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Abstract

This paper is about 0/1-triangles, which are the simplest nontrivial examples of
0/1-polytopes: convex hulls of a subset of vertices of the unit n-cube In. We consider
the subclasses of right 0/1-triangles, and acute 0/1-triangles, which only have acute
angles. They can be explicitly counted and enumerated, also modulo the symmetries
of In.

1. Introduction

A 0/1-polytope [3] is the convex hull of a subset of the set of vertices B
n of the

unit n-cube In. Since In has 2n vertices, the number of subsets of Bn equals 2(2
n),

a number that grows so quickly that the practical study of 0/1-polytopes is a compli-
cated matter. Therefore, it is convenient to consider two 0/1-polytopes as equivalent
if there exists an n-cube symmetry that maps one onto the other. The group Hn of
symmetries of In is called the hyperoctahedral group. It is generated by the reflec-
tions in the n hyperplanes that orthogonally intersect the coordinate axes at their
midpoints, and the transposition of labels of coordinate axes. The number of ele-
ments of Hn, its order, is n!2

n. An orbit of a 0/1-polytope under the action of Hn, or
in other words, the set of images of the polytope under each of the cube’s symmetries,
can therefore contain at most n!2n elements. Under the proposed equivalence, the
number of equivalence classes of 0/1-polytopes can, in principle, be counted using
Pólya’s Enumeration Theorem. This requires the explicit computation of the so-
called cycle index of Hn. In [2], it is described how to compute this cycle index,
but the procedure is nontrivial and does not lead to a general formula in n. Also, it
does not distinguish between 0/1-polytopes whose dimension equals n, and the ones
that are less-dimensional. This explains why only for n ≤ 6 it is known how many
equivalence classes of n-dimensional 0/1-polytopes exist.

1.1. Goal and outline of this paper

In this paper, we will fully characterize the 0/1-polytopes that are the convex
hull of three different vertices of In, the 0/1-triangles. Next to individual vertices
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and line segments, these are the simplest 0/1-polytopes. We will count the number
of 0/1-triangles in In, and also the number of elements in the disjoint subsets of right
and acute 0/1-triangles. This will be done in Section 2. In Section 3 we will count the
number of 0/1-equivalence classes of such triangles. We will also enumerate them,
by which we mean that we list from each equivalence class a unique member.

2. Counting and enumerating all 0/1-triangles in In

Let n ≥ 2. A 0/1-triangle is the convex hull of three distinct vertices of the unit
n-cube In. We will write ∆n for the set of 0/1-triangles in In. A first observation
is that no three vertices of In lie on the same line, and thus that each T ∈ ∆n is
nondegenerate. A second observation is that each T ∈ ∆n is nonobtuse, by which we
mean that all its angles are less than or equal to 90◦. This is true because the inner
product between two vectors u, v ∈ B

n, the set of 0/1-vectors of length n representing
the vertices of In, is nonnegative. Thus, any angle between two edges that meet at
the origin is nonobtuse. By symmetry, this also holds for angles located at other
vertices of In. This leads to the following proposition.

Proposition 2.1 The number |∆n| of elements of the set ∆n of 0/1-triangles in In

equals

|∆n| =
(

2n

3

)

=
1

6
2n (2n − 1) (2n − 2) . (1)

and each T ∈ ∆n is nondegenerate, and moreover nonobtuse.

We can divide the triangles in ∆n into two subsets, the subset Rn of right triangles,
and the subset An of acute triangles, which are the triangles that have three acute
angles,

∆n = An ∪ Rn and An ∩Rn = ∅,
with as immediate consequence that

|∆n| = |An|+ |Rn|. (2)

It is possible to count the number |Rn| of right triangles, and thus to count |An| as
well.

Theorem 2.2 The number |Rn| of right 0/1-triangles in In equals

|Rn| = 2n−1
(

3n − 2n+1 + 1
)

. (3)

Proof. We will first count the right triangles T ∈ Rn that have their right angle at
the origin. The other two vertices u, v ∈ B

n of such a T are nonzero and orthogonal.
If u has k < n zero entries, there are 2k − 1 different v 6= 0 such that u ⊥ v. The
number of u ∈ B

n with k zero entries is
(

n
k

)

, leading to a total of

1

2

n−1
∑

k=1

(

n

k

)

(2k − 1)
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right triangles with right angle at the origin, where the factor of a half is due to the
fact that the roles of u and v can be interchanged. As a consequence,

|Rn| = 2n · 1
2

n−1
∑

k=1

(

n

k

)

(2k − 1), (4)

because the right angle can be located at any of the 2n vertices of In. Using the
binomial formula

(x+ y)n =

n
∑

k=0

(

n

k

)

xkyn−k,

with x = 2 and y = 1, and also with x = y = 1, the expression in (4) can be easily
simplified until (3) remains. This proves the theorem. �

Corollary 2.3 The number |An| of acute 0/1-triangles in In equals

|An| =
1

6
2n

(

4n − 3n+1 + 3 · 2n − 1
)

. (5)

Proof. Substitute expressions (1) and (3) into (2) and rearrange some terms. �

The following table gives the values of |∆n|, |Rn| and |An| for small values of n. The
asymptotic behavior of |Rn| = O(n6) and |An| = O(n8) is clearly visible.

n |Rn| |An| |∆n|
2 4 0 4
3 48 8 56
4 400 160 560
5 2880 2080 4960
6 19264 22400 41664
7 123648 217728 341376
8 774400 1989120 2763520
9 4776960 17461760 22238720
10 29185024 149248000 178433024

Neither |Rn| nor |An| is mentioned in the Online Encyclopedia of Integer Sequences
(OEIS). But the scaled sequence |Rn|/2n−1 can be found under label A028243 and
has annotation essentially Stirling numbers of second kind, whereas |An|/2n has label
A000453, Stirling numbers of the second kind, S(n, 4).

3. Counting and enumerating modulo cube symmetries

In the previous section we described how to generate and count right and acute
0/1-triangles. We did not take into account 0/1-equivalence, as described in Sec-
tion 1. This will be done here. We will count the number of 0/1-equivalence classes
of right and acute 0/1-triangles, and explicitly give one representative for each equiv-
alence class.
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3.1. Matrix representation and 0/1-equivalence

Apart from the empty set, we will represent a 0/1-polytope P ⊂ In by
a 0/1-matrix P of size n × p whose columns are the p coordinate vectors in B

n

of its vertices. Since we do not allow multiple vertices, this can be done in exactly
p! different ways. If we assign to each n× p 0/1-matrix U an integer vector

ν(U) = S(v⊤n U), where v⊤n =
(

1, 2, 4, . . . , 2n−1
)

, (6)

and where S sorts the integer vector in its argument in increasing order, we see that
each matrix representation P of P has the same vector value ν(P ). Moreover, if
the 0/1 polytopes P1 and P2 are distinct subsets of In, then their vertex sets are
distinct [3], and hence for given matrix representations P1 of P1 and P2 of P2 we
have that ν(P1) 6= ν(P2). Therefore, with a slight abuse of notation, we will also
consider ν as an injective map on the set of all nonempty 0/1-polytopes into the set
consisting of all vectors up to length 2n − 1.

Let P1 be a matrix representing a 0/1-polytope P1. Then P2 is a 0/1-polytope
that is 0/1-equivalent to P1 if and only if P2 has a matrix representation P2 that can
be transformed into P1 by permuting and negating some rows of P2. A row negation
is to replace the zeros by ones, and the ones by zeros within a row. The negation of
row j corresponds to the reflection of In into the hyperplane with equation 2xj = 1,
whereas the exchange of rows i and j corresponds to the relabeling of coordinate
axes i and j.

Definition 3.1 The minimal representative within the 0/1-equivalence class E(P)
of a given 0/1-polytope P is the unique element P∗ ∈ E(P) for which ν(P∗) is
lexicographically smaller than ν(P) for all P ∈ E(P),P 6= P∗. The minimal matrix
representation P ∗ of the equivalence class E(P) is the matrix representation P ∗ for P∗

for which v⊤P ∗ is increasing.

In the following section we will see some examples of matrix representations and of
geometrical invariants under cube symmetries.

3.2. Congruence versus 0/1-equivalence

If two 0/1-polytopes P1 and P2 are 0/1-equivalent, P1 can be transformed into P2

by a cube symmetry, which is a congruence. Conversely, it is well known that
congruent 0/1-polytopes need not be 0/1-equivalent. An example, adapted from [3],
is given by the two full-dimensional 5-simplices in I5 represented by the matrices

P1 =













0 1 1 1 0 1
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 0 1













and P2 =













0 1 1 0 1 0
0 1 0 1 0 1
0 0 1 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1













.

If for j ∈ {1, 2} we write Rj for Pj with its first column removed, then R⊤
1 R1 = R⊤

2 R2

and since R2 is invertible, (R1R
−1
2 )⊤(R1R

−1
2 ) = I. Thus Q = R1R

−1
2 is orthogonal,
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and we conclude that R1 = QR2 and hence P1 = QP2, proving the congruence.
To disprove 0/1-equivalence, consider the effect of cube symmetries on the vector
of row sums of a matrix. Row permutations do not alter the values, only permute
them, whereas a row negation replaces a row sum s by p− s, where p is the number
of columns. Since P2 has two row sums equal to 1, whereas P1 has only one row
sum equal to one and no row sum equal to 6 − 1 = 5, we see that P1 6∈ E(P2).
Geometrically speaking, P2 has two exterior facets, which are facets that lie in a facet
of I5, and P1 has only one. Obviously, cube symmetries preserve such exterior facets.

In spite of the above, it is known that equivalence does indeed hold for all full
dimensional 0/1-polytopes of dimension n ≤ 4. The full dimensionality cannot be
omitted, as is shown by the following counter example,

P1 =









0 0 1 1
0 1 0 1
0 1 1 0
0 0 0 0









and P2 =









0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1









.

Both matrices represent a regular tetrahedron in I4, but the tetrahedron at the left
has a zero row, and hence lies in a cube facet (basically in I3), whereas the right one
has neither a zero row nor a row with ones. Thus, they are not 0/1-equivalent. This
also shows that for 0/1-tetrahedra in In, congruence and 0/1-equivalence are not the
same. For 0/1-triangles however, they are.

Theorem 3.2 If 0/1-triangles T1 and T2 are congruent, then they are 0/1-equivalent.

Proof. Let T1, T2 ∈ ∆n be congruent. Then their edge lengths and angles are equal.
Therefore, it is possible to apply a cube symmetry S1 to T1 such that the origin is
a vertex of S1(T1), while its remaining vertices are v1, w1 ∈ B

n, and then to apply
a cube symmetry S2 to T2 such that the origin is a vertex of S2(T2) and its remaining
vertices are v2, w2 ∈ B

n, such that

‖v1‖ = ‖v2‖ =
√
p, ‖w1‖ = ‖w2‖ =

√
q, and v⊤1 w1 = v⊤2 w2 = r, (7)

for certain integers p, q, r. Due to (7), the 3 × n matrices P1 = (0|v1|w1) represent-
ing T1 and P2 = (0|v2|w2) representing T2, both have r rows equal to (0, 1, 1), and
consequently, p− r rows equal to (0, 1, 0) and q− r rows equal to (0, 0, 1). And since
P1 and P2 have the same rows, T1 and T2 are 0/1-equivalent. �

3.3. The minimal matrix representation for each 0/1-equivalence class

We will now formulate necessary and sufficient conditions under which a matrix
is a minimal matrix representation of an equivalence class E(T ). The necessity of the
block form of the matrix in 8 was already described in [1] in a more general context.
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Theorem 3.3 An n× 3 matrix P ∗ is a minimal matrix representation of an equiv-
alence class E(T ) of 0/1-triangles in In if and only if

P ∗ =















































0 1 1
...

...
...

0 1 1
0 1 0
...

...
...

0 1 0
0 0 1
...

...
...

0 0 1
0 0 0
...

...
...

0 0 0















































, (P ∗)⊤P ∗ =





0 0 0
0 p r
0 r q



 , 1 ≤ p ≤ q ≤ p−r+q−r ≤ n−r ≤ n.

(8)
Note that p, q and p − r + q − r are the squares of the lengths of the edges of the
triangle.

Proof. Suppose that P ∗ is a minimal matrix representation. Then the block form
given in (8) is necessary for the following reasons. Firstly, any vertex of any triangle
can be mapped onto the origin by a cube symmetry, hence the first column of P ∗

needs to be zero. Secondly, if there is a zero entry in the second column in row i and
an entry equal to one in row j with j > i, interchanging rows i and j would decrease
the second value in v⊤n P

∗ while the first value of vtnP
∗ remains zero, contradicting the

minimality. Further, if in the third column there is a zero entry in row i with i < p
and an entry equal to one in row j with i < j ≤ p, then interchanging rows i and j
would decrease the third value in vtnP while the first value of vtnP remains zero, and
the second also remains the same because in the second column, two entries equal
to one are swapped, contradicting the minimality. Finally, if in the third column
there is a zero entry in row i with i ≥ p and an entry equal to one in row j with
i < j, then interchanging rows i and j would decrease the third value in v⊤n P while
the first value of v⊤n P remains zero, and the second also remains the same because in
the second column, two entries equal to zero are swapped. This shows the necessity
of the block form in (8).

Additionally, the set of inequalities 1 ≤ p ≤ q ≤ p− r+ q− r ≤ n− r is necessary
for the following reasons. Firstly, the second column of P needs to be nonzero, hence
1 ≤ p. Secondly, p ≤ q or otherwise swapping the block with rows (0 1 0) with the
block with rows (0 0 1) followed by swapping the second and third column, would
result in a zero first column, and a second column with q < p entries equal to one,
and this would reduce the second value of v⊤n P while the first remains zero. Thirdly,
q ≤ p− r + q− r, or equivalently r ≤ p− r or otherwise negating all rows that have
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a one in the second column, followed by interchanging the first and second column,
followed by restoring the block form by interchanging the block with rows (0 1 1)
with the block with rows (0 1 0), would result in a matrix with zero first and second
column and also the third and fourth block of rows unchanged. However, there
would be p− r ones at the top of the third column instead of r, and if r > p− r, this
would reduce the third value of v⊤n P

∗ while the first and second remain unchanged,
contradicting the minimality. The next inequality, equivalent to p + q − r ≤ n, is
necessary because p + q − r is the number of nonzero rows of P ∗, which must, of
course, be bounded by n. Finally, the rightmost inequality is necessary because the
other ones do not yet guarantee that r is nonnegative.

Now we prove that the given conditions in (8) are sufficient. Firstly, since the
first entry of v⊤n P

∗ equals zero, this value cannot be reduced. Secondly, since the
triangle has no edge with length less than

√
p, also the second entry of v⊤n P

∗ cannot
be reduced. The third column of P ∗ represents one of the two remaining edges of
the triangle. The third entry of v⊤n P

∗ is minimal for the edge whose inner product
with the second column of p is maximal, because this minimizes the number of rows
equal to (0 0 1). This follows from the requirement r ≤ p− r. �

As a consequence, we can directly characterize the equivalence classes of right
triangles in In.

Corollary 3.4 An n× 3 matrix P ∗ is a minimal matrix representation of an equiv-
alence class E(T ) of right 0/1-triangles in In if and only if (8) holds with r = 0.

Proof. If (8) holds with r = 0, the matrix P ∗ in (8) obviously represents a right
triangle, and due to Theorem 3.2, this representation is minimal. Conversely, suppose
that P ∗ is a minimal representation of a right triangle. Then (8) holds due to
Theorem 3.2. We will prove that additionally, r = 0. Writing P ∗ = (0 u v) with
u, v ∈ B

n, we that either u ⊥ v or u − v ⊥ u or u − v ⊥ v. The second of these
options, u− v ⊥ u, implies that P ∗ has no rows equal to (0 1 0), or in other words,
that p = r. But due to the inequality q ≤ p − r + q − r from (8), this implies
that r = 0. Consequently, also p = r = 0, contradicting p ≥ 1. The third option
u− v ⊥ v similarly implies that P ∗ has no rows equal to (0 0 1), hence q = r, hence
the inequality p ≤ p − r + q − r from (8) implies that r = 0. Therefore q = r = 0,
contradicting q ≥ 1. The only option left is u ⊥ v, which indeed implies r = 0. �

Corollary 3.5 An n× 3 matrix P ∗ is a minimal matrix representation of an equiv-
alence class E(T ) of acute 0/1-triangles in In if and only if (8) holds with r > 0.

Proof. Follows immediately from Theorem 3.2 and Corollary 3.4. �

3.4. Counting the 0/1-equivalence classes of right and acute 0/1-triangles

In order to count the number of equivalence classes of 0/1-triangles in In, by
Theorem 3.3 we only have to count the number of triples (p, q, r) such that

1 ≤ p ≤ q ≤ p+ q − 2r ≤ n− r ≤ n. (9)
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We will do this by fixing a value for r and counting the tupels (p, q) that satisfy the
resulting equation. The following lemmas will be of use.

Lemma 3.6 Let m ≥ 1 be an integer. The number of integer tupels (a, b) satisfying

1 ≤ a ≤ b ≤ m− a (10)

equals
⌊m

2

⌋ ⌈m

2

⌉

, (11)

where ⌊·⌋ is the floor-operator and ⌈·⌉ the ceil-operator.

Proof. Only for values of a with 1 ≤ a ≤ ⌊m/2⌋, we have that a ≤ m − a. The
number of integers between such an a and m − a equals m + 1 − 2a. This leads to
a total of

⌊m/2⌋
∑

a=1

m+ 1− 2a =
⌊m

2

⌋

(m+ 1)− 2 · 1
2

⌊m

2

⌋(⌊m

2

⌋

+ 1
)

(12)

tupels (a, b) that satisfy (10). Using the relation

m =
⌈m

2

⌉

+
⌊m

2

⌋

, (13)

together with Lemma 3.10, this leads, after some simplifications, to the statement.
�

Corollary 3.7 The number of 0/1-equivalence classes of right triangles in In equals
⌊n

2

⌋ ⌈n

2

⌉

. (14)

Proof. According to Corollary 3.4, we need to count to number of tupels (p, q)
satisfying

1 ≤ p ≤ q ≤ p+ q ≤ n. (15)

Since the inequality q ≤ p+ q is always valid, it can be removed. Thus, we only need
to count the number of tupels (p, q) such that 1 ≤ p ≤ q ≤ n− p, which was done in
Lemma 3.6. �

In the next lemma we will count equivalence classes of triangles for fixed values of
r ≥ 1. It will turn out that if 3r > n, there are no solutions. Moreover, substituting
r = 0 in (16) below does not yield the result of Corollary 3.7. After its proof it is
explained why not.

Lemma 3.8 For given r ≥ 1 with 3r ≤ n, the number of tupels (p, q) satisfying (9)
equals

⌊

n− 3r + 2

2

⌋⌈

n− 3r + 2

2

⌉

. (16)
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Proof. Let r ≥ 1 be fixed. If p < 2r, there are no integers q that satisfy the third
inequality q ≤ p + q − 2r in (9). If p ≥ 2r, this inequality holds for all q and can
thus be removed. Thus, we only need to count the tupels (p, q) for which

2r ≤ p ≤ q ≤ n+ r − p. (17)

For such tupels to exist, we need that 2r ≤ n+ r−p, but since p ≥ 2r this translates
into 2r ≤ n + r − 2r. This explains the requirement 3r ≤ n in the statement of
this lemma. To count the tupels, subtract 2r− 1 from each term in (17), and define
a = p− (2r − 1), b = q − (2r − 1), and m = n− 3r + 2, then

1 ≤ a ≤ b ≤ n + r − a− 2(2r − 1) = n− 3r + 2− a = m− a. (18)

Applying Lemma 3.6 gives the number of tupels (a, b) satisfying these inequalities in
terms of m, and substituting back m = n− 3r + 2 proves the statement. �

Remark 3.9 Choosing r = 0 in (16) does not give (14). This is because setting
r = 0 in (17) does not imply 1 ≤ p, as is required in Theorem 3.3, whereas for r ≥ 1,
it does.

We will now count the number of equivalence classes of acute triangles. First another
lemma.

Lemma 3.10 For nonnegative integers k we have that (kmod 2)2 = kmod 2, and
hence

⌊

k

2

⌋⌈

k

2

⌉

=

(

k − kmod2

2

)(

k + kmod 2

2

)

=
1

4
(k2 − kmod 2). (19)

Moreover,

n
∑

k=1

kmod 2 =

⌊

n+ 1

2

⌋

, and

⌊

n− ⌊n
3
⌋

2

⌋

=

⌊

n + 1

3

⌋

. (20)

Proof. Elementary, and thus left to the reader. �

Theorem 3.11 The number of 0/1-equivalence classes of acute triangles in In equals

⌊

2n3 + 3n2 − 6n+ 9

72

⌋

. (21)

Proof. We need to sum the expression in (16) over all r ≥ 1 satisfying 3r ≤ n.
Now, since (n− 3r + 2)mod 2 = (n− r)mod 2, we find using Lemma 3.10 that

⌊n

3
⌋

∑

r=1

⌊

n− 3r + 2

2

⌋⌈

n− 3r + 2

2

⌉

=
1

4

⌊n

3
⌋

∑

r=1

(n− 3r + 2)2 − 1

4

⌊n

3
⌋

∑

r=1

(n− r)mod2. (22)
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The first sum in the right-hand side of (22) can be evaluated using standard expres-
sions for sums of squares as

⌊n

3
⌋

∑

r=1

(n− 3r + 2)2 =
⌊n

3

⌋

(n+ 2)
(

n− 1− 3
⌊n

3

⌋)

+
3

2

⌊n

3

⌋(⌊n

3

⌋

+ 1
)(

2
⌊n

3

⌋

+ 1
)

.

(23)
Using Lemma 3.10 again, the second sum in the right-hand side of (22) evaluates to

⌊n

3
⌋

∑

r=1

(n− r)mod 2 =

n−1
∑

r=1

rmod 2−
n−⌊n

3
⌋−1

∑

r=1

rmod 2 =
⌊n

2

⌋

−
⌊

n+ 1

3

⌋

. (24)

Combining (22), (23) and (24), the number of equivalence classes of acute
0/1-triangles equals

1

4

(

⌊n

3

⌋

(n+2)
(

n−1−3
⌊n

3

⌋)

+
3

2

⌊n

3

⌋ (⌊n

3

⌋

+1
)(

2
⌊n

3

⌋

+1
)

−
⌊n

2

⌋

+

⌊

n+1

3

⌋)

.

(25)
To verify that this expression equals (21) is a tedious task, but can be done as
follows. First, we substitute n = 6k + ℓ with ℓ ∈ {0, . . . , 5} into (21), which after
simplifications results in

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k +

⌊

1

36
ℓ3 +

1

24
ℓ2 − 1

12
ℓ+

1

8

⌋

, (26)

where we have used that 2ℓ + 1 and ℓ2 + ℓ − 1 = ℓ(ℓ + 1) − 1 are both odd, which
implies that the sum of the first three terms in (26) is indeed an integer for all k
and ℓ.

Next, substitute n = 6k + ℓ with ℓ ∈ {0, 1, 2} in (25), and note that it simplifies
to

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k, (27)

which equals the expression in (26) because for ℓ ∈ {0, 1, 2} the floor results in zero.
Finally, set n = 6k + ℓ with ℓ ∈ {3, 4, 5} in (25). After simplification there remains

6k3 +
3

2
(2ℓ+ 1) k2 +

1

2

(

ℓ2 + ℓ− 1
)

k +
1

4

(

ℓ2 − 2ℓ+ 1−
⌊

ℓ

2

⌋

+

⌊

ℓ+ 1

3

⌋)

. (28)

Comparing (26) with (28), it can be easily verified that for ℓ ∈ {3, 4, 5},

1

4

(

ℓ2 − 2ℓ+ 1−
⌊

ℓ

2

⌋

+

⌊

ℓ+ 1

3

⌋)

=

⌊

1

36
ℓ3 +

1

24
ℓ2 − 1

12
ℓ+

1

8

⌋

. (29)

And this proves the theorem. �
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Below are listed the numbers rn and an of 0/1-equivalence classes of right and acute
0/1-triangles and their sum dn for small values of n.

n 2 3 4 5 6 7 8 9 10

rn 1 2 4 6 9 12 16 20 25
an 0 1 2 4 7 11 16 23 31
dn 1 3 6 10 16 23 32 43 56

In the OEIS, the sequence rn has label A002620, sequence an has label A181120,
and dn has label A034198. Only the latter has as description “number of distinct
triangles on vertices of n-dimensional cube”, the other two are not associated with
counting triangles in In.

On a personal note

I met Karel Segeth for the first time in the beginning of October 1997, when
I was 29 years old. Karel was director of the Mathematical Institute of the Academy
of Sciences of the Czech Republic, and I had just arrived to take up a one year
visiting position at his Institute. He invited me to his director’s office for a cup of
tea, and to welcome me. I recall being impressed and a bit nervous, and listened to
what Professor Segeth had to say, in his typical (although at that time, of course,
I did not know this) calm and amiable tone of voice. He seemed to be the type
of person taking his responsibilities seriously; the greater was my surprise when he
good-humouredly laughed at my humble wish to take up a Czech language course
now that I had arrived in Prague, and actually rather cheekily added: “Pardon me,
but I’m afraid you will never learn to speak Czech!”. Notwithstanding cheekiness, he
immediately organized for me to be enroled in a Czech language course provided by
the Academy of Sciences, and until this day I still get goose bumps when I recall the
teacher, a strict lady who asked me questions when, and only when, I had completely
lost track of things. It was the beginning of my personal quest to prove Karel wrong,
a quest that still goes on today, and which, of course, I can never complete. It was
also the beginning of a wonderful year in Prague. When I left the institute, Karel
spoke the words “Please, come again!”.

And so I did. In the almost fifteen years since my first stay in Prague, I have
visited the Institute many times a year. Instead of -or maybe better, next to- being
an impressive director, Karel became a fellow mathematician, a trustworthy source
of Czech culture and history, a fixed point in the audience of my mathematical
presentations, and a good companion in not always politically correct jokes and
a celebrational glass of spirit. And each time when I left, he spoke the words “Please,
come again!”. What choice do I have, than to follow his advice?

I wish Karel all the best, and hope to see him regularly at the Institute; at the
seminar, the corridor, at Michal’s office, the printer room, and to enjoy his typical
humor and wisdom for many years to come. Happy seventieth birthday!

Jan Brandts
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