AN ANALYTIC MODEL FOR COMMUTING OPERATOR TUPLES

Miroslav Engliš
(a joint work with C. Ambrozie and V. Müller)

Let T be a bounded linear operator on a separable Hilbert space H. A well-known result of Sz.-Nagy and Foias says that the following two assertions are equivalent:
(a) $I-T T^{*} \geq 0$ (i.e. T is a contraction) and $T^{* n} \rightarrow 0$ in the strong operator topology;
(b) T^{*} is unitarily equivalent to the restriction of a backward shift of infinite multiplicity to an invariant subspace.
In this talk we describe a generalization of this result for commuting n-tuples $T=$ $\left(T_{1}, \ldots, T_{n}\right)$ of operators on H.

Let Ω be a domain in \mathbb{C}^{n} and \mathcal{H} a Hilbert space of analytic functions on Ω which satisfies the following properties:
(1) \mathcal{H} is invariant under the operators Z_{j} of multiplications by the coordinate functions $(j=1, \ldots, n)$.
(2) The evaluation functionals are continuous on \mathcal{H}. Consequently, there exists a reproducing kernel $K(z, w)$ for \mathcal{H}.
(3) \mathcal{H} contains all polynomials and they are dense in it.
(4) The function $1 / K(z, w)$ is a polynomial (in z and \bar{w}).

It is well known that for any orthonormal basis $\left\{\psi_{k}\right\}$ of \mathcal{H}, the reproducing kernel is given by

$$
K(z, w)=\sum_{k} \psi_{k}(z) \overline{\psi_{k}(w)}
$$

In view of (3), by applying the Gramm-Schmidt orthogonalization process, we may construct a basis such that all ψ_{k} are polynomials (and, conversely, any polynomial is a linear combination of a finite number of the ψ_{k}). We fix such a basis from now on. For each m, set

$$
f_{m}(z, \bar{w})=\sum_{k \geq m} \frac{\psi_{k}(z) \overline{\psi_{k}(w)}}{K(z, w)}
$$

Then $f_{0}(z, \bar{w}) \equiv 1$ on $\Omega \times \Omega$. By virtue of (4) and our choice of the basis, the difference $f_{0}-f_{m}$ is a polynomial in z, \bar{w}, for each m; thus f_{m} themselves are, in fact, polynomials.

For any polynomial $p(z, \bar{w})$ of $z, \bar{w} \in \mathbb{C}^{n}$, define

$$
p\left(T, T^{*}\right)=\sum_{\alpha, \beta} p_{\alpha \beta} T^{\alpha} T^{* \beta} \quad \text { if } \quad p(z, \bar{w})=\sum_{\alpha, \beta} z^{\alpha} \bar{w}^{\beta}
$$

(Up to the order of T and T^{*}, this coincides with the "hereditary calculus" of Agler [A1].) Hence, in particular, $f_{m}\left(T, T^{*}\right)$ are defined for any commuting operator tuple T, and $f_{0}\left(T, T^{*}\right)=I$. Our main result is the following.

Theorem. Let $\mathcal{H}, \psi_{k}, f_{m}$ be as above and let T be a commuting n-tuple of operators on a separable Hilbert space H. Denote by M_{z} the operator n-tuple $Z \otimes I$ on the Hilbert space tensor product $\mathcal{H} \otimes H$. Then the following are equivalent:
(a) $\frac{1}{K}\left(T, T^{*}\right) \geq 0$ and $\left\langle f_{m}\left(T, T^{*}\right) h, h\right\rangle \rightarrow 0 \forall h \in H$.
(b) T^{*} is unitarily equivalent to a restriction of M_{z}^{*} to an invariant subspace.

Example. Let $n=1, \Omega=\mathbb{D}$, the unit disc, and $\mathcal{H}=H^{2}$, the Hardy space. Then $K(z, w)=1 /(1-z \bar{w})$, so $\frac{1}{K}\left(T, T^{*}\right)=I-T T^{*}$, and using the standard orthonormal basis $\psi_{k}(z)=z^{k}$ we get $f_{m}\left(T, T^{*}\right)=T^{m} T^{* m}$. Further, the operator M_{z} on the tensor product $H^{2} \otimes H$ is just the forward shift of infinite multiplicity (its wandering subspace is $\mathbf{1} \otimes H)$. Thus we recover the result of Nagy-Foias mentioned in the beginning.

Other results covered by the last Theorem include the regular dilations of commuting n-tuples of operators (for $\mathcal{H}=$ the Hardy space on the polydisc \mathbb{D}^{n}), the k-hypercontractions of Agler [A2] (for \mathcal{H} the Bergman space on \mathbb{D} with respect to the weight $\left(1-|z|^{2}\right)^{k-2}$), and the "spherical hypercontractions" of Müller and Vasilescu [MV] (for \mathcal{H} a certain weighted Bergman space on the unit ball of \mathbb{C}^{n}).
Sketch of the proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Denote $D_{T}=\frac{1}{K}\left(T, T^{*}\right)^{1 / 2}$. Define an operator $V: H \rightarrow \mathcal{H} \otimes H$ by

$$
\begin{equation*}
V h=\sum_{k} \psi_{k}(z) \otimes D_{T} \psi_{k}(T)^{*} h \tag{*}
\end{equation*}
$$

We claim that V is well-defined (i.e. the sum converges) and is, in fact, an isometry satisfying $V T^{*}=M_{z}^{*} V$. This clearly establishes (b).

To see that V is well-defined and an isometry, observe that for any $j<m$ and $h \in H$

$$
\begin{aligned}
\left\|\sum_{j \leq k<m} \psi_{k}(z) \otimes D_{T} \psi_{k}(T)^{*} h\right\|^{2} & =\sum_{j \leq k<m}\left\|D_{T} \psi_{k}(T)^{*} h\right\|^{2} \\
& =\sum_{j \leq k<m}\left\langle\psi_{k}(T) D_{T}^{2} \psi_{k}(T)^{*} h, h\right\rangle \\
& =\left\langle\left(f_{j}-f_{m}\right)\left(T, T^{*}\right) h, h\right\rangle .
\end{aligned}
$$

As $\left\langle f_{m}\left(T, T^{*}\right) h, h\right\rangle \rightarrow 0$ by hypothesis, it follows that the partial sums of the righthand side of $\left({ }^{*}\right)$ form a Cauchy sequence, and letting $j=0$ and $m \rightarrow \infty$ shows that $\|V h\|^{2}=\left\langle f_{0}\left(T, T^{*}\right) h, h\right\rangle=\|h\|^{2}$, i.e. V is an isometry.

To prove that $V T^{*}=M_{z}^{*} V$, observe that $\forall h, h^{\prime} \in H$ and any k

$$
\left\langle V h, \psi_{k} \otimes h^{\prime}\right\rangle=\left\langle D_{T} \psi_{k}(T)^{*} h, h^{\prime}\right\rangle=\left\langle h, \psi_{k}(T) D_{T} h^{\prime}\right\rangle
$$

so, by virtue of our choice of the basis ψ_{k},

$$
\left\langle V h, f \otimes h^{\prime}\right\rangle=\left\langle h, f(T) D_{T} h^{\prime}\right\rangle
$$

for any polynomial f. Thus

$$
\begin{aligned}
\left\langle V T_{j}^{*} h, \psi_{k} \otimes h^{\prime}\right\rangle & =\left\langle T_{j}^{*} h, \psi_{k}(T) D_{T} h^{\prime}\right\rangle=\left\langle h, T_{j} \psi_{k}(T) D_{T} h^{\prime}\right\rangle= \\
& =\left\langle h,\left(z_{j} \psi_{k}\right)(T) D_{T} h^{\prime}\right\rangle=\left\langle V h, z_{j} \psi_{k} \otimes h^{\prime}\right\rangle=\left\langle M_{z_{j}}^{*} V h, \psi_{k} \otimes h^{\prime}\right\rangle
\end{aligned}
$$

and the assertion follows.
(b) \Longrightarrow (a). Let $U: H \rightarrow \mathcal{H} \otimes H$ be an isometry such that $U T^{*}=M_{z}^{*} U$. Then a simple calculation shows that for any polynomial $p(z, \bar{w})$ in z and \bar{w},

$$
p\left(T, T^{*}\right)=U^{*} p\left(M_{z}, M_{z}^{*}\right) U=U^{*}\left(p\left(Z, Z^{*}\right) \otimes I\right) U
$$

(here, as before, Z stands for the operator tuple of multiplication by the coordinate functions on $\mathcal{H})$. Thus it suffices to show that $\frac{1}{K}\left(Z, Z^{*}\right) \geq 0$ and $\left\langle f_{m}\left(Z, Z^{*}\right) h, h\right\rangle \rightarrow$ $0 \forall h \in H$.

To see the former, recall that for any $w \in \Omega$

$$
Z_{j}^{*} K_{w}=\bar{w}_{j} K_{w}
$$

where $K_{w}(z):=K(z, w)$. It follows that for any polynomial $p(z, \bar{w})$ and $x, y \in \Omega$,

$$
\left\langle p\left(Z, Z^{*}\right) K_{y}, K_{x}\right\rangle=p(x, \bar{y})\left\langle K_{y}, K_{x}\right\rangle=p(x, \bar{y}) K(x, y)
$$

so, in particular, $\left\langle\frac{1}{K}\left(Z, Z^{*}\right) K_{y}, K_{x}\right\rangle=1 \forall x, y \in \Omega$. As also $\left\langle K_{y}, \mathbf{1}\right\rangle\left\langle\mathbf{1}, K_{x}\right\rangle=$ $\overline{\mathbf{1}(y)} \mathbf{1}(x)=1 \forall x, y \in \Omega$, it follows that

$$
\begin{equation*}
\frac{1}{K}\left(Z, Z^{*}\right)=\langle\cdot, \mathbf{1}\rangle \mathbf{1} \tag{**}
\end{equation*}
$$

which is a positive operator.
For the latter assertion, observe that

$$
\begin{aligned}
\left(f_{0}-f_{m}\right)\left(Z, Z^{*}\right) h & =\sum_{0 \leq k<m} \psi_{k}(Z) \frac{1}{K}\left(Z, Z^{*}\right) \psi_{k}(Z)^{*} h \\
& =\sum_{0 \leq k<m} \psi_{k}(Z)(\langle\cdot, \mathbf{1}\rangle \mathbf{1}) \psi_{k}(Z)^{*} h \quad \text { by }\left({ }^{* *}\right) \\
& =\sum_{0 \leq k<m}\left\langle\psi_{k}(Z)^{*} h, \mathbf{1}\right\rangle \psi_{k} \\
& =\sum_{0 \leq k<m}\left\langle h, \psi_{k}\right\rangle \psi_{k}
\end{aligned}
$$

and as ψ_{k} is an orthonormal basis and $f_{0} \equiv 1$, it follows that

$$
\left(f_{0}-f_{m}\right)\left(Z, Z^{*}\right) h=h-f_{m}\left(Z, Z^{*}\right) h \rightarrow h \quad \text { as } m \rightarrow \infty,
$$

i.e. even $f_{m}\left(Z, Z^{*}\right) h \rightarrow 0 \forall h \in H$. This completes the proof.

We remark that in view of the boundedness of V, the formula (\dagger) defines a (nonmultiplicative) "functional calculus" $g \mapsto g(T)$ for functions g on Ω of the form $g(z)=K(z, z)^{-1 / 2} f(z), f \in \mathcal{H}$ (defining $g(T) h\left(=" f(T) D_{T} h "\right):=V^{*}(f \otimes h)$ one has $\|g(T)\| \leq\|V\|\|f\|)$.

An example of function spaces \mathcal{H} satisfying the axioms (1) - (4) are, for instance, various weighted Bergman and Hardy spaces on bounded symmetric domains in \mathbb{C}^{n} (matrix balls etc.).

Under the additional hypothesis that the Taylor spectrum $\sigma(T) \subset \Omega$, it turns out that the condition $\left\langle f_{m}\left(T, T^{*}\right) h, h\right\rangle \rightarrow 0$ can be omitted, and the axioms (3) and (4) for \mathcal{H} replaced by the weaker requirement that $K(z, w) \neq 0$ on $\Omega \times \Omega$. For this and further details we refer to the joint work [AEM].

References

[A1] J. Agler, The Arveson extension theorem and coanalytic models, Integral Equations and Operator Theory 5 (1982), 608-631.
[A2] J. Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), 201-217.
[MV] V. Müller, F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979-989.
[AEM] C. Ambrozie, M. Engliš, V. Müller, Operator tuples and analytic models over general domains in \mathbb{C}^{n}, preprint (1999).

