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Abstract

Multi-dimensional advection terms are an important part of many large-scale
mathematical models which arise in different fields of science and engineering. After
applying some kind of splitting, these terms can be handled separately from the re-
maining part of the mathematical model under consideration. It is important to treat
the multi-dimensional advection in a sufficiently accurate manner. It is shown in
this paper that high order of accuracy can be achieved when the well-known Crank–
Nicolson numerical scheme is combined with the Richardson extrapolation.

1. Multi-dimensional advection equations

Consider the multi-dimensional advection equation:

∂c

∂t
= −

Q∑
q=1

uq
∂c

∂xq
(1)

with Q ≥ 0, t ∈ [a, b] and xq ∈ [aq, bq] for q = 1, 2, . . . , Q. It is assumed that
the coefficients uq = uq(t, x1, x2, . . . xQ), q = 1, 2, . . . , Q, before the spatial partial
derivatives in the right-hand-side of the partial differential equation (1) are some
given functions.
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Let D be the domain in which the independent variables involved in (1) vary and
assume that:

(t, x1, x2, . . . xQ) ∈ D ⇒ t ∈ [a, b] ∧ x0 ∈ [aq, bq] for q = 1, 2, . . . , Q. (2)

By applying the definition proposed in (2), it is assumed here that the obtained
domain D is rather special (being a multi-dimensional parallelepiped), but this
assumption is done only for the sake of simplicity. In fact, many of the results
will also be valid for some considerably more complicated domains.

It will always be assumed that the unknown function c = c(t, x1, x2, . . . , xQ)
is continuously differentiable up to some order 2p with p ≥ 1 in all points of the
domain D and with respect to all independent variables. Here p is the order of
the numerical method which will be used in order to obtain some approximations
of the unknown function at the points of some grid, which is appropriately selected
(see below) in the domain defined in (2).

For some of the proofs, see [8], it will also be necessary to assume that contin-
uous derivatives up to order two of all given functions uq exist with respect of all
independent variables.

The multi-dimensional advection equation (1) must always be considered together
with some initial and boundary conditions.

The following notation in connection with some given positive increments hq is
useful in the proofs (see also [6]):

x = (x1, x2, . . . , xQ), (3)

x(+q) = (x1, x2, . . . , xq−1, xq + hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q, (4)

x(−q) = (x1, x2, . . . , xq−1, xq − hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q, (5)

x(+0.5q) = (x1, x2, . . . , xq−1, xq + 0.5hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q, (6)

x(−0.5q) = (x1, x2, . . . , xq−1, xq − 0.5hq, xq+1, . . . , xQ), q = 1, 2, . . . , Q. (7)

2. Expanding the unknown function in Taylor series

The following result is very important in the efforts (see Section 6 and the con-
clusions in Section 7) to establish the order of accuracy which can be achieved when
the Crank–Nicolson scheme is combined with the Richardson extrapolation.

Theorem 2.1 Consider the multi-dimensional advection equation (1). Assume that
(t, x) ∈ D is an arbitrary but fixed point and introduce the increments k > 0 and
hq > 0 such that t + k ∈ [a, b], xq − hq ∈ [aq, bq] and xq + hq ∈ [aq, bq] for all
q = 1, 2, . . . , Q. Assume furthermore that the unknown function c = c(t, x) is con-
tinuously differentiable up to some order 2p with regard to all independent variables.
Then there exists an expansion in Taylor series of the unknown function c = c(t, x)
around the point (t+0.5k, x) which contains terms involving only even degrees of the
increments k and hq, q = 1, 2, . . . , Q.
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Proof. The main ideas of the proof are quite straightforward (the unknown func-
tion c must be expanded in Taylor series and the series should be truncated after the
first 2p terms), but it is rather long and complicated.
The full proof of Theorem 2.1 can be found in [8]. More precisely, the following
equality is proved there:

c(t+ k, x)− c(t, x)

k
= −

Q∑
q=1

uq(t+ 0.5k, x)
c(t+ k, x(+q))− c(t+ k, x(−q))

4hq
(8)

−
Q∑

q=1

uq(t+ 0.5k, x)
c(t, x(+q))− c(t, x(−q))

4hq

+

p∑
s=1

k2sK(2s) +O(k2p+1),

where K
(2s)
t and K

(2s)
q are some constants and

K(2s) = K
(2s)
t +

Q∑
q=1

h2sq
k2s

K(2s)
q . (9)

It should be noted here that it is assumed that all ratios hq/k, q = 1, 2, . . . , Q, remain
constants when k → 0 (which can easily be achieved; for example by reducing all
spatial increments hq by a factor of two when the time-increment k is reduced by
a factor of two).

3. Designing a second-order numerical method

Consider the grids:

Gt = {tn, n = 0, 1, . . . , Nt | t0 = a, tn = tn−1 + k, n = 1, 2, . . . , Nt, k =
b− a
Nt

, tNt = b}
(10)

and (for q = 1, 2, . . . , Q and hq = (bq − aq)/Nq)

G(q)
x = {xiqq , iq = 0, 1, . . . , Nq | x0q = aq, x

iq
q = xiq−1

q + hq, i = 1, 2, . . . , Nq, x
Nq
q = bq}.

(11)
Introduce the following notations:

x̃ = (xi11 , x
i2
2 , . . . , x

iQ
Q ), (12)

x̃(+q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q + hq, x

iq+1

q+1 , . . . , x
iQ
Q ), (13)

x̃(−q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q − hq, x

iq+1

q+1 , . . . , x
iQ
Q ), (14)

where x
iq
q ∈ G(q)

x for q = 1, 2, . . . , Q.
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In this notation the following numerical method can be defined:

c̃(tn+1, x̃)− c̃(tn, x̃)

k
(15)

= −
Q∑

q=1

uq(tn + 0.5k, x̃)
c̃(tn+1, x̃

(+q))− c̃(tn+1, x̃
(−q)) + c̃(tn, x̃

(+q))− c̃(tn, x̃(−q))

4hq
.

The computational device introduced by the finite difference equation (15) is often
called the Crank–Nicolson scheme (see, for example, [5]). It is clear that (15) can be
obtained from (8) by neglecting the terms in the last line and by assuming addition-
ally that an arbitrary inner point of the grids defined by (10) and (11) is considered.

The quantities c̃(tn, x̃) can be considered as approximations of the exact values
of the unknown function c(tn, x̃) at the grid-points from the grids defined by (10)
and (11). It can easily be shown that the method introduced in (15) is of order two
in respect to all independent variables.

Assume that the values of c̃(tn, x̃) have been calculated for all grid-points of (11).
Then the values c̃(tn+1, x̃) of the unknown function at the next time-point tn+1 =
tn + k can be obtained by solving a huge system of linear algebraic equations of
dimension Ñ where Ñ is defined by

Ñ =

Q∏
q=1

(Nq − 1). (16)

4. Application of Richardson extrapolation

Consider (15) with c̃ replaced by z when t = tn+1:

z(tn+1, x̃)− c̃(tn, x̃)

k
(17)

=−
Q∑

q=1

uq(tn + 0.5k, x̃)
z(tn+1, x̃

(+q))− z(tn+1, x̃
(−q)) + c̃(tn, x̃

(+q))− c̃(tn, x̃(−q))

4hq
.

Suppose that 0.5k and 0.5hq are considered instead of k and hq (q = 1, 2, . . . , Q), re-
spectively. Consider, as in formulae (5) and (6) but in the grid-points of the grids (10)

and (11), the two vectors x̃(+0.5q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q +0.5hq, x

iq+1

q+1 , . . . , x
iNq
q ) and

x̃(−0.5q) = (xi11 , x
i2
2 , . . . , x

iq−1

q−1 , x
iq
q − 0.5hq, x

iq+1

q+1 , . . . , x
iNq
q ) for q = 1, 2, . . . , Q.
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Perform now additionally two small steps:

w(tn + 0.5k, x̃)− c̃(tn, x̃)

0.5k
(18)

=−
Q∑

q=1

uq(tn + 0.25k, x̃)
w(tn + 0.5k, x̃(+0.5q))− w(tn + 0.5k, x̃(−0.5q))

4(0.5hq)

−
Q∑

q=1

uq(tn + 0.25k, x̃)
c̃(tn, x̃

(+0.5q))− c̃(tn, x̃(−0.5q))

4(0.5hq)

w(tn + k, x̃)− w(tn + 0.5k, x̃)

0.5k
(19)

=−
Q∑

q=1

uq(tn + 0.75k, x̃)
w(tn + k, x̃(+0.5q))− w(tn + k, x̃(−0.5q))

4(0.5hq)

−
Q∑

q=1

uq(tn + 0.75k, x̃)
w(tn + 0.5k, x̃(+0.5q))− w(tn + 0.5k, x̃(−0.5q))

4(0.5hq)
.

The Richardson extrapolation can now be calculated by using the following formula
(exploiting here the fact that the order of the underlying numerical method is of
order of accuracy two in regard to all independent variables):

c̃(tn+1, x̃) =
4w(tn+1, x̃)− z(tn+1, x̃)

3
. (20)

If the order of accuracy of the underlying method is not 2 but p, then the numbers 4
and 3 in (20) should be replaced by 2p and 2p − 1, respectively.

5. Several general remarks on the Richardson extrapolation

Assume now that an arbitrary method of order p is used. Then, as mentioned
above, (20) can be written as

c̃(tn+1, x̃) =
2pw(tn+1, x̃)− z(tn+1, x̃)

2p − 1
. (21)

The exact solution c(tn+1, x̃) can be expressed in the following two ways, where K is
some constant and k is the time-increment:

c(tn+1, x̃) = z(tn+1, x̃) + kpK +O(kp+1), (22)

c(tn+1, x̃) = w(tn+1, x̃) + (0.5k)pK +O(kp+1). (23)

Eliminating the terms containing K in (22) and (23) gives:

c(tn+1, x̃) =
2pw(tn+1, x̃)− z(tn+1, x̃)

2p − 1
+O(kp+1). (24)
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Denote:

c̃(tn+1, x̃) =
2pw(tn+1, x̃)− z(tn+1, x̃)

2p − 1
. (25)

It is clear that the approximation c̃(tn+1, x̃), being of order p+1, will be more accurate
than both z(tn+1, x̃) and w(tn+1, x̃) when the stepsize k is sufficiently small. Thus,
the Richardson extrapolation can be used in the efforts to improve the accuracy.

The Richardson extrapolation can also be used in an attempt to evaluate the lead-
ing term of the local error of the approximation w(tn+1, x̃). Subtract (22) from (23),
neglect the rest terms O(kp+1) and solve for K. The result is:

K =
2p[w(tn+1, x̃)− z(tn+1, x̃)]

kp(2p − 1)
. (26)

Substitute K from (26) in (23):

c(tn+1, x̃)− w(tn+1, x̃) =
w(tn+1, x̃)− z(tn+1, x̃)

2p − 1
+O(kp+1), (27)

which means that the quantity:

En =
w(tn+1, x̃)− z(tn+1, x̃)

2p − 1
(28)

can be used as an evaluation of the local error of the approximation w(tn+1, x̃)
when the time-increment k is sufficiently small. If the evaluation of the local error
computed by using (28) is not acceptable, then En can also be used to determine
a new stepsize k which will hopefully give an acceptable error. Assume that the
requirement for the accuracy imposed by the user is TOL. Then the new, hopefully
better, time-increment knew can be calculated by

knew = γ
TOL

En

k, (29)

where γ < 1 is used as a precaution factor, see for example [4]. Thus, the Richardson
extrapolation can be applied in codes with automatic stepsize control.

The use of the Richardson extrapolation for stepsize control is relatively easy
when systems of ordinary differential equations are solved numerically. The proce-
dure becomes difficult when systems of partial differential equations are to be han-
dled, because of the introduction of the assumption made in (9). This assumption
implies that if k is multiplied by the factor γTOL/En, then all hq must be multiplied
by the same factor in order to keep the ratios hq/k constant. This difficulty can be

avoided in the special case where all K
(2s)
q are much smaller than K

(2s)
t . Then the

Richardson extrapolation can be slightly modified so that all hq are kept constant
and only the time-stepsize k is to be controlled (thus, the situation becomes in prin-
ciple the same as that appearing when systems of ordinary differential equations are
treated).
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It must be emphasized here that the Richardson extrapolation does not depend
too much on the particular method used. It can be utilized both when classical
numerical algorithms are applied in the solution of differential equations and when
more advanced numerical methods which are combination of splitting procedures
and classical numerical algorithms are devised and used. Two issues are important:
(a) the large time-increment and the two small time-increments must be handled
by the same numerical method and (b) the order p of the selected method should
be known. If the Richardson extrapolation is used in connection with the multi-
dimensional equation (1), then it is appropriate, see (9), to assume that for all
values of q the ratios hq/k are constants.

Much more useful details about different application issues related to the intro-
duction of the Richardson extrapolation and its stability properties can be found
in [2, 3, 9, 7, 10].

The above analysis shows that the accuracy order is as a rule increased by one. In
the next section it will be shown that the application of the Richardson extrapolation
in connection with the numerical method derived in Section 3 gives better accuracy
when applied in the solution of (1).

6. Accuracy of Richardson extrapolation

Theorem 6.1 Consider the multi-dimensional advection equation (1). Assume that
the coefficients uq before the spatial derivatives in (1) are continuously differentiable
with respect to all independent variables and continuous derivatives of the unknown
function c up to order four exist, again with respect to all variables. Then the com-
bination of the numerical method (15) and the Richardson extrapolation is of order
of accuracy four.

Proof. The ideas, on which the proof is to be based, are quite clear. One must apply
the result proved in Theorem 2.1 for p = 2 under an assumption that the numerical
method defined by (15) is used at the grid-points of (10) and (11). However, the
actual poof is very long and rather complicated. It can be found in [8]. It should
be noted (see also Section 5) that in general the use of the Richardson extrapolation
is leading to an increase of the accuracy order of the underlying numerical method
by one. For the second-order numerical method (15) the accuracy order is increased
by two (from order two to order four) when it is applied to the multi-dimensional
advection equation (1) together with the Richardson extrapolation.

7. Conclusions

The result proved in this paper is a generalization of the result proved in [6],
where the much simpler one-dimensional advection is handled.
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It will be interesting to investigate whether the result proved in Theorem 6.1
for equation (1) can be extended for the more general multi-dimensional advection
equation:

∂c

∂t
= −

Q∑
q=1

∂(uqc)

∂xq
, xq ∈ [aq, bq] for q = 1, 2, . . . , Q with Q ≥ 1, t ∈ [a, b]. (30)

Richardson extrapolation can be repeatedly applied (see, for example, [1]). Theo-
rem 6.1 indicates that when this is done, the order of accuracy will be increased by
two after each successive application of the Richardson extrapolation. This remark
explains why Theorem 2.1 is proved for an arbitrary value of p and not only for p = 2
as required in Theorem 6.1.
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[2] Faragó, I., Havasi, Á., and Zlatev, Z.: Richardson extrapolated sequential split-
ting and its application. J. Comp. Appl. Math. 226(2) (2009), 218–227.
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