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Abstract. The paper deals with the boundary value problem

u
′′ + k u = g(u) + e(t), u(0) = u(2 � ), u

′(0) = u
′(2 � ),

where k ∈ � , g : (0,∞) 7→ � is continuous, e ∈ � [0, 2 � ] and lim
x→0+

� 1
x

g(s) ds = ∞. In

particular, the existence and multiplicity results are obtained by using the method of lower
and upper functions which are constructed as solutions of related auxiliary linear problems.

Keywords: second order nonlinear ordinary differential equation, periodic problem, lower
and upper functions
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1. Introduction

In this paper we consider the periodic boundary value problems of the form

u′′ + k u = g(u) + e(t), u(0) = u(2 � ), u′(0) = u′(2 � ),(1.1)

where

g ∈  (0,∞), e ∈ ! [0, 2 � ], k ∈ "(1.2)

and g has a strong singularity at 0, i.e.

lim
x→0+

∫ 1

x

g(s) ds = ∞.(1.3)
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This problem was studied by many authors, starting from Lazer and Solimini [6],

where (1.1) with k = 0 and g positive was considered. Later, this work has been

generalized or extended e.g. by del Pino, Manásevich and Montero [1], Fonda [2],

Fonda, Manásevich and Zanolin [3], Mawhin [7], Ge and Mawhin [4], Omari and Ye

[9], Rachůnková [10], Rachůnková and Tvrdý [12], Rachůnková, Tvrdý and Vrkoč

[14], Yan and Zhang [16], Zhang [17] and others. In particular, the problems having

nonlinearities with the asymptotic behaviour at +∞ which corresponds to k > 0 and

g bounded below in (1.1) were solved by some of the above authors. For example, the

papers [2], [9], [10], [12], [14] and [17] dealt with problems characterized by a positive

k which was less than the first positive Dirichlet eigenvalue µ1 of x
′′ +µ x = 0, while

the cases corresponding to k lying between two adjacent higher eigenvalues were

investigated in [1] or [16]. The existence results in the resonance case k = µ1 were

reached in [14]. In [2] or [3] we can also find multiplicity results for subharmonics.

Theorems about more solutions of (1.1) provided k = 0 are proved in [10].

Here we bring new results about the existence of one or two positive solutions of

(1.1) for both nonresonance and resonance values of k. Moreover, our Theorem 4.4

generalizes for n = 3 Theorem 3.5 in [10] (even in the case k = 0), because the

condition (3.4) in Theorem 4.4 is weaker than the corresponding condition (3.16) in

[10, Theorem 3.5] which requires (for i = 1) g(x)+e > 0 on [a1, b1] ⊂ (0,∞), where

b1 − a1 = #3 ‖e − e‖1.

Let J be a (possibly unbounded) subinterval of " . We say that f : [0, 2 � ]×J 7→ "
fulfils the Carathéodory conditions on [0, 2 � ] × J , if f has the following properties:

(i) for each x ∈ J the function f(·, x) is measurable on [0, 2 � ]; (ii) for almost every
t ∈ [0, 2 � ] the function f(t, ·) is continuous on J ; (iii) for each compact set K ⊂ J the

function mK(t) = sup
x∈K

|f(t, x)| is Lebesgue integrable on [0, 2 � ]. The set of functions
satisfying the Carathéodory conditions on [0, 2 � ] × J is denoted by Car([0, 2 � ] × J).

For a given (possibly unbounded) subinterval J of " ,  (J) denotes the set of func-

tions continuous on J , ! [0, 2 � ] stands for the set of functions (Lebesgue) integrable
on [0, 2 � ], ! 2 [0, 2 � ] is the set of functions square integrable on [0, 2 � ], ! ∞ [0, 2 � ] is
the set of functions essentially bounded on [0, 2 � ], $% [0, 2 � ] denotes the set of func-
tions absolutely continuous on [0, 2 � ], $& 1[0, 2 � ] is the set of functions u ∈ $% [0, 2 � ]
with the first derivative absolutely continuous on [0, 2 � ] and ' ( [0, 2 � ] denotes the
set of functions of bounded variation on [0, 2 � ]. For x ∈ ! ∞ [0, 2 � ], y ∈ ! [0, 2 � ] and
z ∈ ! 2 [0, 2 � ], we denote ‖x‖∞ = sup esst∈[0,2 # ] |x(t)|,

y =
1

2 �

∫ 2 #
0

y(s) ds, ‖y‖1 =

∫ 2 #
0

|y(t)| dt and ‖z‖2 =
(∫ 2 #

0

z2(t) dt
) 1

2

.
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Furthermore,  1 [0, 2 � ] is the space of functions from  [0, 2 � ] having a continuous
first derivative on [0, 2 � ] equipped with the norm x ∈  1 [0, 2 � ] 7→ ‖x‖∞ + ‖x′‖∞.

If x ∈ ' ( [0, 2 � ], s ∈ (0, 2 � ] and t ∈ [0, 2 � ), then the symbols x(s−), x(t+) and

∆+x(t) are defined respectively by

x(s−) = lim
τ→s−

x(τ), x(t+) = lim
τ→t+

x(τ) and ∆+x(t) = x(t+) − x(t).

Furthermore, xac and xsing stand for the absolutely continuous part of x and the

singular part of x, respectively. We suppose xsing(0) = 0. For x ∈ ! [0, 2 � ], the
symbols x+ and x− denote its nonnegative and nonpositive parts.

Besides (1.1) we will also consider a more general problem

(1.4) x′′ = f(t, x), x(0) = x(2 � ), x′(0) = x′(2 � ),

where f ∈ Car([0, 2 � ] × J) and J ⊂ " .
1.1. Definition. By a solution of (1.4) we understand a function x : [0, 2 � ] 7→

" such that x′ ∈ $% [0, 2 � ], x(0) = x(2 � ), x′(0) = x′(2 � ) and x(t) ∈ J and x′′(t) =

f(t, x(t)) hold for a.e. t ∈ [0, 2 � ].
1.2. Definition. Functions (σ, %) ∈ $% [0, 2 � ] × ' ( [0, 2 � ] are lower functions

of (1.4) if σ(t) ∈ J for a.e. t ∈ [0, 2 � ], the singular part %sing of % is nondecreasing

on [0, 2 � ], σ′(t) = %(t) and %′(t) > f(t, σ(t)) for a.e. t ∈ [0, 2 � ], σ(0) = σ(2 � ) and
%(0+) > %(2 � −).

Similarly, functions (σ, %) ∈ $& [0, 2 � ] × ' ( [0, 2 � ] are upper functions of (1.4)

if σ(t) ∈ J for a.e. t ∈ [0, 2 � ], %sing is nonincreasing on [0, 2 � ], σ′(t) = %(t) and

%′(t) 6 f(t, σ(t)) for a.e. t ∈ [0, 2 � ], σ(0) = σ(2 � ) and %(0+) 6 %(2 � −).

1.3. )+*-,/.1032 . If J = " , then Definitions 1.1 and 1.2 reduce to those given for
the regular case in [11].

If (1.2) is true and J = (0,∞), then each solution and each upper (lower) function

must be positive a.e. on [0, 2 � ].
Our proofs will be based on the following theorem which is contained in [11,

Theorems 4.1, 4.2 and 4.3] and which concerns the nonsingular case with J = " .

1.4. Theorem. Let (σ1, %1) and (σ2, %2) be respectively lower and upper func-

tions of the problem (1.4), where J = " . Furthermore, assume that there is m ∈
! [0, 2 � ] such that f(t, x) > m(t) for a.e. t ∈ [0, 2 � ] and all x ∈ " (or f(t, x) 6 m(t) for

a.e. t ∈ [0, 2 � ] and all x ∈ " ). Then (1.4) has a solution x such that ‖x′‖∞ 6 ‖m‖1.

Moreover, if

(1.5) σ1(t) 6 σ2(t) for all t ∈ [0, 2 � ],
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then σ1(t) 6 x(t) 6 σ2(t) is true for all t ∈ [0, 2 � ] and if (1.5) does not hold, then

there is tx ∈ [0, 2 � ] such that min
{
σ1(tx), σ2(tx)

}
6 x(tx) 6 max

{
σ1(tx), σ2(tx)

}
.

In [12] and [13] we have presented conditions ensuring the existence and localiza-

tion of lower and upper functions of (1.4). As an immediate consequence of these

results we get propositions for the following special case of the problem (1.4):

x′′ = h(x) + e(t), x(0) = x(2 � ), x′(0) = x′(2 � ),(1.6)

where

h ∈  (J), e ∈ ! [0, 2 � ] and J is an open subinterval in " .(1.7)

1.5. Proposition. Suppose that (1.7) holds. Further, let A ∈ J and let the

inequality

(1.8) h(x) + e 6 0 for x ∈ [A, B] (h(x) + e > 0 for x ∈ [A, B])

be fulfilled, where B ∈ J and

(1.9) B − A >
�
3
‖e− e‖1.

Then there exist lower (upper) functions (σ, %) of (1.6) and

(1.10) σ(t) ∈ [A, B] for all t ∈ [0, 2 � ].

4 0356587 . If J = " , then the proof is given in [12, Propositions 2.4 and 2.5]. In
the case that J 6= " , we put

(1.11) f(t, x) = e(t) +






h(A) if x < A,

h(x) if x ∈ [A, B],

h(B) if x > B.

Since f ∈ Car([0, 2 � ] × " ), we get by [12, Propositions 2.4 and 2.5] the existence
of lower (upper) functions (σ, %) of (1.4) fulfilling (1.10). The conditions (1.10) and

(1.11) guarantee that (σ, %) are lower (upper) functions of (1.6), as well. �

1.6. Proposition. Suppose that (1.7) holds. Further, let A ∈ J , k 6= n2 for all

n ∈ 9 and let the inequality

h(x) + k x + e 6 k
A + B

2
for x ∈ [A, B](1.12)

(
h(x) + k x + e > k

A + B

2
for x ∈ [A, B]

)
,
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be fulfilled, where B ∈ J and

B − A = 2 Φ(k) ‖e− e‖1(1.13)

and

Φ(k) =





min

{ �
6
,
coth(

√
|k| �

4
√
|k|

}
if k < 0,

min

{ �
6 (1 − k)

,
1

4k
sin(

√
k � )

}
if k ∈ (0, 1

4 ],

min

{ �
6 (1 − k)

,
1

2
√

k sin(
√

k � )

}
if k ∈ ( 1

4 , 1),

1

2
√

k|sin(
√

k � )|
if k > 1, k 6= n2, n ∈ 9 .

(1.14)

Then there exist lower (upper) functions (σ, %) of (1.6) satisfying (1.10).
4 0356587 . If J = " , then the proof follows from [13, Theorems 3.1–3.4], where we

put a = k(A + B)/2. In the case J 6= " , we can use the same arguments as in the
proof of Proposition 1.5. �

The next lemma will be helpful in what follows.

1.7. Lemma. Let (1.7) be true and let x be an arbitrary solution of (1.6).

Further, let t1 ∈ [0, 2 � ] be such that x(t1) = max
t∈[0,2 # ]

x(t). Then the inequality

∫ A

x(t0)

h(s) ds 6 ‖e‖1‖x′‖∞ +

∫ x(t1)

A

|h(s)| ds

holds for all t0 ∈ [0, 2 � ] and all A ∈ J such that x(t1) > A.
4 0356587 . In virtue of the periodicity of x, we have x′(t1) = 0. Consequently,

multiplying the equality x′′(t) = h(x(t)) + e(t) a.e. on [0, 2 � ] by x′(t) and integrating

from t0 to t1, we get

0 > − (x′(t0))
2

2
=

∫ t1

t0

x′′(t) x′(t) dt =

∫ x(t1)

x(t0)

h(s) ds +

∫ t1

t0

e(t) x′(t) dt.

Hence,

∫ A

x(t0)

h(s) ds =

∫ x(t1)

x(t0)

h(s) ds −
∫ x(t1)

A

h(s) ds

6 −
∫ t1

t0

e(t) x′(t) dt −
∫ x(t1)

A

h(s) ds 6 ‖e‖1 ‖x′‖∞ +

∫ x(t1)

A

|h(s)| ds.

�

49



The proof of the next lemma is an easy modification of that of [11, Lemma 1.1].

1.8. Lemma. Suppose that (1.7) is true. Furthermore, let I ⊂ J and let h∗ ∈ "
be such that h(x) > h∗ for all x ∈ I. Then

‖x′‖∞ 6 ‖e‖1 + 2 � |h∗|

holds for each solution x of (1.6) with the property x(t) ∈ I for all t ∈ [0, 2 � ].

2. Existence theorem

The main result of this section is Theorem 2.1 which gives an existence principle

for the problem (1.1) in terms of lower and upper functions. More effective results

can be obtained if we replace the assumption of the existence of lower and upper

functions by the corresponding conditions from Propositions 1.5 and 1.6.

2.1. Theorem. Suppose that (1.2), (1.3),

(2.1) lim inf
x→∞

g(x)

x
> k − 1

4

and

(2.2) lim inf
x→0+

g(x) > −∞

are satisfied. Further, let there be lower functions (σ1, %1) and upper functions

(σ2, %2) of (1.1) such that

(2.3) σ2(t) > 0 on [0, 2 � ].

Then the problem (1.1) has a positive solution.

Before proving Theorem 2.1 we will prove several auxiliary assertions. In partic-

ular, Lemmas 2.2 and 2.4 give a priori estimates for solutions of (1.6). The proof of

Theorem 2.1 follows from Proposition 2.9.

2.2. Lemma. Let g ∈  (0,∞), k ∈ " and suppose that (1.3) is true. Further,

let E, K ∈ [0,∞), A ∈ (0,∞) and R ∈ [A,∞). Then there is ε∗ > 0 such that

min
t∈[0,2 # ]

x(t) > ε∗ holds for each h ∈  ( " ) satisfying

(2.4) h(x) = g(x) − k x on [ε∗, R]

50



for each e ∈ ! [0, 2 � ] with ‖e‖1 6 E and for each solution x of (1.6) fulfilling

(2.5) ‖x′‖∞ 6 K and max
t∈[0,2 # ]

x(t) ∈ [A, R].

4 0356587 . Put
K∗ = E K +

∫ R

A

|g(s) − k s| ds.

In view of (1.3), there is ε∗ > 0 such that

(2.6)

∫ A

ε∗

(g(s) − k s) ds > K∗.

Let h ∈  ( " ) fulfil (2.4), let e ∈ ! [0, 2 � ] be such that ‖e‖1 6 E and let x be a

solution of (1.6) verifying (2.5). Suppose that min
t∈[0,2 # ]

x(t) 6 ε∗ and denote by t0

and t1 the points in [0, 2 � ] such that t0 < t1, x(t0) = ε∗, x(t) > ε∗ on [t0, t1] and

x(t1) = max
t∈[0,2 # ]

x(t). By virtue of (2.5) we have x(t1) ∈ [A, R]. Thus, taking into

account (2.4) and (2.6) and using Lemma 1.7, we get

K∗ <

∫ A

ε∗

(g(s) − k s) ds =

∫ A

x(t0)

h(s) ds

6 E K +

∫ R

A

|h(s)| ds = E K +

∫ R

A

|g(s) − k s| ds = K∗,

a contradiction. �

In particular, we have:

2.3. Corollary. Suppose (1.2) and (1.3). Then each solution of (1.1) is positive

on [0, 2 � ].

2.4. Lemma. Let E, C ∈ [0,∞), η ∈ (0, 1
4 ) and (0,∞) ⊂ J ⊂ " . Then for any

B ∈ (0,∞) there is R ∈ (B,∞) such that the estimate

(2.7) max
t∈[0,2 # ]

x(t) 6 R

is valid for each h ∈  (J) satisfying

h(x) x +

(
1

4
− η

)
x2

> −C |x| on J

51



for each e ∈ ! [0, 2 � ] with ‖e‖1 6 E and for each solution x of (1.6) fulfilling

(2.8) x(t) ∈ J for t ∈ [0, 2 � ] and min
t∈[0,2 # ]

x(t) 6 B.

4 0356587 . Suppose that no such R exists. Then for any ` ∈ 9 we can find
h` ∈  (J), e` ∈ ! [0, 2 � ] and a solution x` of

x′′ = h`(x) + e`(t), x(0) = x(2 � ), x′(0) = x′(2 � )

such that ‖e`‖1 6 E,

h`(x) x +

(
1

4
− η

)
x2

> −C |x| for all x ∈ J(2.9)

and

min
t∈[0,2 # ]

x`(t) 6 B and max
t∈[0,2 # ]

x`(t) > `.(2.10)

For ` ∈ 9 , denote by t` the point in [0, 2 � ] for which x`(t`) = B. Furthermore, let us

extend x` and e` to functions 2 � -periodic on " . We have

x′′

` (t) = h`(x`(t)) + e`(t) for a.e. t ∈ " .

Multiplying this equality by x`(t), integrating from t` to t` + 2 � and making use of
(2.9), we obtain

‖x′

`‖2
2 = −

∫ t`+2 #
t`

h`(x`(t)) x`(t) dt −
∫ t`+2 #

t`

e`(t) x`(t) dt

6

(
1

4
− η

)
‖x`‖2

2 + C ‖x`‖1 + E ‖x`‖∞.

On the other hand, in virtue of (2.10) we have

(2.11) ‖x`‖∞ 6 |x`(t`)| +
∫ t`+2 #

t`

|x′

`(t)| dt 6 B +
√

2 � ‖x′

`‖2.

Thus,

(2.12)

(
‖x′

`‖2 − E

√
�
2

)2

6

(
1

4
− η

)
‖x`‖2

2 +
√

2 � C ‖x`‖2 + E B +
�
2

E2.

Inserting x`(t) = v`(t) + B on " into (2.12), we obtain

(2.13) (‖v′

`‖2 − c)2 6

(
1

4
− η

)
‖v`‖2

2 + a‖v`‖2 + b,
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where a, b, c ∈ " do not depend on `. Since v`(t`) = v`(t` + 2 � ) = 0, by Scheeffer’s

inequality [15, p. 207] (see also [8, II.2]), we have ‖v`‖2
2 6 4 ‖v′`‖2

2 and hence (2.13)

reduces to

(2.14)

(‖v′`‖2 − c

‖v′`‖2

)2

6 1 − 4 η +
2 a

‖v′`‖2
+

b

‖v′`‖2
.

Now, (2.10) and (2.11) yield lim
`→∞

‖v′`‖2 = ∞ and, by virtue of (2.14), we have

1 = lim
`→∞

(
(‖v′`‖2 − c)

‖v′`‖2

)2

6 lim
`→∞

(
1 − 4 η +

2 a

‖v′`‖2
+

b

‖v′`‖2
2

)
= 1 − 4 η,

a contradiction. �

Let g ∈  (0,∞) fulfil (1.3), (2.1) and (2.2). Denote

(2.15) g0(x) = g(x) − k x for x ∈ (0,∞).

Then we have g0 ∈  (0,∞),

lim
x→0+

∫ 1

x

g0(s) ds = ∞(2.16)

and

lim inf
x→∞

g0(x)

x
> −1

4
.(2.17)

Furthermore, (2.2) and (2.16) imply

(2.18) inf
x∈(0,R]

g0(x) ∈ " for each R ∈ (0,∞)

and

(2.19) lim sup
x→0+

g0(x) = ∞.

Moreover, in view of (2.17) and (2.18), there exist η ∈ (0, 1
4 ) and C ∈ [0,∞) such

that

(2.20) g0(x) +

(
1

4
− η

)
x > −C for all x ∈ (0,∞).

Lemma 2.5. Assume (1.2), (1.3) and (2.2) and let (σ, %) be lower functions of

(1.1). Then min
t∈[0,2 # ]

σ(t) > 0.
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4 0356587 . In view of (2.15), (2.16) and (2.18), there are δ ∈ (0,∞) andM ∈ [0,∞)

such that

(2.21) lim
x→0+

∫ δ′

x

g0(s) ds = ∞ for all δ′ ∈ (0, δ)

and

(2.22) g0(x) > −M for all x ∈ (0, δ).

Let an arbitrary ε > 0 be given. Since in view of Definition 1.2 we have σ(t) > 0

a.e. on [0, 2 � ], we can choose t0 ∈ (0, ε] in such a way that σ(t0) > 0. Put

t∗ = sup{t ∈ [t0, 2 � ] : σ(s) > 0 on [t0, t]}.

Notice that σ(t∗) = 0 holds whenever t∗ < 2 � .
Assume σ(t∗) = 0. Then there is t′ ∈ (t0, t

∗) such that

(2.23) σ(t) ∈ [0, δ) for all t ∈ [t′, t∗].

As % ∈ ' ( [0, 2 � ], we have r = ‖%‖∞ + 1 < ∞ and, due to Definition 1.2, we get that

%′(t) (%(t) − r) 6 g0(σ(t)) (%(t) − r) + e(t) (%(t) − r)

is satisfied for a.e. t ∈ [0, 2 � ]. Let tn ∈ (t′, t∗) be an increasing sequence such that

lim
n→∞

tn = t∗. Then

(2.24) lim
n→∞

σ(tn) = σ(t∗) = 0

and

∫ tn

t′
%′(t) (%(t) − r) dt 6

∫ tn

t′
g0(σ(t)) (%(t) − r) dt +

∫ tn

t′
e(t) (%(t) − r) dt

= −
∫ σ(t′)

σ(tn)

g0(s) ds − r

∫ tn

t′
g0(σ(t)) dt +

∫ tn

t′
e(t) (%(t) − r) dt.

In virtue of (2.22) and (2.23), for any n ∈ 9 we have

−
∫ tn

t′
g0(σ(t)) dt 6 2 � M and

∣∣∣∣
∫ tn

t′
e(t) (%(t) − r) dt

∣∣∣∣ 6 2 r ‖e‖1.
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Moreover, by (2.21) and (2.24),

lim
n→∞

∫ σ(t′)

σ(tn)

g0(s) ds = ∞.

This implies that

lim
n→∞

∫ tn

t′
%′(t) (%(t) − r) dt = −∞.

On the other hand,

∣∣∣∣
∫ tn

t′
%′(t) (%(t) − r) dt

∣∣∣∣ 6 2r

∫ 2 #
0

|%′(t)| dt 6 2r‖%‖ :<; < ∞,

a contradiction. Thus, t∗ = 2 � and σ(t∗) = σ(2 � ) > 0. In particular, we have

shown that σ(t) is positive on any interval (ε, 2 � ], ε > 0, and, as we also have

σ(0) = σ(2 � ) > 0 in view of the periodicity condition, this completes the proof. �

2.6. )=*%,>.?032 . If g satisfies the assumptions of Lemma 2.5 and, in addition,

g(x) > k on (0,∞), e(t) = (k − 1) sin t on [0, 2 � ], σ(t) = 1 + sin t and %(t) = cos t on

[0, 2 � ], then (σ, %) are upper functions of (1.1) and min
t∈[0,2 # ]

σ(t) = 0. This shows that

for upper functions the analogue of Lemma 2.5 does not hold.

2.7. Definition. Let g ∈  (0,∞) and k ∈ " . Then, for given E, A ∈ (0,∞) and

B ∈ [A,∞), we denote by E(E, A, B) the set of functions e ∈ ! [0, 2 � ] with ‖e‖1 6 E

and such that (1.1) has lower functions (σ1, %1) and upper functions (σ2, %2) fulfilling

(2.25) A 6 σi(t) 6 B on [0, 2 � ] for i = 1, 2.

2.8. )=*-,/.?032 . Let g ∈  (0,∞) satisfy (1.3), (2.1) and (2.2) and let g0 be given

by (2.15). Then g0 fulfils (2.16)–(2.20) and we can choose a sequence {εn}∞n=1 ⊂ (0, 1)

with the properties

(2.26)

{
εn+1 < εn and g0(εn) > 0 for all n ∈ 9 ,

lim
n→∞

εn = 0 and lim
n→∞

g0(εn) = ∞

and choose C > 0, η ∈ (0, 1
4 ) and the functions gn,m ∈  ( " ), n, m ∈ 9 , in such a way

that the relations

gn,m(x) = g0(x) for x ∈ [εn, m],(2.27)

gn,m(x) x +

(
1

4
− η

)
x2

> −C |x| for all x ∈ "(2.28)
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and

g∗,m := inf
x∈ @
`∈ A

g`,m(x) ∈ "(2.29)

are valid for all n, m ∈ 9 . Indeed, for given n, m ∈ 9 , we can put e.g.

gn,m(x) =





0 if x 6 0,

g0(εn)
x

εn

if x ∈ [0, εn],

g0(x) if x ∈ [εn, m],

g0(m) if x > m.

In what follows, having a sequence {εn}∞n=1 which satisfies (2.27) and (2.28) and func-

tions gn,m, n, m ∈ 9 , satisfying (2.27)–(2.29), we will often work with the auxiliary
regular boundary value problems

(2.30) x′′ = gn,m(x) + e(t), x(0) = x(2 � ), x′(0) = x′(2 � ).

2.9. Proposition. Suppose that g ∈  (0,∞), k ∈ " , E, A ∈ (0,∞), B ∈ [A,∞)

and let (1.3), (2.1), (2.2) be satisfied. Then there are R ∈ (B,∞), ε∗ ∈ (0,∞) and

K ∈ [0,∞) such that for each e ∈ E(E, A, B) the problem (1.1) has a solution u

satisfying

(2.31) ε∗ 6 u(t) 6 R on [0, 2 � ] and ‖u′‖∞ 6 K.

Moreover, if (σ1, %1) and (σ2, %2) are respectively lower and upper functions of (1.1)

with the property (2.25), then

A 6 min{σ1(tu), σ2(tu)} 6 u(tu) 6 max{σ1(tu), σ2(tu)} 6 B(2.32)

for some tu ∈ [0, 2 � ].

4 0356587 . Let e ∈ E(E, A, B) be given and let εn and gn,m, n, m ∈ 9 , be chosen
in such a way that (2.26)–(2.29) are true and

(2.33) εn < A for all n ∈ 9 .

By Lemma 2.4, there is R ∈ 9 ∩ (B,∞) such that the estimate (2.7) is valid for

all n, m ∈ 9 , for each e ∈ ! [0, 2 � ] with ‖e‖1 6 E and for each solution x of (2.30)

fulfilling (2.8) with J = " . For n ∈ 9 , consider the problems

(2.34) x′′ = gn,R(x) + e(t), x(0) = x(2 � ), x′(0) = x′(2 � ).
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In view of (2.29), we have gn,R(x) > g∗,R ∈ " for all x ∈ " , i.e.

gn,R(x) + e(t) > g∗,R + e(t) for a.e. t ∈ [0, 2 � ] and all x ∈ " and n ∈ 9 .

Let e ∈ E(E, A, B) and let (σ1, %1) and (σ2, %2) be respectively lower and upper

functions of (1.1) fulfilling (2.25). In view of (2.33), (σ1, %1) and (σ2, %2) are lower

and upper functions of (2.34) for all n ∈ 9 , respectively. Thus, by Theorem 1.4
and Lemma 1.8, the problem (2.34) has for any n ∈ 9 a solution xn such that

‖x′

n‖∞ 6 E + 2 � |g∗,R| = K and

A 6 min{σ1(tn), σ2(tn)} 6 xn(tn) 6 max{σ1(tn), σ2(tn)} 6 B

for some tn ∈ [0, 2 � ]. In particular, we have

max
t∈[0,2 # ]

xn(t) ∈ [A, R] for all n ∈ 9 .

Now, let ε∗ > 0 correspond to E, K, A and R by Lemma 2.2 and let n0 ∈ 9 be such
that εn0

< ε∗. Then, since gn0,R(s) = g0(s) on [εn0
, R], Lemma 2.2 yields

min
t∈[0,2 # ]

xn0
(t) > ε∗ > εn0

.

Therefore, u = xn0
is a solution to (1.1) with the properties (2.31) and (2.32). �

4 0356587�587CB�DE*-5803*-, 2.1. In virtue of (2.3) and of Lemma 2.5 we can find A ∈
(0,∞) and B ∈ [A,∞) such that e ∈ E(‖e‖1, A, B), and the assertion of Theorem 2.1

follows from Proposition 2.9.

The next result shows that the assumption of the existence of upper functions for

(1.1) in Theorem 2.1 can be replaced by (2.35).

2.10. Corollary. Suppose that (1.2), (1.3), (2.1), (2.2) and

(2.35) inf ess
t∈[0,2 # ]

e(t) > −∞

are satisfied. Further, let (σ1, %1) be lower functions of (1.1). Then the problem (1.1)

has a positive solution u such that

(2.36) u(tu) 6 σ1(tu) for some tu ∈ [0, 2 � ].

4 0356587 . By (1.3) we have lim sup
x→0+

g(x) = ∞ and, according to (2.35) and

Lemma 2.5, there is ε∗ ∈ (0, min
t∈[0,2 # ]

σ1(t)) such that

g(ε∗) − k ε∗ + e(t) > g(ε∗) − k ε∗ + inf ess
t∈[0,2 # ]

e(t) > 0 for a.e. t ∈ [0, 2 � ].
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Therefore the functions (σ2(t), %2(t)) = (ε∗, 0) on [0, 2 � ] are upper functions of (1.1)
and Theorem 2.1 together with Proposition 2.9 yield the existence of a positive

solution u which fulfils (2.36). �

2.11. )+*-,/.1032 . Assume (1.2), while (1.3) need not be satisfied, and let u be

a solution of (1.1). Further, suppose that g has a singularity at 0, which means that

g is unbounded at 0, i.e.

(2.37) lim sup
x→0+

g(x) = ∞.

Definition 1.1 requires any solution u of (1.1) to be positive a.e. on [0, 2 � ]. In
particular, u can touch the singularity point x = 0. Nevertheless, it can vanish only

on the set of zero measure. Corollary 2.3 says that this is impossible provided the

singularity is strong, i.e. if (1.3) is satisfied. Therefore, the problem (1.1) can possess

nonnegative solutions with at least one zero only if lim
x→0+

∫ 1

x
g(s) ds ∈ " . If this

together with (2.37) hold, the singularity x = 0 of g is called weak.

3. Existence criteria

The main result of this section is Theorem 3.3 which gives a more effective exis-

tence criterion without the a priori assumption of the existence of lower and upper

functions. For its proof the following lemmas will be helpful.

Lemma 3.1. Suppose (1.7). Furthermore, let (d, A0] ⊂ J and

(3.1) h(x) + e > 0 for all x ∈ (d, A0].

Then max
t∈[0,2 # ]

x(t) > A0 holds for each solution x of (1.6) such that x(t) ∈ J for all

t ∈ [0, 2 � ] and min
t∈[0,2 # ]

x(t) > d.

4 0356587 . Let x be a solution of (1.6) and let min
t∈[0,2 # ]

x(t) > d and x(t) ∈J for all

t ∈ [0, 2 � ]. Integrating the equality

x′′(t) = h(x(t)) + e(t) a.e. on [0, 2 � ]

over [0, 2 � ] and taking into account the periodicity of x, we get

(3.2)

∫ 2 #
0

h(x(t)) dt + 2 � e = 0.

58



On the other hand, if x(t) 6 A0 held for all t ∈ [0, 2 � ], then using (3.1) we would
have ∫ 2 #

0

h(x(t)) dt + 2 � e > 0,

a contradiction to (3.2). �

Lemma 3.2. Let A ∈ (0,∞), B ∈ [A,∞), E ∈ [0,∞), k ∈ " and let g ∈  (0,∞)

fulfil (1.3), (2.1) and (2.2). Then there are R, ε∗ ∈ (0,∞) and K ∈ [0,∞) such that

for each e ∈ ! [0, 2 � ] with ‖e‖1 6 E and each solution u of (1.1) satisfying

(3.3) u(tu) ∈ [A, B] for some tu ∈ [0, 2 � ],

the estimates (2.31) are true.

4 0356587 . Let g0 be given by (2.15). Then g0 ∈  (0,∞) fulfils (2.20) with some

η ∈ (0, 1
4 ) and C ∈ [0,∞). By Lemma 2.4, there is R ∈ (B,∞) such that the estimate

u(t) 6 R on [0, 2 � ] is true for each e ∈ ! [0, 2 � ] with ‖e‖1 6 E and each solution

u of (1.1) fulfilling (3.3). Furthermore, as g∗ := infx∈(0,R] g0(x) ∈ " in view of
(2.18), according to Corollary 2.3 and Lemma 1.8 we have u(t) > 0 on [0, 2 � ] and
‖u′‖∞ 6 E + 2 � |g∗| for all such solutions. Thus, if we put K = E + 2 � |g∗|, we can
complete the proof by means of Lemma 2.2. �

Theorem 3.3. Suppose that (1.2), (1.3), (2.1) and

(3.4) lim inf
x→0+

g(x) > −e

are satisfied. Further, let A ∈ (0,∞) be such that

(3.5) g(x) − k x 6 −e for all x ∈ [A, B],

where B fulfils (1.9). Then the problem (1.1) has a positive solution u such that

(3.6) u(tu) 6 B for some tu ∈ [0, 2 � ].

4 0356587 . (i) First, assume that (3.5) is satisfied with the strict inequality, i.e.

(3.7) g(x) − k x + e < 0 for all x ∈ [A, B].

For n ∈ 9 define

(3.8) en(t) = max{e(t),−n} a.e. on [0, 2 � ]
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and consider the problems

(3.9) x′′ + k x = g(x) + en(t), x(0) = x(2 � ), x′(0) = x′(2 � ).

There is E ∈ (0,∞) such that ‖en‖1 6 E for all n ∈ 9 . Furthermore,

(3.10) inf ess
t∈[0,2 # ]

en(t) > −n for all n ∈ 9 and lim
n→∞

en = e.

In virtue of (3.4), we can choose A0 ∈ (0, A
2 ) in such a way that g(x) − k x + en >

g(x)− k x + e > 0 holds for all x ∈ (0, A0] and all n ∈ 9 . By Lemma 3.1 this implies

(3.11) max
t∈[0,2 # ]

x(t) > A0 for all n ∈ 9 and all positive solutions x of (3.9).

Let {εn}∞n=1 ⊂ (0, A0) be an arbitrary decreasing sequence which tends to 0 as

n → ∞ and satisfies the relation g(εn) − k εn > n for any n ∈ 9 . In particular,

with respect to (3.10), the functions (σ2,n(t), %2,n(t)) = (εn, 0) are upper functions

for (3.9). Furthermore, in view of (3.7), (3.8) and (1.9) we can find n0 ∈ 9 and
ν ∈ (0, A

2 ) such that g(x)− k x + en 6 0 and ‖en − en‖1 6 3

# (B −A + ν) hold for all

x ∈ [A − ν, B] and all n > n0. By Proposition 1.5, this means that, for each n > n0,

the problem (3.9) has lower functions (σ1,n, %1,n) such that σ1,n(t) ∈ [A − ν, B] for

all t ∈ [0, 2 � ].
To summarize, we have en ∈ E(E, εn, B) for all n > n0. Thus, due to (3.11),

Proposition 2.9 implies that for each n > n0 the problem (3.9) has a positive solution

xn such that

(3.12) xn(tn) ∈ [A0, B] for some tn ∈ [0, 2 � ].

Hence, we can use Lemma 3.2 with A = A0 to get that there are R, ε∗ ∈ (0,∞) and

K ∈ [0,∞) such that the relations ε∗ 6 xn(t) 6 R on [0, 2 � ] and ‖x′

n‖∞ 6 K hold

for each n > n0. This means that the set {g(xn(t)) − k xn(t) : t ∈ [0, 2 � ], n > n0}
is bounded and it follows that the sequence {xn}∞n=n0

is equibounded and equicon-

tinuous in  1 [0, 2 � ] and so, by the Arzelà-Ascoli Theorem, we can assume without
loss of generality that {xn}∞n=n0

converges in  1 [0, 2 � ] to a function u ∈  1 [0, 2 � ].
Consequently, for each t ∈ [0, 2 � ] we have

lim
n→∞

[
x′

n(t) − x′

n(0) + k

∫ t

0

xn(s) ds
]

= lim
n→∞

∫ t

0

(g(xn(s)) + en(s)) ds,

wherefrom, using the Lebesgue Dominated Convergence Theorem, we get

u′(t) − u′(0) + k

∫ t

0

u(s) ds =

∫ t

0

(g(u(s)) + e(s)) ds,
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which means that u ∈ $% 1[0, 2 � ] and u is a solution to (1.1). Moreover, due to (3.12)

we have (3.6).

(ii) It remains to get rid of the assumption (3.7). For n ∈ 9 , let us define

pn(t) = e(t) − 1

n
a.e. on [0, 2 � ].

For each n ∈ 9 and x ∈ [A, B] we have g(x)− k x + pn < 0. Further, in view of (3.4)

there are n0 ∈ 9 and A1 ∈ (0, A
2 ) such that

g(x) − k x + pn > 0 for all x ∈ (0, A1) and n > n0.

Thus, by the first part of the proof, we get a sequence {xn}∞n=n0
of solutions of the

problems

(3.13) x′′ + k x = g(x) + pn(t), x(0) = x(2 � ), x′(0) = x′(2 � ).

Since ‖pn‖1 6 E + 1 for n > n0, we get that the solutions xn of (3.13) satisfy

ε∗ 6 xn(t) 6 R on [0, 2 � ] and ‖x′

n‖∞ 6 K, where the constants R, K and ε∗ are

now determined for A1, A, B and E + 1 instead of A0, A, B, E. Therefore, we can

use the limiting process as in the first part of this proof and get the desired solution

u(t) = lim
n→∞

xn(t) to (1.1) with the property (3.6). �

The proof of the next theorem can be done as the previous one with the only

difference that instead of Proposition 1.5 we will use Proposition 1.6.

3.4. Theorem. Suppose that k 6= n2 for all n ∈ 9 and replace condition (3.5) in

Theorem 3.3 by

(3.14) g(x) + e 6 k
A + B

2
for all x ∈ [A, B],

where A > 0 and B fulfil (1.13) and (1.14). Then the problem (1.1) has a positive

solution.
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4. Multiplicity results

In this section we present sufficient conditions for the existence of at least two

positive solutions of (1.1). First, we will give some necessary auxiliary assertions.

4.1. Lemma. Assume (1.2) and let A ∈ (0,∞) and B ∈ (A,∞) be such that

(3.7) and (1.9) are satisfied. Then there are γ : [0, 2 � ] × [0, 2 � ] 7→ " continuous on
[0, 2 � ] × [0, 2 � ] and such that if we put

(4.1) σ1(t) = A +
�
6
‖e − e‖1 +

∫ 2 #
0

γ(t, s) (e(s) − e) ds for t ∈ [0, 2 � ],

then σ1 ∈ $% [0, 2 � ], σ1(t) ∈ [A, B] for all t ∈ [0, 2 � ] and (σ1, σ
′

1) are lower functions

of (1.1).

Furthermore, there is ν0 > 0 such that for each ν ∈ [−ν0, ν0] the functions (σ1 +

ν, σ′

1) are lower functions of (1.1).

4 0356587 . Due to (3.7), we can find ν0 > 0 in such a way that

(4.2) g(x) − k x + e 6 0 for x ∈ [A − ν0, B + ν0].

Let γ0(t, s) be the Green function of the problem x′′ = 0, x(0) = x(2 � ) = 0 and let

σ0(t) =

∫ 2 #
0

γ(t, s) (e(t) − e) ds for t ∈ [0, 2 � ],

where

γ(t, s) = γ0(t, s) −
1

2 �

∫ 2 #
0

γ0(τ, s) dτ for t, s ∈ [0, 2 � ].(4.3)

It is easy to verify that σ0 ∈ $% 1[0, 2 � ],

(4.4) σ′′

0 (t) = e(t) − e a.e. on [0, 2 � ], σ0(0) = σ0(2 � ), σ′

0(0) = σ′

0(2 � ).

Moreover, σ0 = 0 and therefore by the proof of [12, Proposition 2.4] we have

(4.5) ‖σ0‖∞ 6
�
6
‖e − e‖1.

In particular, we have

(4.6) σ1(t) = σ0(t) + A +
�
6
‖e− e‖1 on [0, 2 � ].
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Now, choose an arbitrary ν ∈ [−ν0, ν0] and put

(4.7) σ(t) = σ1(t) + ν for t ∈ [0, 2 � ].

Obviously, σ and σ1 ∈ $% 1[0, 2 � ] fulfil (4.4) if they are inserted there instead of σ0.

Furthermore, (4.5)–(4.7) imply that

σ1(t) ∈ [A, B] and σ(t) ∈ [A − ν0, B + ν0] for all t ∈ [0, 2 � ].

Finally, in view of (4.2) we have k σ(t) − e > g(σ(t)) on [0, 2 � ] and, consequently,

σ′′(t) + k σ(t) = e(t) − e + k σ(t) > e(t) + g(σ(t)) for a.e. t ∈ [0, 2 � ],

i.e. (σ1 + ν, σ′

1) are lower functions of (1.1) for each ν ∈ [−ν0, ν0]. �

4.2. Proposition. Suppose (1.2) and let (σ1, %1) and (σ2, %2) be respectively

lower and upper functions of (1.1) such that σ1(t) 6 σ2(t) on [0, 2 � ]. Then there is
a solution u of (1.1) such that

(4.8) σ1(t) 6 u(t) 6 σ2(t) on [0, 2 � ].

4 0356587 . Choose an arbitrary f ∈ Car([0, 2 � ] × " ) in such a way that f(t, x) =

g(x)−k x+e(t) for a.e. t ∈ [0, 2 � ] and all x ∈ [σ1(t), σ2(t)]. Then Theorem 1.4 ensures

the existence of a solution u of (1.4) with J = " satisfying the estimates (4.8), which
means that u is a solution to (1.1), as well. �

4.3. Theorem. Suppose that (1.2), (1.3), (2.2) and (2.35) hold and let A ∈ (0,∞)

and B ∈ (A,∞) be such that (3.7) and (1.9) are true. Further, assume that there

are upper functions (σ2, %2) of (1.1) such that σ2(t) > B for all t ∈ [0, 2 � ]. Then the
problem (1.1) has at least two positive solutions.

4 0356587 . First, notice that by Lemma 4.1 and Proposition 4.2 the problem (1.1)
has lower functions (σ1, σ

′

1) and a solution u for which (4.8) is true. Moreover, we

have σ1(t) ∈ [A, B] on [0, 2 � ] and there is ν ∈ (0, A) such that (σ1 − ν, σ′

1) are also

lower functions of (1.1).

Consider the function g0 from (2.15). By (2.19) and (2.35) there is A0 ∈ (0, A−ν)

such that

(4.9) g0(A0) + e(t) > g0(A0) + inf ess
t∈[0,2 # ]

e(t) > 0 for a.e. t ∈ [0, 2 � ].
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This means that (A0, 0) are upper functions of (1.1). Furthermore, for a.e. t ∈ [0, 2 � ],
put R = ‖σ2‖∞ and

(4.10) m(t) = e(t) + min{0, inf
s∈(0,R]

g0(s)}.

Then, in view of (2.18), m ∈ ! [0, 2 � ]. Denote

K = ‖m‖1 and K∗ = K ‖e‖1 +

∫ R

A0

|g0(s)| ds.

Due to (2.16), we can choose ε∗ ∈ (0, A0) in such a way that g0(ε
∗) > 0 and

(4.11)

∫ A0

ε∗

g0(s) ds > K∗.

Now, for a.e. t ∈ [0, 2 � ], define

(4.12) f(t, x) = e(t) +






g̃0(x) if x 6 σ2(t),

g̃0(σ2(t)) +
x − σ2(t)

x − σ2(t) + 1
if x > σ2(t),

where

(4.13) g̃0(x) =





0 if x < 0,

g0(ε
∗)

x

ε∗
if x ∈ [0, ε∗),

g0(x) if x > ε∗.

Consider the problem (1.4) with J = " . We have f ∈ Car([0, 2 � ] × " ). Further,
since ε∗ < A0 and (4.9) are valid, the couple (A0, 0) defines upper functions of (1.4).

Similarly, since σ1(t) − ν < σ2(t) on [0, 2 � ], the functions (σ1 − ν, σ′

1) are lower

functions for (1.4). Finally, (4.10) and (4.12) imply

f(t, x) > m(t) for all x ∈ " and a.e. t ∈ [0, 2 � ].

Therefore, we can apply Theorem 1.4 to obtain a solution v of (1.4) such that

(4.14) A0 6 v(tv) 6 σ1(tv) − ν for some tv ∈ [0, 2 � ].

Relations (4.8) and (4.14) ensure that u and v are different. It remains to prove that

v is a solution to (1.1). To this aim we need to show that the inequalities

(4.15) ε∗ 6 v(t) 6 σ2(t) on [0, 2 � ]
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are valid. First, let us put z(t) = v(t) − σ2(t) for t ∈ [0, 2 � ] and suppose that
max

t∈[0,2 # ]
z(t) = z(τ1) > 0. Due to the periodic conditions we can assume that τ1 ∈

[0, 2 � ) and using the procedure from the proof of [11, Lemma 2.3] we can show that
there is δ > 0 such that z(τ + δ) > z(τ1), a contradiction. This means that

(4.16) v(t) 6 σ2(t) on [0, 2 � ]

and, in particular,

(4.17) max
t∈[0,2 # ]

v(t) = v(t1) ∈ [A0, R].

Now, assume that min
t∈[0,2 # ]

v(t) = v(t0) < ε∗. Due to (4.12) and (4.16), we have

v′′(t) = g̃0(v(t)) + e(t) a.e. on [0, 2 � ].

Therefore, using (4.11), (4.13), (4.17) and Lemmas 1.7 and 1.8 we obtain

K∗ <

∫ A0

ε∗

g0(s) ds 6

∫ A0

v(t0)

g̃0(s) ds 6 ‖e‖1 K +

∫ R

A0

|g0(s)| ds = K∗,

a contradiction. This proves that v(t0) > ε∗, wherefrom, by virtue of (4.16), the

relations (4.15) follow. �

4.4. Theorem. Theorem 4.3 remains valid if (3.4) is assumed instead of (2.2)

and (2.35).

4 0356587 . Due to Lemma 4.1, the functions (σ1, σ
′

1) with σ1 given by (4.1) are

lower functions of (1.1). Therefore, by Proposition 4.2, the problem (1.1) has a

solution u satisfying (4.8).

Let g0 and en, n ∈ 9 , be given by (2.15) and (3.8), respectively. Recall that the
sequence {en}∞n=1 is nonincreasing for a.e. t ∈ [0, 2 � ], the relations (3.10) are true
and

(4.18) lim
n→∞

‖en − e‖1 = 0.

Consequently, there is E ∈ [0,∞) such that ‖en‖1 6 E for all n ∈ 9 . Due to (3.4)

and (3.10) there is A0 ∈ (0, A
2 ) such that

(4.19) g0(x) + en > g0(x) + e > 0 for all x ∈ (0, A0] and n ∈ 9 .
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Choose a sequence {εn}∞n=1 ⊂ (0, A0) in such a way that (2.26) and

(4.20) g0(εn) > n for all n ∈ 9

are satisfied. Now, for n ∈ 9 and a.e. t ∈ [0, 2 � ], define

(4.21) fn(t, x) = en(t) +





g̃n(x) if x < σ2(t),

g0(σ2(t)) +
x − σ2(t)

x − σ2(t) + 1
if x > σ2(t)

and

(4.22) g̃n(x) =





|e| + 1 if x < 0,

g0(εn)
x

εn

+ (|e| + 1)
εn − x

εn

if x ∈ [0, εn),

g0(x) if x > εn

and consider the problems

(4.23) x′′ = fn(t, x), x(0) = x(2 � ), x′(0) = x′(2 � ).

We will show that for all n sufficiently large the problem (4.23) verifies the assump-

tions of Theorem 1.4. Indeed, put R = ‖σ2‖∞. Then

g∗ = min{|e| + 1, inf
x∈(0,R]

g0(x)} ∈ "

and fn(t, x) > en(t) + g∗ for all n ∈ 9 , x ∈ " and a.e. t ∈ [0, 2 � ]. Furthermore, from
(3.10) and (4.20) we get that fn(t, εn) > g0(εn) − n > 0 holds for a.e. t ∈ [0, 2 � ] and
each n ∈ 9 . This implies that (εn, 0) are upper functions of (4.23). Finally, in view

of (3.7), (3.10) and (4.18) there are n0 ∈ 9 and ν ∈ (0, A
2 ) such that the relations

g0(x) + en < 0 for all x ∈ [A − ν, B] and
�
3
‖en − en‖1 <

�
3
‖e − e‖1 +

ν

2

hold for all n > n0. Moreover, by (1.9) we have

(
B − ν

2

)
− (A − ν) = B − A +

ν

2
>
�
3
‖en − en‖1 for n > n0.

Thus, according to Lemma 4.1, for each n > n0 the functions (σ1,n, σ′

1,n), where

(4.24) σ1,n(t) = A +
�
6
‖en − en‖1 +

∫ 2 #
0

γ(t, s) (en(s) − en) ds − ν, t ∈ [0, 2 � ],
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are lower functions of the problem

x′′ = g0(x) + en(t), x(0) = x(2 � ), x′(0) = x′(2 � )

and

(4.25) σ1,n(t) ∈
[
A − ν, B − ν

2

]
for all t ∈ [0, 2 � ].

Since we have

εn <
A

2
< A − ν 6 B 6 σ2(t) for all t ∈ [0, 2 � ] and n > n0,

it is easy to see that the functions (σ1,n, σ′

1,n) are also lower functions of (4.23).

Thus, we can use Theorem 1.4 and Lemma 1.8 to show that for each n > n0 the

problem (4.23) has a solution xn such that

‖x′

n‖∞ 6 K = E + 2 � |g∗|(4.26)

and

εn 6 xn(tn) 6 σ1,n(tn) for some tn ∈ [0, 2 � ].(4.27)

Now, using the arguments from the proof of Theorem 4.3 (see the proof of (4.16)),

we can show that

(4.28) xn(t) 6 σ2(t) on [0, 2 � ].

With regard to (4.21) this means that for each n ∈ 9 the function xn is a solution of

x′′ = g̃n(x) + en(t), x(0) = x(2 � ), x′(0) = x′(2 � ).

Using (3.10), (4.19) and (4.22) we can verify that there is n1 > n0 such that

g̃n(x) + en > 0 for all x ∈ (−∞, A0] and all n > n1.

Therefore, by Lemma 3.1 we have

max
t∈[0,2 # ]

xn(t) > A0 for all n > n1

and Lemma 2.2 yields that there is ε∗ > 0 such that

(4.29) xn(t) > ε∗ for all t ∈ [0, 2 � ] and n > n1.
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In view of (4.26), (4.28) and (4.29), the sequence {xn}∞n=n1
is equibounded and

equicontinuous in  1 [0, 2 � ] and thus we can assume without loss of generality that it
converges in  1 [0, 2 � ] to some function v. With regard to (4.22), (4.28) and (4.29),

we have

ε∗ 6 v(t) 6 σ2(t) on [0, 2 � ].

Therefore v is a solution to (1.1).

It remains to show that v differs from u. First, notice that since ‖γ‖∞ =

sup
t,s∈[0,2 # ]

|γ(t, s)| < ∞, the relations (4.1), (4.18) and (4.24) yield

(4.30) lim
n→∞

‖σ1 − ν − σ1,n‖∞ 6 lim
n→∞

(‖γ‖∞ + #6 ) ‖e − en‖1 = 0.

Furthermore, we can choose a subsequence {tn`
}∞`=1 in {tn}∞n=1 in such a way that

lim
`→∞

tn`
= t∗ ∈ [0, 2 � ]. Therefore, in view of (4.30), (4.8) and (4.27) we have

v(t∗) = lim
`→∞

xn`
(tn`

) 6 lim
`→∞

σ1,n`
(tn`

) = σ1(t
∗) − ν < min

t∈[0,2 # ]
u(t),

which completes the proof of the theorem. �

4.5. )=*-,/.?032 . Notice that in contrast to Theorems 2.1 and 3.3, in Theorems 4.3
and 4.4 we do not need to assume (2.1).

In conclusion we will give two additional multiplicity results (cf. Theorem 4.7).

Their proofs can be done as those of Theorems 4.3 and 4.4, only instead of Lemma 4.1

we have to use its modification given below, which is related to Proposition 1.6.

4.6. Lemma. Assume (1.2). Let k 6= n2 for all n ∈ 9 and let A ∈ (0,∞) and

B ∈ (A,∞) be such that

(4.31) g(x) + e < k
A + B

2
for x ∈ [A, B],

(1.13) and (1.14) are true. Let

σ1(t) =
A + B

2
+

∫ 2 #
0

γ̃(t, s) (e(s) − e) ds for t ∈ [0, 2 � ],

where γ̃ is the Green function of the problem x′′ + k x = 0, x(0) = x(2 � ), x′(0) =

x′(2 � ).
Then σ1 ∈ $% 1[0, 2 � ], σ1(t) ∈ [A, B] for all t ∈ [0, 2 � ] and there is ν0 > 0 such

that for each ν ∈ [−ν0, ν0] the functions (σ1 + ν, σ′

1) are lower functions of (1.1).
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4 0356587 . Choose ν0 > 0 in such a way that

(4.32) g(x) − k ν + e 6 k
A + B

2
for x ∈ [A − ν0, B + ν0] and ν ∈ [−ν0, ν0].

By the proofs of [13, Theorems 3.1 and 3.2], the function

σ0(t) =

∫ 2 #
0

γ̃(t, s) (e(s) − e) ds, t ∈ [0, 2 � ],

possesses the following properties: σ0 ∈ $& 1[0, 2 � ], σ0 = 0,

σ′′

0 (t) + k σ0(t) = e(t) − e a.e. on [0, 2 � ], σ0(0) = σ0(2 � ), σ′

0(0) = σ′

0(2 � )

and ‖σ0‖∞ 6 Φ(k) ‖e − e‖1. In view of (1.13) we have

σ1(t) = A + Φ(k) ‖e − e‖1 + σ0(t) on [0, 2 � ].

Therefore σ1(t) ∈ [A, B] for all t ∈ [0, 2 � ] and it follows from (4.32) that (σ1 + ν, σ′

1)

are lower functions of (1.1) for each ν ∈ [−ν0, ν0]. �

4.7. Theorem. Suppose that k 6= n2 for all n ∈ 9 and replace conditions (3.7)

and (1.9) in Theorem 4.3 (Theorem 4.4) with (4.31), (1.13) and (1.14). Then the

problem (1.1) has at least two positive solutions.
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