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Časopis pro pěstování matematiky, roč. 104 (1979), Praha 

FREDHOLM-STIELTJES INTEGRAL EQUATIONS 
WITH LINEAR CONSTRAINTS: 

DUALITY THEORY AND GREEN'S FUNCTION 

MILAN TVRDY, Praha*) 

(Received February 16, 1977) 

This note is devoted to the duality theory for the system of equations 

(I) x(f) - x(0) - fds[P(f, s) - P(0, s)] x(s) = f(t) - f(0) on [0,1], 

(II) J V ( s ) ] x ( s ) = r , 

where an n-vector valued function x of bounded variation on [0,1] is sought. Results 
analogous to those of [4], [10], [11] and [14] are obtained under less restrictive 
hypotheses and in a considerably simpler way. Boundary value problems for 
Fredholm-Stieltjes integro-differential equations which are special cases of (I) have 
been treated recently in [5], [12] and [13]. 

1. PRELIMINARIES 

Given a real p x ^-matrix A = (a, j)iml p9 A* denotes its transpose and 

9 

\A\ = max £ \au\. 
*-*i j>I-*i 

R„ denotes the space of real column n-vectors (n x 1-matrices), R* is the space of 
real row n-vectors (1 x n-matrices), R% =- R* = R. The space of real p x q-matrices 
is denoted by L^Rq, Rp)9 L(Rn>

 Rn) = !*{£„). Generally, vectors are assumed to be 
column. Row vectors are written as transposes of column vectors. If a, b e JR, a < b, 
then [a, ft] denotes the closed interval a :g t ^ b9 (a, b) is its interior a < t < b 
and [a, b)9 (a, &] are the corresponding half-open intervals. 

*) Sponsored in part by the Italian Consiglio Nazionale delle Ricerche (G.N.A.F.A.) 
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BVn stands for the Banach space of functions x : [0,1] -+ Rn of bounded variation 
on [0,1] equipped with the norm ||x|BF = |x(0)| + var£ x. For P : [0, 1] x 
x [0,1] -» L(R„), v(P) denotes its Vitali two-dimensional variation on [0, 1] x 
x [0,1]. Recall that 

v(P) = SUP £ t \P(tt, Sj) - P(t^t, Sj) - P(th Sj.J + PiU-u Sj-t)\ 
í = l j -

where the supremum is taken over all net-type subdivisions a = {0 = t0 < tt < ... 
... < tp = 1, 0 = s0 < st < ... < sq = 1} of the interval [0, 1] x [0, 1]. If v(P) + 
+ varj P(% a) + var0 P(b, •) < oo for some fixed a, be [0, 1], then there is M < oo 
such that v(P) + var0 P(t, •) + varj P(-,s) + \P(t, s)\ g M < oo for all t, s e [0, 1] 
and P is called an SBV-kernel. 

All integrals used are the Perron-Stieltjes integrals or equivalently (since all the 
functions occurring are of bounded variation) the a- Young-Stieltjes integrals (cf. [3] 
and [7]). The list of properties of the Perron-Stieltjes integral may be found e.g. in 
[10] or [14]. Let us recall here only (for the proof see [8]) that if P is an SBV-kernel 
on [0, 1] x [0, 1], then for every x, y e BVn the functions 

u(t) = j \ [ P ( f , t)] X(T) and v*(s) = Pd[y*(r)] P(T, S) 

are of bounded variation on [0, 1]. Moreover, 

u(*+)= ( \ [ P ( * - K T ) ] X ( T ) and v*(s+) = fd[y*(T)]P(T,S + ) for t, s e [0,1) 

and 

u ( f - ) = PdT[P0-,T)]x(T) and v*(s-)= fd[y*(T)]P(T,s-) for f ,se(0,l] . 

Let X and Y be linear spaces over R. The set of all linear operators sf with values 
in y and defined for all x e X (s/ : X - Y) is denoted by L(K, y), L(K, X) = L(K). 
The identity operator xeX ~+ xeX is denoted by \ft For a linear operator sd e 
e L(X, Y), R(s/) denotes the range of s/ and N(s/) is the null space of s/. R(s/) and 
N(sf) are linear subspaces of Yand X, respectively. Let us denote a(s#) = dim N(^) 
and f}(s/) = dim Y\Ri^)y where Y\R(^} is the corresponding quotient space. It is 
known that if Y is a direct sum of R(s/) and Z c Y , then there is a one-to-one cor
respondence between ^ m ^ and Z (cf. [2] 111.20) and, in particular, fi(sf) = dim Z. 
If a(s/), $(s/) are not both infinite, then we define the index ind s/ of st e L(X, Y) 
by the relation ind s/ = fi(s/) — a(s/). 

Let X and X* be linear spaces over R and let 

xeX9 x + e I + ^ < x 5 x + ) 6 K 

be a bilinear form on X x X*. We say that X, X* form a dual pair (with respect 
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to the bilinear form <•, •> if 

<x, x+> = 0 for every xeX implies x+ = 0 e l + 

and 

<x, x+> = 0 for every x+ e X+ implies x = 0 e X . 

In [2] VI.40 the following important statement is proved: 

Theorem (Heuser). Let X, X+ be a dual pair of linear spaces with respect to the 
bilinear form <•, •> defined on X x X+ and let the operators s/ eL(X) and 
s/+ e UX+) be such that 

(1.1) <^x,x + > = <x,ja/+x+> for every xeX and x+eX+ 

and 

(1.2) ind s/ = ind s/+ = 0 . 

Then 

(1.3) a(s/) = a(s/+) = fi(s/) = p(s/+) < oo 

and, moreover, for given y eX and y+ eX+ 

s/x = y has a solution iff <y, x+> = 0 for any x+eN(s/+) 

and 

s/+x+ = y+ has a solution iff <x, y+> = 0 for any x e'N(s/) . 

Let us notice that if s/ e L(X) is compact, then JR(*/ — s/) is closed in X, 
<x(j? - s/) = j8(.y - J / ) < oo, i.e. ind (J - s/) = 0 (cf. [6] IV.3). 

If K is a Banach space and K* its dual space, then obviously X, K* form a dual 
pair. Let us give another example of a dual pair which is of importance for our pur
poses. 

In the following BV+ denotes the set of all functions z* : [0,1] -* Rn of bounded 
variation on [0,1], right-continuous on (0, 1) and such that z*(l) = 0. For xe BVn 

and z* e BV+ let us put 

(1.4) <x,z*>B K=£d[z*(0]x(t) . 

Then BVn, BV+ is a dual pair with respect to < •, • } B V . (For the proof of an analogous 
assertion see [8] Lemma 5.1.) When endowed with the norm z* e BV+ -+ ||**||BK+ = 
= |z*(0)| -F varj z*, the space BV+ becomes a Banach space and (1,4) defines 
a continuous bilinear form on BVn x BV+. 
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2. GENERALIZED FREDHOLM-STIELTJES INTEGRO-DIFF ERENTIAL OPERATOR 

Let P : [0,1] x [0, 1] -» L(Rn) be an SBV-kernel. Then 

(2.1) ^ :xeBF r t -£d 5 [P ( r , s ) ]x ( s ) 

defines a linear compact (or completely continuous) operator on BVn (cf. [8] Theorem 
3.1). 

2.1. Remark. Let R : [0,1] x [0,1] -> L(K„) be such that R(%s) is measurable 
on [0,1] for any s e [0,1], varj R(t, •) < oo for a.e. t e [0,1] and 

e:*€[0,l]->|R(*,0) | +var0R(r, •) 

is Lebesgue integrable on [0,1]. Let g : [0,1] -> Rn be Lebesgue integrable on 
[0,1]. Then integrating and making use of the Cameron-Martin formula for the 
change of the integration order in Stieltjes integrals ([l]) we transfer the Fredholm-
Stieltjes integro-differential equation for an absolutely continuous function 
x : [0,1] -> Rn 

(2.2) k(t) - Pds[R(f, s)] x(s) = g(t) a.e. on [0, 1] 

to the form (I), where 

(2.3) P(t, s) = J R(T, S) di and f(t) = g(x) dt for t, s e [0, 1] . 

It is easy to check that P(t, s) given by (2,3) is an SBV-kernel (cf. [10]). Obviously 
fe BVn. Thus the equation (2,2) may always be rewritten as an equation of the form 
(I) with an SBV-kernel P(t,s) and feBVn. Hence the operator J - £eL(BVn), 
where 

(2.4) M : x e BVn -» x(0) + £<**[*(*> *) ~ p(0> «)] *(s) e BVn 

may be called a generalized Fredholm-Stieltjes integro-differential operator. 

2.2. Remark. Evidently, the operator J e £(87,,) given by (2,4) is compact (Mx = 
= <j + &x, where 

u = x(0)-£d s [P(0,s)]x(s)єR л ) . 

Moreover, if we put 

(2 5\ Oít s\ - Í P ( ' ' S) ~ P ( ° ' S> f ° r '' S E f°» 1 ] ' S > ° ' 
VZ,Dj W . - J - j p ( í > 0 ) - P ( 0 , 0 ) - l for ř, se [0,1], s = 0, 
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then Q(t, s) is also an SBV-kernel and 

(2.6) J : x G BVn - £ds[Q(r, s)] x(s) e BVW . 

2.3. Theorem. I/ P : [0,1] x [0, 1] -* L(Rn) is an SBV-kernel and the operator 
£ e L(BVn) is given by (2,4), then 

(2.7) n = dim N(S - &) < oo , 

white dim N(*/ — 2) = n ijĝ  t/ie equation (I) has a solution x e BVnfor any fe BVn. 

Proof. Since ^ is compact, a(«/ - «#) = P(J - J) < oo. Obviously 

K(y- J )c=Z = {feBVn:f(0) = 0} . 
Hence 

a(J - £) = p(jf - J ) = dim flK"|z = n . 

Furthermore, a(</ — J) = n iff 

/?(./ - M) = dim " I * , - , , = dim fl^|z 

and the proof follows by means of the following lemma. 

2.4. Lemma. Given a linear space X and its linear subspaces M, N such that 
M <z N, then dim X\M = dim X\N < oo holds iff M = N. 

Proof. Let dim X|M = dim X\N = k < oo and let x e N \ M . Let Sy = £0) + N 
(j = 1,2,..., k) be a basis in X\N and let 

k 

ax + £ Ay$<» e M 
1=i 

for some real numbers a, A,- (j = 1, 2,. . . , k). Since axeN , this may happen only 
if A^(1) + A2£

(2) + ... + Akf
(x)eN, i.e. At = A2 = ... = A* = 0. Thus axeMand 

a = 0 since x £ M. This means that the classes x + M, §0 ) + M (j = 1, 2,. . . , k) 
are linearly independent in X\M and dim X\M = k + 1 > dim *|jv. This being con
tradictory to the assumption proves that M = N. 

2.5. Remark. By 2.3 there exists an n x k-matrix valued function X 
(k = dim N(J - M)) of bounded variation on [0,1] such that x € BVn satisfies 
x — £x = 0 iff x(t) = X(t) c on [0,1] for some c e Rk. Unfortunately, even if 
k = n, it need not be det X(t) 4= 0 on [0,1] as shown by the integro-differential 
equation 

i(t)~ 4 J x(s)ds = 0, 

for which X(t) = 1(1 - At). 
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3. DUALITY THEORY 

Throughout the section the following assumptions are kept: 

3.1. Assumptions, (i) P : [0,1] x [0, 1] -> L(Rn) is an SBV-kernel, feBV„, 
K : [0,1] -> L(R„9 Rm) is of bounded variation on [0, 1] and r e Rm. 

(ii) P(t9 •) is right-continuous on (0,1) and P(t> 1) = Ofor any t e [0,1], P(0, s) = 
= 0 for any s e [0,1], fC is right-continuous on (0,1) and K(l) = 0. 

3.2. Remark. For the investigation of the system (I), (II) the assumptions 3.1 (ii) 
do not cause any loss of generality. Any system (I), (II) fulfilling 3.1 (i) is equivalent 
to a system fulfilling also 3.1 (ii). 

Let' Q : [0,1] x [0,1] -> L(Rn) and SteL(BVn) be defined by (2,5) and (2,4), 
respectively. Furthermore, let us denote 

(3.1) X : x e BVn -+ Pd[K(s)] x(s) e Rm , 

ST :feBVn->f(t)-f(0)eBVn 

and 

(3.2) r:fyeBVu x ««-(d^xW*; x ««• 

3.3. Proposition. If xe BVn is a solution to (I), (II), then £ = I J is a solution to 

(3.3) ('--^-(T) 
/or any deJRm. J/xeBVn and there exists deRm such that { = . verifies (3,3) 
then x is a solution to (I), (II). ^ ' 

3.4. Proposition. Under the assumptions 3.1(i) the operator $" e L(BVn x Rm) 
defined by (2,4)> (3,1) and (3,2) is compact. 

Proof. Obviously, XeL(BVn,Rm) is bounded. As dimR(X) ;g m < OQ, this 
implies that Jf is even compact. Since 3, e L(BVM) is also compact (cf. 2.2), it is easy 
to see that S' is compact. 

Our wish is to establish the duality theory for the system (I), (II). Since BVn and 
BVn form a dual pair with respect to the bilinear form (1,4), BVn x Rm and BVn x 
x JR* form a dual pair with respect to the bilinear form 

(3,4) (^J є BV„ x Rи , (z*, A*) є BV; x R*m -> 

"* ( ( d ) ' (**' A * } ) = J Л Z * ( í ) ] X(í) + l'd Є * • 
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(Let us recall that the elements of BVn are row n-vector valued functions of bounded 
variation on [0, 1], right-continuous on (0. 1) and vanishing at 1.) 

Let us put 

(&z) (s) = f*d[z*(f)] Q(t, s) for z e BVn and s e [0, 1] . 

By virtue of the assumptions 3.1 on P(t, s) and the definition (2,5) of Q(t, s) we can 
easily verify that Q is an SBV-kernel, Q(t, •) is right-continuous on (0, 1) and Q(t, 1) = 
= 0 for every t e [0, 1]. Consequently (cf. [8] Lemma 3.1) 

(3.5) MyzeBV+ for any zeBVn. 

Moreover, by Lemma 2.2 of [8] we have 

(3.6) £ d [ . f (0] j\[Q(t, ,)] x(s) = J \ [ £d[z*(0] Q(t, s)] x(s) 

for every r e B V : and x e BV„. 
Let us put 

(3.7) ^+:(z*,X*)eBV„+ x R* ^ 

-> ( fd[-*(*)] Q(t, s) - X* K(s), X*\ . 

Since 

^+(z*,X*)(s) = ((^z)(s)- k*K(s),l*) on [0 ,1] , 

for each z e BVn and A 6 .Rm, it follows from 3.1 and (3,5) that 

(3.8) F+(z*,k*)eBV+ for all (z*, A*)eBV+ x R* . 

Besides, we have by (3,2), (3,4) and (3,6) 

(3.9) ( ( • - . r ) ( j ) , (* , ! • ) ) -

= Pd. [**(,) - Pd[x*(0] Q(t, s) + X* K(s)l x(s) + (A* - A*) d = 

= / ( J ) , (J - ^ + ) (**, A*)\ for all x e BV„, deRm, zeBV„ and Xe Rm 

As mentioned above, Q(t, s) is an SBV-kernel and hence using Theorem 3.2 of [8] 
it is easy to show that y+ e L(BV+ x K*) is compact. The operator 9~ being 
compact by 3.4, we have 

(3.10) , ind (J - &) = ind (./ - .T+) = 0 

and we may apply Heuser's Theorem. 
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3.5. Theorem. If the assumptions 3.1 are satisfied, then the system (I), (II) has 
a solution x e BVn iff 

(3.11) . |d[z*(5)] f(s) + A*r = 0 

for any z* e BVn and A* e K* fulfilling 

(3.12) z*(s) - J d[z*(*)] P(t, s) + A* K(s) = 0 on [0, 1] , z*(0) = 0 . 

Proof. By (3,8)-(3,10) the operators J - F and J - ZT+ fulfil the assumptions 
of Heuser's Theorem. Consequently the system (I), (II) has a solution in BVn iff 

Í: 

-*(0) if s = 0 
if s > 0 

d[z*(s)] (f(s) - f (0)) + A*r = 0 
lo 

holds for any z* e BV+ and A* e R* fulfilling the equation 

(3.13) z*(s) - I d[z*(()] Q(t, s) + A* K(s) = 0 on [0, 1] , 

i.e. (J - F+) (z*, k*) = 0. Given z* e BV +, it is 

(3.14) £d[z*(0] Q(t, s) = j <z*(0] P(t, s) - | Z * ( 1 ) " Z* 

Setting (3,14) into (3,13) we obtain 

(3.15) z*(s) - j d[z*(()] P(t, s) + X* K(s) = 0 on (0, 1] , 

- fd[z*(f)] P(t, 0) + X* K(0) = 0 . 

Since we assume P(0, s) = 0 on [0, 1], the value of each of the integrals 

d[z*(t)] P(t, s), s e [ 0 , l ] , 

does not depend on the value z*(0). The same holds obviously also for the integral 

V(<)](f(<)-f(o)). 

I 

Í 
Consequently (z*, A*) e BVn x #* is a solution to (3,12) iff (zj, A*) with z*(s) = 
= z*(s) on (0,1] and z*(0) = 0 is also its solution. Since 

£d[z*(0] f(0) = 0 

for all such z* and all f e BVn, the proof is complete. 
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3.6. Remark. P(f, •) and K being by 3.1 (ii) right-continuous on (0,1) for any 
t e [0,1], z is also right-continuous on (0, 1) for any couple (z, A) € BVn x Rm 

fulfilling (3,12). 
The following assertion is also a consequence of (3,8)—(3,10) and of Heuser's 

Theorem. 

3.7. Proposition. Let 31 hold and let h* e BV+. Then there exist z* e BV+ and 
A* G Rm such that 

(3.16) z^(s) - I'd[z*(f)] Q(t9 s) + A* K(s) = h*(s) on [0, 1] 

((J - iT+) (z*, A*) = (h*, 0)) iff 

^d[h*(r)]x(0 = O 

for every x e N(j£?) where 

(3.17) J? : x e BV„ - f X ~ * X ) e BV„ x Rm 

(cf. (2,4) and (3,1)). 

3.8. Theorem. Assume 3.1. Then k = dim N(jSf) < oo /or the operator 
$£ e L(BV„, BVM x &m) given by (3,17). Furthermore, the system (3,12) has exactly 
k+ = k + m — n linearly independent solutions in BV+ x JRm. 

Proof. By 2.3 we have fc = dim N(j&?) < co. Obviously dim N(J - $r) = k + m. 
Since (3,10), it is by Heuser's Theorem dimN(,/ - ST+) = dimN(.y - ^") = 
= fc + m. The set N+ of all solutions to (3,12) consists of all (z*, A*)eiV(/ - ^"+) 
for which z*(0) = 0. Hence fc+ = dimN+ = dimN(./ - 5"+) - n = fc + m - n . 
Recall that for (z*, A*) 6 N(J - /T+) the value z*(0) may be arbitrary. 

4. GREEN'S FUNCTION 

We continue the investigation of the system (I), (II). In addition to 3.1 we shall 
suppose that it possesses a unique solution in BVn for every feBVn and reROT. 
Obviously, this is possible only if the corresponding homogeneous equation 

J§?x = 0 e BVn x Rm 

(cf. (3,17)) possesses only the trivial solution, i.e. dim N(jSf) = 0. On the other hand, 

by 3.5 the system (I), (II) has a solution in BVn for any couple ( J e BVn x Rm iff 

the system (3,12) possesses in BV+ x Rm only the trivial solution. The following 
assertion is now a direct consequence of 3.8. 
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4.1. Proposition, Provided 3.1 holds, the system (I), (II) has a unique solution 
in BVnfor every fe BV„ and reRmiff 

(4Д) m = n and dim N(£ŕ) = 0. 

Let us suppose that (4,1) holds and let us try to express the solutions x e BVn of 
the systems (I), (II) in the form 

(4.2) x(t) = H(t) r + J\[G(f, s)] (f(s) - f(0)) , t e [0,1] , 

where H : [0,1] -» L(Rn) and G : [0,1] x [0, 1] -+ L(Rn) are such that 

(4.3) for every t e [0,1], the functions G(t, •) and H are of bounded variation on 
. [0, 1], right-continuous on (0,1) and G(t, 1) = 0, H(l) = 0. 

Clearly, the function (4,2) is for any feBVn and r e i ? m a solution of (I), (II) iff 

<p(t) = H(*)£d[K(s)] <p(s) + J \ [ G ( f , s)] ^ ( s ) - J \ [ Q ( s , *)] ?(*)) 

for every ^ e BVn and f e [0, 1], i.e. iff 

(4.4) J \ lG(t, s) - J\[G(<> *)] Q{°> s) + H(i) K(s) - A(t, s)1 <p(s) = 0 

for each >̂ e BVn and f e [0,1] , 

where 

(4,5) 

A(t,s) = 

[—I for 0 < í < 1 and 0 < s < t, 
0 for 0 < ř < 1 and ř ^ s ^ 1, 

-f for 0 = ř and 0 = s 
í foг 0 = í and 0 < s й 1, 

- I foг t = 1 and 0 = s < 1, 

0 foг f = 1 and s = 1. 

Provided (4,3) holds, (4,4) holds iff 

(4.6) C(t, s) - j \ [ G ( . , <r)] Q(?>') + H ( 0 K(°) " -*(* -») on [0,1] x [0,1] 

Our wish now is to find functions G(t, s) and H(t) fulfilling (4,3) and (4,6). 
Let us put 

(4.7) SC+ : («•, A*) € BVn
+ x J?J - (*•(-) - £d[z*( . ) ] Q(., 5) + 

+ A*K(5),z*(0))6BF„+ x l ? ; . 
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Since dim N(.£f) = 0, 3.7 implies that the equation (3.16) has a solution in 
BV+ x Rn for any h* e BV+. Under our assumptions the expressions 

**(*) - fd[z*(0] Q(t, s) + k* K(s) (z* e BVn
+

9 X* e R*) 

do not depend on the values z*(0) (cf. the proof of 3.5). This means that the system 

**(-*) - Pd[z*W] Q(*> s) + ** K( s) = h*(5)> ^ e [0, 1] , 

2*(0) = 5* 

has a solution (2*, A*) e BV+ x K* for every (h*, «*) e BV/ x R*, i.e. 

(4.8) K(jS?+) = BVn
+ x R* . 

Moreover, since the equations $£+(z*, A*) = 0eBVn
+ x jR* and (3,12) coincide, 

we have 

(4.9) dimN(j&?+) = 0 . 

Taking into account (4,8) and (4,9) we conclude from the Bounded Inverse Theorem 
([6] III.4.1) that the operator 5£+ possesses a bounded inverse (S£+)~~1 e L(BV+ x 
x R*). In particular, given a column A*(t, >)eBV+ (i = 1,2, ..., n) of A(f, •), 
there exists a unique couple (g*(*, •), h*(t)) e BV+ x Rn such that 

g*(t, s) - j\[ti(t, *)] Q(*> s) + fcf (0 K(s) = A*(t, s) on [0, 1] x [0, 1] , 

g*(t,0) = 0 on [0,1] , i = l ,2 , . . . , n . 

Moreover, there is M < 00 such that 

(4,10) ||g*(., oik + |*?W| = MK(*.01k = *-" 

for any * e [0,1] and i = 1, 2,..., n . 

This completes the proof of the following 

4.2. Theorem. 1/ 3.1 and (4,1) hold, then there exist functions 

G : [0,1] x [0,1] - L(Rn), H : [0, 1] -> L(R„) 

and a constant x < oo sticft tfta* 

||G(f, 0|k + |H(')| = * on [0,1], 

G(f, 0 is for any t e [0,1] right-continuous on (0,1), G(t, 0) = G(f, 1) = 0 on [0,1] 
and (4,6) is satisfied. 
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4.3. Theorem. Assume 3.1 and (4,1). Given feBVn and reRn, the unique solu
tion x of the system (I), (II) in BVn is given by (4,2) where G(t, s) and H(t) are defined 
by 4.2. 

5. GENERALIZED LINEAR DIFFERENTIAL EQUATIONS 

Of a special interest is the case 

(A(0) - A(t) for 0 = 5 < t S 1, 
(5.1) P(t, s) = <A(s + ) - A(t) for 0 < s < t = 1 , 

[ 0 for 0 = t g s = 1 , 

where -A : [0, 1] -> L(KW) is of bounded variation on [0, 1]. The integral equation 
(I) then reduces to the generalized linear differential equation 

(5.2) x(t) - x(0) - f d[A(s)] x(s) = f(t) - f(0) , t e [0, 1] . 

It is easy to verify that for any A : [0, 1] -> L(Rn) of bounded variation on [0, 1], 
the function P : [0, 1] x [0, 1] -• L(Rn) defined by (5,1) fulfils all the corresponding 
assumptions from 3.1. Moreover, for any z* e BVn with z*(0) = z*(l) = 0 we have 

£d[z*(í)]P(ř,s) = 

if s = 0 -

- I d[z*(í)] A(t) - z*(s) A(s+) , if 0 < s < 1 , 

if s = 1 . 

Thus the adjoint system (3.12) to (I), (II) reduces in the case (5,1) to the system for 
(z*,A*)e£Vn

+ xR*m 

(5.3) z*(s) + f d[z*(f)] A(t) + z*(s) A(s+) + A* K(s) = 0 on [0, 1] , 

z*(0) = z*(l) = 0 . 

Furthermore, in the previous section we have proved the existence of Green's 
function for the boundary value problem (5,2), (II) if m = n and dim N(j£?) = 0 
for the corresponding operator if : BVn -» BVn x Rn. 

The equation (5,3) resembles the generalized linear differential equation (5,2). 
However, in general its basic theory is not available directly from the basic theory 
of equations of the form (5,2). In [9] the problems (5,2), (II) are dealt with in detail. 
As a proper adjoint the system of equations for (z*, A*) e BVn x R* 

(5.4) z*(S) + pd[z*(0] -4(0 -F z*(s) A(s) + A* K(s) = 0 on [0, 1] , 

z*(0) = z*(l) = 0 
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is derived provided det(/ - A"-4(f)) 4= 0 for t e(0,1] and det(f + A+_4(f)) 4= 0 
for t e [0,1). Under these assumptions also usual basic results for the equation (5,4) 
(as the existence and uniqueness of a solution, fundamental matrix, variation-of-
constants formula) have been derived. In the same paper it was shown that the systems 
(5,3) and (5,4) are equivalent in a certain sense. 
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