Combinatorics on words and its applications

L'ubomíra Balková

Department of Mathematics, FNSPE, Czech Technical University in Prague

May 4, 2012

Program

(1) Thue-Morse sequence
(2) Hash function
(3) Dithered hash functions

Program

(1) Thue-Morse sequence
(2) Hash function
(3) Dithered hash functions

Definition of Thue-Morse sequence

Definition

We denote by $\mathbf{u}_{T M}=\left(u_{n}\right)_{n=0}^{+\infty}$ the (Prouhet-)Thue-Morse sequence on $\{0,1\}$ defined recursively by

$$
\begin{aligned}
& u_{0}=0, \quad u_{2 n}=u_{n} \quad \text { and } \quad u_{2 n+1}=1-u_{n} \text { for } n \geq 0 . \\
& \mathbf{u}_{T M}=\begin{array}{cccccccccc}
u_{0} & u_{1} & u_{2} & u_{3} & u_{4} & u_{5} & u_{6} & u_{7} & u_{8} & \ldots \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & \ldots
\end{array}
\end{aligned}
$$

Binary representation

Theorem

Denote by $s_{2}(n)$ the sum of digits in the binary representation of $n \in \mathbb{N}$. Then

$$
\mathbf{u}_{T M}=\left(s_{2}(n) \bmod 2\right)_{n=0}^{+\infty}
$$

Substitution

Define the substitution φ on $\{0,1\}$ by $\varphi(0)=01, \quad \varphi(1)=10$.

Theorem

The Thue-Morse sequence is the unique fixed point of φ that begins with 0 .

$$
\mathbf{u}_{T M}=01101001100101101001 \ldots
$$

Birth of Combinatorics on Words

Questions of Axel Thue:
(1) Is there a binary cube-free or even overlap-free sequence?
(2) Is there a ternary square-free sequence?

Remark

He answered both questions affirmatively in 1906 in an obscure Norwegian journal \Rightarrow long time not known, rediscovered by Morse in 1921. Thue explained he had no particular application in mind, but he thought the problem was interesting enough in itself to deserve attention. Starting point of COMBINATORICS ON WORDS.

Theorem (Thue)

The Thue-Morse sequence is overlap-free. In other words, it does not contain awawa, where $a \in\{0,1\}$ and $w \in\{0,1\}^{*}$.

Corollary

The Thue-Morse sequence is cube-free.
For $n \geq 1$ let v_{n} be the number of 1 's between the n-th and $(n+1)$-st occurrence of 0 in the sequence $\mathbf{u}_{T M}$. Denote $\mathbf{v}=\left(v_{n}\right)_{n=1}^{+\infty}$.

$$
\begin{gathered}
\mathbf{u}_{T M}=0110100110010110 \ldots \\
\mathbf{v}=21020121012 \ldots
\end{gathered}
$$

Corollary

The sequence \mathbf{v} is square-free.

Program

(1) Thue-Morse sequence

(2) Hash function
(3) Dithered hash functions

One-way and collision-free function

Definition

$f: X \rightarrow Y$ is called one-way if
(1) for any $x \in X$ it is easy to compute $y=f(x)$,
(2) for any $y \in f(X)$ it is computationally infeasible to find a preimage, i.e., $x \in X$ such that $y=f(x)$.

Definition

$f: X \rightarrow Y$ is called collision-free if it is computationally infeasible to find $x, x^{\prime} \in X, x \neq x^{\prime}$ such that $f(x)=f\left(x^{\prime}\right)$.

Definition of hash function

Definition

Let $N, n \in \mathbb{N}, n \ll N$ and $f:\{0,1\}^{N} \rightarrow\{0,1\}^{n}$ is called hash function if f is one-way and collision-free and behaves as a random oracle.
$f(M)$ is called hash of the message M.

Remark

Usually $N=2^{64}-1, N=2^{128}-1$ and n hundreds of bits (for MD5/SHA-1/SHA256/SHA512 it is 128/160/256/512 bits).

Birthday paradox

- $P(365,23)=0,507$ and $P(365,30)=0,706$
- the probability that any two participants of a party of k guests celebrate their birthday the same day

$$
P(365, k)=1-\frac{365 \cdot 364 \ldots(365-k+1)}{365^{k}}
$$

Damgard-Merkle construction - Crypto 1989

- message M cut into m-bits blocks $m_{1}, m_{2}, \ldots, m_{k}$
- Damgard-Merkle strengthening - padding M with 1 , then zeros and the length of M
- compression function:

$$
h_{0}=I V, \quad h_{i}=f\left(h_{i-1}, m_{i}\right)
$$

- output: h_{k} or its part
- collision-free compression function \Rightarrow collision-free hash function

Program

(1) Thue-Morse sequence
(2) Hash function
(3) Dithered hash functions

Attack on repeating contexts

- if $h_{i-1}=h_{i}=f\left(h_{i-1}, m_{i}\right)$, then hash codes of $m_{1} \ldots m_{i-1} m_{i} m_{i+1} \ldots m_{k}$ and $m_{1} \ldots m_{i-1} m_{i}^{\ell} m_{i+1} \ldots m_{k}$ are the same \Rightarrow the second preimage of the same length as M may be found with complexity $t \cdot 2^{n / 2+1}+2^{n-t+1}$ for messages of length 2^{t} close to $2^{n / 2}$
- for SHA-1 the second preimage of a message of length 2^{60} may be found with complexity 2^{106} instead of 2^{160}
J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for much less than 2^{n} work

Dithered hash functions

$h_{i}=f\left(h_{i-1}, m_{i}, d_{i}\right)$
(1) counter: $d_{i}:=i$
(2) random sequence: $d_{i}:=r_{i}$
(3) alternation of 0 and 1

- square-free and abelian square-free sequences
R. Rivest, Abelian square-free dithering for iterated hash functions

Square-free words

square-free word does not contain $w w$

Example

abracadabra OK, banana NO

- no square-free infinite words over $\{0,1\}$
- there exist square-free infinite words over $\{0,1,2\}$

Example

Thue-Morse word $\mathbf{u}_{T M}=0110100110010110 \ldots$ is overlap-free $\Rightarrow \mathbf{v}=2102012 \ldots$ is square-free

Abelian square-free words

abelian square-free word does not contain $w w^{\prime}$, where w^{\prime} is a permutation w

Example

abelianalien NO, it contains alien and elian

Example

abcacdcbcdcadcdbdaba
cabadbabcbdbcbacbcdc acbabdabacadcbcdcacd
bcbacbcdcacdcbdcdadbdcbca
denote σ the cyclic shift $\sigma(a b c a c d)=b c d b d a$, then Keränen's abelian square-free word is a fixed point of the morphism

$$
a \rightarrow S, b \rightarrow \sigma(S), c \rightarrow \sigma^{2}(S), d \rightarrow \sigma^{3}(S)
$$

Thank you for attention and Happy Birthday!

