

Jan Brandts

From Binary Cube Triangulations

From Binary Cube Triangulations

From Binary Cube Triangulations

From Binary Cube Triangulations

From Binary Cube Triangulations

From Binary Cube Triangulations

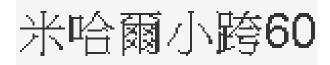
From Binary Cube Triangulations

From Binary Cube Triangulations

From Binary Cube Triangulations

http://www.faceofthefuture.org.uk/

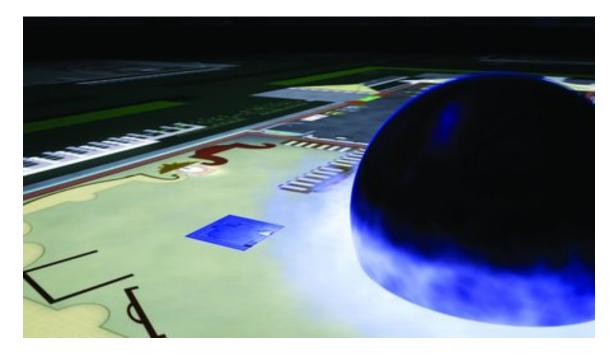
From Binary Cube Triangulations



From Binary Cube Triangulations

From Binary Cube Triangulations

In Edwin Abbott's novel Flatland ...



... Spherius teaches Arthur Square about higher

In Edwin Abbott's novel Flatland ...

... Spherius teaches Arthur Square about higher

DIMENSIONS

Higher dimensional finite elements

Superconvergence:

- for quadratic tetrahedral elements
- for linear simplicial elements (unification, extension)

Discrete maximum principles: reaction-diffusion equations

• for linear simplicial elements

SIAM Review 2009

On nonobtuse simplicial partitions

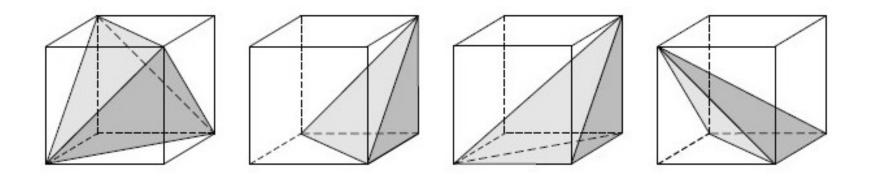
(with Sergey Korotov and Jakub Šolc)

Theme: Geometry Intertwining Numerical Analysis

- construction/refinement of nonobtuse and acute triangulation
- for FEM applications, but also *curiosity driven*

What is a nonobtuse or acute simplex?

• an angle between two (n-1)-facets of a simplex is *dihedral*



- a *nonobtuse* simplex has no *obtuse* (> 90°) dihedral angles
- an *acute* simplex has only *acute* ($< 90^{\circ}$) dihedral angles

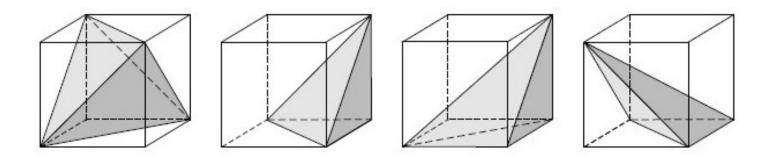
Research questions:

Typical quesions on the border between geometry and numerical analysis are, for instance:

- can the cube be acutely triangulated? (solved in 2009/2010)
- is there an acute triangulation of \mathbb{R}^4 ?
- can each simplex be decomposed into path-simplices?
- can each tetrahedron be triangulated with path-simplices?

0/1-simplex, binary simplex

A binary or 0/1-simplex shares its vertices with the unit *n*-cube



- simplest example of a 0/1-polytope (Ziegler et al)
- there are $2^{2^n} 0/1$ -polytopes in n dimensions
- some are the same modulo hyper-octahedral group action

Research questions about 0/1-polytopes

- Minimal *n*-cube triangulation (solved for $n \leq 7$)
- Number of nondegenerate full-dimensional 0/1-polytopes
- Same, modulo cube symmetries
- Maximal number of facets of a 0/1-polytope

Many of these questions are very hard, unsolved, and (Ziegler)

"low dimensional intuition does not work"

Minimal *n*-cube triangulation simplified

n	1	2	3	4	5	6	7
#	1	2	5	16	67	308	1427

The total number of 0/1 simplices in the n cube is approximately

$$\binom{2^n}{n+1}$$

which for n = 8 equals approximately 10.000.000.000.000.000.

Instead, we tried to use only *nonobtuse* binary simplices, of which there are much, much less

Minimal *n*-cube triangulation simplified

Minimal nonobtuse binary cube triangulation: solved completely!

$n \parallel$	1	2	3	4	5	6	7	8
#	1	2	5	16	67	308	1427	
#	1	2	5	18	87	518	3621	28962

Cardinality of the minimal *nonobtuse* binary triangulation

$$N(n) = nN(n-1) - n + 2$$
 with $N(3) = 5$

$$N(n) = 1 + n! \sum_{k=2}^{n} \frac{1}{k!}$$

Hadamard Maximum Determinant Problem

What is the maximum determinant of an $n \times n$ 0/1-matrix?

1											12	
det	1	2	3	5	9	32	56	144	320	1458	3645	9477

For $n = 3 \mod 4$ there is a formula: *Hadamard's Conjecture*

For 0/1-matrices representing *acute binary simplices*:

												13
det	1	2	3	5	9	32	56	96	224	1458	3645	7290

Acute binary simplices

What is the structure of acute binary simplices? There are only few:

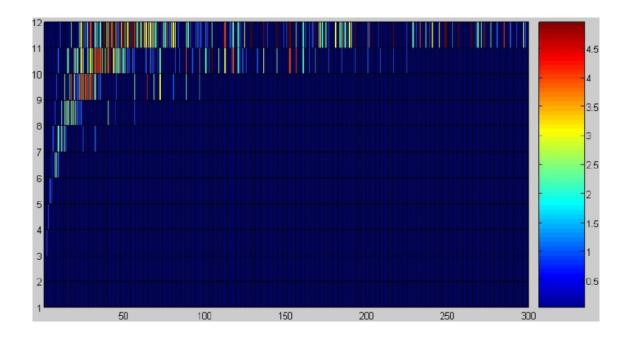
n	3	4	5	6	7	8	9	10	11
#	1	1	2	6	13	29	67	162	392

Amount of acute binary simplices modulo cube symmetries

Algebraically: $n \times n \ 0/1$ matrix P represents an acute binary simplex if and only if the *dihedral angle information matrix* $(P^{\top}P)^{-1}$ is *diagonally strictly dominant, strictly Stieltjes, matrix*

Determinant spectrum acutely restricted

What is the range of the determinant function on such matrices?



Ongoing research

PhD project (2012-2016) for Apo Cihangir (Univ. Amsterdam)

- Nonobtuse triangulation of 0/1-polytopes
- Exhaustive enumeration of acute binary simplices
- Diagonally dominant Stieljes matrices
- Ultrametric matrices
- Lattice simplices and polytopes