AN ANALYTIC MODEL FOR COMMUTING OPERATOR TUPLES

Miroslav Engliš

(a joint work with C. Ambrozie and V. Müller)

Let T be a bounded linear operator on a separable Hilbert space H. A well-known result of Sz.-Nagy and Foias says that the following two assertions are equivalent:

- (a) $I TT^* \ge 0$ (i.e. T is a contraction) and $T^{*n} \to 0$ in the strong operator topology;
- (b) T^* is unitarily equivalent to the restriction of a backward shift of infinite multiplicity to an invariant subspace.

In this talk we describe a generalization of this result for commuting *n*-tuples $T = (T_1, \ldots, T_n)$ of operators on *H*.

Let Ω be a domain in \mathbb{C}^n and \mathcal{H} a Hilbert space of analytic functions on Ω which satisfies the following properties:

- (1) \mathcal{H} is invariant under the operators Z_j of multiplications by the coordinate functions (j = 1, ..., n).
- (2) The evaluation functionals are continuous on \mathcal{H} . Consequently, there exists a reproducing kernel K(z, w) for \mathcal{H} .
- (3) \mathcal{H} contains all polynomials and they are dense in it.
- (4) The function 1/K(z, w) is a polynomial (in z and \overline{w}).

It is well known that for any orthonormal basis $\{\psi_k\}$ of \mathcal{H} , the reproducing kernel is given by

$$K(z,w) = \sum_{k} \psi_k(z) \overline{\psi_k(w)}$$

In view of (3), by applying the Gramm-Schmidt orthogonalization process, we may construct a basis such that all ψ_k are polynomials (and, conversely, any polynomial is a linear combination of a finite number of the ψ_k). We fix such a basis from now on. For each m, set

$$f_m(z,\overline{w}) = \sum_{k \ge m} \frac{\psi_k(z)\psi_k(w)}{K(z,w)}.$$

Then $f_0(z, \overline{w}) \equiv 1$ on $\Omega \times \Omega$. By virtue of (4) and our choice of the basis, the difference $f_0 - f_m$ is a polynomial in z, \overline{w} , for each m; thus f_m themselves are, in fact, polynomials.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

For any polynomial $p(z, \overline{w})$ of $z, \overline{w} \in \mathbb{C}^n$, define

$$p(T, T^*) = \sum_{\alpha, \beta} p_{\alpha\beta} T^{\alpha} T^{*\beta}$$
 if $p(z, \overline{w}) = \sum_{\alpha, \beta} z^{\alpha} \overline{w}^{\beta}$.

(Up to the order of T and T^* , this coincides with the "hereditary calculus" of Agler [A1].) Hence, in particular, $f_m(T, T^*)$ are defined for any commuting operator tuple T, and $f_0(T, T^*) = I$. Our main result is the following.

Theorem. Let \mathcal{H}, ψ_k, f_m be as above and let T be a commuting n-tuple of operators on a separable Hilbert space H. Denote by M_z the operator n-tuple $Z \otimes I$ on the Hilbert space tensor product $\mathcal{H} \otimes H$. Then the following are equivalent:

- (a) $\frac{1}{K}(T,T^*) \ge 0$ and $\langle f_m(T,T^*)h,h \rangle \to 0 \ \forall h \in H$. (b) T^* is unitarily equivalent to a restriction of M_z^* to an invariant subspace.

Example. Let n = 1, $\Omega = \mathbb{D}$, the unit disc, and $\mathcal{H} = H^2$, the Hardy space. Then $K(z,w) = 1/(1-z\overline{w})$, so $\frac{1}{K}(T,T^*) = I - TT^*$, and using the standard orthonormal basis $\psi_k(z) = z^k$ we get $f_m(T,T^*) = T^m T^{*m}$. Further, the operator M_z on the tensor product $H^2 \otimes H$ is just the forward shift of infinite multiplicity (its wandering subspace is $\mathbf{1} \otimes H$). Thus we recover the result of Nagy-Foias mentioned in the beginning. \Box

Other results covered by the last Theorem include the regular dilations of commuting *n*-tuples of operators (for $\mathcal{H} =$ the Hardy space on the polydisc \mathbb{D}^n), the k-hypercontractions of Agler [A2] (for \mathcal{H} the Bergman space on \mathbb{D} with respect to the weight $(1 - |z|^2)^{k-2}$, and the "spherical hypercontractions" of Müller and Vasilescu [MV] (for \mathcal{H} a certain weighted Bergman space on the unit ball of \mathbb{C}^n).

Sketch of the proof. (a) \Longrightarrow (b). Denote $D_T = \frac{1}{K} (T, T^*)^{1/2}$. Define an operator $V: H \to \mathcal{H} \otimes H$ by

(*)
$$Vh = \sum_{k} \psi_k(z) \otimes D_T \psi_k(T)^* h.$$

We claim that V is well-defined (i.e. the sum converges) and is, in fact, an isometry satisfying $VT^* = M_z^* V$. This clearly establishes (b).

To see that V is well-defined and an isometry, observe that for any j < m and $h \in H$

$$\begin{split} \|\sum_{j\leq k< m} \psi_k(z) \otimes D_T \psi_k(T)^* h\|^2 &= \sum_{j\leq k< m} \|D_T \psi_k(T)^* h\|^2 \\ &= \sum_{j\leq k< m} \langle \psi_k(T) D_T^2 \psi_k(T)^* h, h \rangle \\ &= \langle (f_j - f_m)(T, T^*) h, h \rangle. \end{split}$$

As $\langle f_m(T,T^*)h,h\rangle \to 0$ by hypothesis, it follows that the partial sums of the righthand side of (*) form a Cauchy sequence, and letting j = 0 and $m \to \infty$ shows that $||Vh||^2 = \langle f_0(T, T^*)h, h \rangle = ||h||^2$, i.e. V is an isometry.

To prove that $VT^* = M_z^*V$, observe that $\forall h, h' \in H$ and any k

$$\langle Vh, \psi_k \otimes h' \rangle = \langle D_T \psi_k(T)^* h, h' \rangle = \langle h, \psi_k(T) D_T h' \rangle,$$

so, by virtue of our choice of the basis ψ_k ,

(†)
$$\langle Vh, f \otimes h' \rangle = \langle h, f(T)D_Th' \rangle$$

for any polynomial f. Thus

$$\begin{split} \langle VT_j^*h, \psi_k \otimes h' \rangle &= \langle T_j^*h, \psi_k(T)D_Th' \rangle = \langle h, T_j\psi_k(T)D_Th' \rangle = \\ &= \langle h, (z_j\psi_k)(T)D_Th' \rangle = \langle Vh, z_j\psi_k \otimes h' \rangle = \langle M_{z_j}^*Vh, \psi_k \otimes h' \rangle, \end{split}$$

and the assertion follows.

(b) \Longrightarrow (a). Let $U: H \to \mathcal{H} \otimes H$ be an isometry such that $UT^* = M_z^*U$. Then a simple calculation shows that for any polynomial $p(z, \overline{w})$ in z and \overline{w} ,

$$p(T, T^*) = U^* p(M_z, M_z^*) U = U^* (p(Z, Z^*) \otimes I) U$$

(here, as before, Z stands for the operator tuple of multiplication by the coordinate functions on \mathcal{H}). Thus it suffices to show that $\frac{1}{K}(Z, Z^*) \ge 0$ and $\langle f_m(Z, Z^*)h, h \rangle \to 0 \ \forall h \in H$.

To see the former, recall that for any $w \in \Omega$

$$Z_j^* K_w = \overline{w}_j K_w$$

where $K_w(z) := K(z, w)$. It follows that for any polynomial $p(z, \overline{w})$ and $x, y \in \Omega$,

$$\langle p(Z, Z^*)K_y, K_x \rangle = p(x, \overline{y})\langle K_y, K_x \rangle = p(x, \overline{y})K(x, y)$$

so, in particular, $\langle \frac{1}{K}(Z,Z^*)K_y,K_x\rangle = 1 \ \forall x,y \in \Omega$. As also $\langle K_y,\mathbf{1}\rangle\langle\mathbf{1},K_x\rangle = \overline{\mathbf{1}(y)}\mathbf{1}(x) = 1 \ \forall x,y \in \Omega$, it follows that

$$(**) \qquad \qquad \frac{1}{K}(Z,Z^*) = \langle \cdot, \mathbf{1} \rangle \mathbf{1}$$

which is a positive operator.

For the latter assertion, observe that

$$(f_0 - f_m)(Z, Z^*)h = \sum_{0 \le k < m} \psi_k(Z) \frac{1}{K} (Z, Z^*) \psi_k(Z)^* h$$
$$= \sum_{0 \le k < m} \psi_k(Z) (\langle \cdot, \mathbf{1} \rangle \mathbf{1}) \psi_k(Z)^* h \qquad \text{by } (^{**})$$
$$= \sum_{0 \le k < m} \langle \psi_k(Z)^* h, \mathbf{1} \rangle \psi_k$$
$$= \sum_{0 \le k < m} \langle h, \psi_k \rangle \psi_k,$$

and as ψ_k is an orthonormal basis and $f_0 \equiv 1$, it follows that

$$(f_0 - f_m)(Z, Z^*)h = h - f_m(Z, Z^*)h \to h$$
 as $m \to \infty$,

i.e. even $f_m(Z, Z^*)h \to 0 \ \forall h \in H$. This completes the proof. \Box

We remark that in view of the boundedness of V, the formula (†) defines a (nonmultiplicative) "functional calculus" $g \mapsto g(T)$ for functions g on Ω of the form $g(z) = K(z, z)^{-1/2} f(z), f \in \mathcal{H}$ (defining $g(T)h (= f(T)D_Th) := V^*(f \otimes h)$ one has $||g(T)|| \leq ||V|| ||f||$).

An example of function spaces \mathcal{H} satisfying the axioms (1) – (4) are, for instance, various weighted Bergman and Hardy spaces on bounded symmetric domains in \mathbb{C}^n (matrix balls etc.).

Under the additional hypothesis that the Taylor spectrum $\sigma(T) \subset \Omega$, it turns out that the condition $\langle f_m(T, T^*)h, h \rangle \to 0$ can be omitted, and the axioms (3) and (4) for \mathcal{H} replaced by the weaker requirement that $K(z, w) \neq 0$ on $\Omega \times \Omega$. For this and further details we refer to the joint work [AEM].

References

- [A1] J. Agler, The Arveson extension theorem and coanalytic models, Integral Equations and Operator Theory 5 (1982), 608–631.
- [A2] J. Agler, Hypercontractions and subnormality, J. Operator Theory 13 (1985), 201–217.
- [MV] V. Müller, F.-H. Vasilescu, Standard models for some commuting multioperators, Proc. Amer. Math. Soc. 117 (1993), 979–989.
- [AEM] C. Ambrozie, M. Engliš, V. Müller, Operator tuples and analytic models over general domains in Cⁿ, preprint (1999).