under all valuations if and only if* $\mathbf{W} \in \mathcal{K}_2$.

Proof: ("if") Let \Vdash be a valuation in \mathbf{W} , $w \in W$, and $w \nvDash \varphi$. Define $X = \{v; w \leq v \& v \nvDash \varphi\}$, and let $x \in X$ be as in (1). If $y \geq x$, and $y \Vdash \varphi$, then $y \Vdash \Box \varphi$ by (1), hence $x \Vdash \Box(\varphi \to \Box \varphi)$, and $w \nvDash \Box(\Box(\varphi \to \Box \varphi) \to \varphi)$.

("only if") It is well-known that Grz contains S4, hence all Grz-frames are reflexive and transitive (i.e., preorderings). Assume that $X \subseteq W$ is a counterexample to (1), and put $w \Vdash p$ iff $w \notin X$, where p is an atom. Let $x \in W$, and $x \Vdash \Box(p \to \Box p)$. This means $\forall y \ge x \forall z \ge y (y \notin X \to z \notin X)$, hence $x \notin X$ (by our assumption on X), thus $x \Vdash p$. In other words, $\Box(\Box(p \to \Box p) \to p)$ is valid in all nodes of W, however p is not, because X is nonempty. This contradicts $\mathbf{W} \Vdash Grz$.

Finally, notice that any preordering satisfying (1) is a partial ordering: taking $X = \{x\}$, (1) yields $x \ge y \ge x \rightarrow x = y$.

Lemma 4 The following are equivalent over ZF:

- (i) DC,
- (*ii*) $\mathcal{K}_1 = \mathcal{K}_3$,
- (*iii*) $\mathcal{K}_2 = \mathcal{K}_3$.

Proof: The implication $DC \to \mathcal{K}_1 = \mathcal{K}_3$ follows directly from the definition, and $\mathcal{K}_1 = \mathcal{K}_3$ implies $\mathcal{K}_2 = \mathcal{K}_3$ by Lemma 2, it remains to show $\mathcal{K}_2 = \mathcal{K}_3 \to DC$. Assume $\mathcal{K}_3 \subseteq \mathcal{K}_2$, let $R \subseteq A^2$ be a relation without a maximal element, and let $a_0 \in A$. Define U as the set of all finite sequences $\langle a_0, \ldots, a_n \rangle \in A^{<\omega}$ such that $\langle a_i, a_{i+1} \rangle \in R$ for all i < n, ordered by inclusion (i.e., $s \leq t$ iff t extends s). By taking $X = \{s \in U; lh(s) \text{ odd}\}$ we see that $U \notin \mathcal{K}_2$, hence (by assumption) $U \notin \mathcal{K}_3$. Consequently U contains an infinite strictly increasing chain, and the union of such a chain is clearly an infinite sequence $\{a_n; n < \omega\} \in A^{\omega}$ such that $\langle a_i, a_{i+1} \rangle \in R$ for all $i \in \omega$.

Proposition 5 There is a model of ZF, in which $\mathcal{K}_1 \neq \mathcal{K}_2 \neq \mathcal{K}_3$ (unless ZF is inconsistent).

Proof: By Lemma 4, it suffices to find a model of $\mathcal{K}_1 \neq \mathcal{K}_2$.

The following property holds in the Ordered Mostowski Model [7]: there is a dense linear ordering $\mathbf{W} = \langle W, \leq \rangle$ such that any subset of W is a finite union of intervals. (Mostowski's permutation model is a model of ZFA, the set theory with atoms, but it is possible to transfer this result into ZF, using e.g. the Jech-Sochor Embedding Theorem [5], [6].) Clearly $\mathbf{W} \notin \mathcal{K}_1$, we claim that $\mathbf{W} \in \mathcal{K}_2$: let X be a nonempty subset of W, we may write X as a disjoint union $X = I_1 \cup \cdots \cup I_n$ of nonempty intervals (possibly degenerate) such that $I_1 < \cdots < I_n$. Then any $x \in I_n$ witnesses (1).

Note: Halpern [3] has shown that the Boolean Prime Ideal Theorem (*BPI*) holds in Ordered Mostowski's Model (cf. also [4]), hence even ZF + BPI doesn't prove $\mathcal{K}_1 = \mathcal{K}_2 \vee \mathcal{K}_2 = \mathcal{K}_3$.

Corollary 6 It is relatively consistent with ZF that there is a Grz-frame which is not upwards well-founded. \Box

References

- [1] G. Boolos, The Logic of Provability, Cambridge University Press 1993, p. 163
- [2] A. Grzegorczyk, Some relational systems and the associated topological spaces, *Fundamenta Mathematicae* 60 (1967), pp. 223–231
- [3] J. D. Halpern, The independence of the axiom of choice from the Boolean prime ideal theorem, *Fundamenta Mathematicae* 55 (1964), pp. 57–66
- [4] T. Jech, The Axiom of Choice, North-Holland, Amsterdam 1973
- [5] T. Jech, A. Sochor, On θ-model of set theory, Bulletin de l'Académie Polonaise des Sciences 14 (1966), pp. 297–303
- [6] T. Jech, A. Sochor, Applications of the Θ-model, Bulletin de l'Académie Polonaise des Sciences 14 (1966), pp. 351–355
- [7] A. Mostowski, Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip, Fundamenta Mathematicae 32 (1939), pp. 201–252