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Abstract

In this paper we continue our research from [14] on continuous dependence
on a parameter k of solutions to linear integral equations of the form

x(t) = x̃k +
∫ t

a
d[Ak] x + fk(t)− fk(a) , t∈ [a, b ], k∈N,

where −∞<a < b<∞, X is a Banach space, L(X) is the Banach space of linear
bounded operators on X, x̃k ∈X, Ak : [a, b ]→L(X) have bounded variations on
[a, b ], fk : [a, b ]→X are regulated on [a, b ]. The integrals are understood as the
abstract Kurzweil-Stieltjes integral and the studied equations are usually called
generalized linear differential equations (in the sense of J. Kurzweil, cf. [8] or
[9]).

In particular, we are interested in the situation when the variations varba Ak

need not be uniformly bounded. Our main goal here is the extension of Theorem
4.2 from [14] to the nonhomogeneous case. Applications to second order systems
and to dynamic equations on time scales are included as well.
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1 Introduction

In the theory of differential equations it is always desirable to ensure that their solutions
depend continuously on the input data. In other words to ensure that small changes of
the input data causes also small changes of the corresponding solutions. For ordinary
differential equations, in some sense a final result on the continuous dependence was
delivered by J. Kurzweil and Z. Vorel in their paper [10] from 1957. In fact, it was a
response to the averaging method introduced few years before by M. Krasnoselskij and
S.G. Krein [7]. The extension of the averaging method and the problem of the contin-
uous dependence of solutions on input data were the main motivations for J. Kurzweil
to introduce his notion of generalized differential equations in [8].

By generalized linear differential equations we understand linear integral equations
of the form

x(t) = x̃ +

∫ t

a

d[A] x + f(t)− f(a) , (1.1)

where −∞<a< b <∞, X is a Banach space, L(X) is the Banach space of linear
bounded operators on X, x̃∈X, A: [a, b ]→L(X) has bounded variation on [a, b ],
f : [a, b ]→X is regulated on [a, b ] and the integrals are understood in the Kurzweil-
Stieltjes sense. By a solution of (1.1) we understand a function x : [a, b ]→X such that∫ b

a
d[A] x exists and (1.1) is true for all t∈ [a, b ].
For X =Rm, such equations are special cases of equations introduced in 1957 by

J. Kurzweil (see [8]) in connection with the advanced study of continuous dependence
properties of ordinary differential equations (see also [10]). Linear equations of the
form (1.1) have been in the finite dimensional case thoroughly treated by Š. Schwabik,
M. Tvrdý and M. Ashordia (see e.g. [17], [21] and [1]).

Basic theory of the abstract Kurzweil-Stieltjes integral (called also abstract Perron-
Stieltjes or simply gauge-Stieltjes integral) and generalized linear differential equations
in a general Banach space has been established by Š. Schwabik in a series of papers
[18]–[20] written between 1996 and 2000. Some of the needed complements have been
added in our paper [13].

Taking into account the closing remark in [19], we can see that the following basic
existence result is a particular case of [19, Proposition 2.10].

1.1. Proposition. Let A: [a, b ]→L(X) have a bounded variation on [a, b ]. Then, equa-
tion (1.1) possesses a unique solution x on [a, b ] for every x̃∈X and every function
f : [a, b ]→X regulated on [a, b ] if and only if

[
IX −∆−A(t)

]−1 ∈L(X) for all t ∈ (a, b ] , (1.2)

where IX stands for the identity operator on X. In such a case x is regulated on [a, b ],
x− f has a bounded variation on [a, b ] and

‖x(t)‖X ≤ cA (‖x̃‖X + 2 ‖f‖∞) exp (cA var t
a A), t ∈ [a, b ] , (1.3)
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where 0 <cA:= sup
t∈ (a,b ]

∥∥[IX −∆−A(t)]−1
∥∥

L(X)
<∞.

Primarily we are concerned with the continuous dependence of solutions of gener-
alized linear differential equations on a parameter. In particular, we assume that the
given equation (1.1) has a unique solution x for each f regulated on [a, b ] and each
x̃∈X and we consider a sequence of equations depending on a parameter k ∈N

xk(t) = x̃k +

∫ t

a

d[Ak] xk + fk(t)− fk(a) , (1.4)

where Ak: [a, b ]→L(X) have bounded variation on [a, b ], fk: [a, b ]→X are regulated
on [a, b ] and x̃k ∈X for k ∈N. We are looking for conditions ensuring that equation
(1.4) has a unique solution xk for each k large enough and the sequence {xk} tends
uniformly on [a, b ] to x, i.e.

lim
n→∞

‖xk− x‖∞ = 0 . (1.5)

In [14] we proved the following two theorems. The former one deals with the case
that the variations of Ak are uniformly bounded.

1.2. Proposition. [14, Theorem 3.4]. Let A, Ak: [a, b ]→L(X) have bounded variation
on [a, b ], f, fk: [a, b ]→X be regulated on [a, b ] and x̃, x̃k ∈X for k ∈N. Furthermore,
assume (1.2),

α∗ := sup
k∈N

(
varb

a Ak

)
<∞ , (1.6)

lim
k→∞

‖Ak−A‖∞ = 0 , (1.7)

lim
k→∞

‖fk− f‖∞ = 0 , (1.8)

lim
k→∞

‖x̃k− x̃‖X = 0 . (1.9)

Then equation (1.1) has a unique solution x on [a, b ]. Furthermore, for each k ∈ N
sufficiently large there is a unique solution xk on [a, b ] to equation (1.4) and (1.5)
holds.

The second result from [14] concerns the situation when variations of Ak (1.6) need
not be uniformly bounded and the equations (1.1) and (1.4) reduce to homogeneous
equations.

1.3. Proposition. [14, Theorem 4.2]. Let A, Ak: [a, b ]→L(X) have bounded variation
on [a, b ] and let x̃, x̃n ∈X for k ∈N. Furthermore, assume (1.2), (1.9) and

lim
k→∞

(
1 + varb

a Ak

) ‖Ak−A‖∞ = 0 . (1.10)
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Then the equation

x(t) = x̃ +

∫ t

a

d[A] x , t ∈ [a, b ] (1.11)

has a unique solution x on [a, b ]. Moreover, for each k ∈N sufficiently large, the equa-
tion

xk(t) = x̃k +

∫ t

a

d[Ak] xk (1.12)

has a unique solution xk on [a, b ] and (1.5) holds.

Let us recall the following observation.

1.4. Lemma. Let A, Ak: [a, b ]→L(X) have bounded variation on [a, b ] and let (1.10)
be satisfied. Then (1.7) is true, as well.

Proof follows from the obvious inequality

‖Ak−A‖∞ ≤ (
1 + varb

a Ak

) ‖Ak−A‖∞ for all k ∈N .

The only known result (cf. [14, Corollary 4.4]) concerning nonhomogeneous equa-
tions (1.1), (1.4) and the case when (1.6) is not satisfied requires that X is a finite
dimensional space. The aim of this paper is to fill this gap.

For more detailed list of related references, see [14].

2 Preliminaries

Throughout these notes X is a Banach space and L(X) is the Banach space of bounded
linear operators on X. By ‖ · ‖X we denote the norm in X. Similarly, ‖ · ‖L(X) denotes
the usual operator norm in L(X).

Assume that −∞<a <b <∞ and [a, b ] denotes the corresponding closed interval.
A set D = {α0, α1, . . . , αν(D)} ⊂ [a, b ] with ν(D)∈N is said to be a division of [a, b ] if
a = α0 <α1 < . . . < αν(D) = b . The set of all divisions of [a, b ] is denoted by D[a, b ].

A function f : [a, b ]→X is called a finite step function on [a, b ] if there exists
a division D = {α0, α1, . . . , αν(D)} of [a, b ] such that f is constant on every open interval
(αj−1, αj), j = 1, 2, . . . , ν(D).

For an arbitrary function f : [a, b ]→X we set ‖f‖∞ = supt∈ [a,b ] ‖f(t)‖X and

varb
a f = sup

D∈D[a,b ]

ν(D)∑
j=1

‖f(αj)−f(αj−1)‖X

is the variation of f over [a, b ]. If varb
a f <∞, we say that f is a function of bounded

variation on [a, b ]. BV ([a, b ], X) denotes the Banach space of functions f : [a, b ]→X
of bounded variation on [a, b ] equipped with the norm ‖f‖BV = ‖f(a)‖X + varb

a f.
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The function f : [a, b ] → X is called regulated on [a, b ] if for each t∈ [a, b) there
is f(t+) ∈ X such that lim

s→t+
‖f(s)− f(t+)‖X = 0 and for each t∈ (a, b ] there is

f(t−)∈X such that lim
s→t−

‖f(s)− f(t−)‖X = 0 . By G([a, b ], X) we denote the Ba-

nach space of regulated functions f : [a, b ]→X equipped with the norm ‖f‖∞. For
t∈ [a, b), s∈ (a, b ] we put ∆+f(t)=f(t+)−f(t) and ∆−f(s)=f(s)−f(s−). Recall that
BV ([a, b ], X)⊂G([a, b ], X) cf. e.g. [19, 1.5].

In what follows, by an integral we mean the Kurzweil-Stieltjes integral. Let us
recall its definition. As usual, a partition of [a, b ] is a tagged system, i.e., a cou-
ple P = (D, ξ) where D = {α0, α1, . . . , αν(D)}∈D[a, b ], ξ = (ξ1, . . . , ξν(D))∈ [a, b ]ν(D)

and αj−1≤ ξj ≤αj holds for j = 1, 2, . . . , ν(D) . Furthermore, any positive function
δ : [a, b ]→(0,∞) is called a gauge on [a, b ]. Given a gauge δ on [a, b ], the partition
P is called δ-fine if [αj−1, αj]⊂ (ξj − δ(ξj), ξj + δ(ξj)) holds for all j = 1, 2, . . . , ν(D).
We remark that for an arbitrary gauge δ on [a, b ] there always exists a δ-fine partition
of [a, b ]. It is stated by the Cousin lemma (see e.g. [17, Lemma 1.4]).

For given functions F : [a, b ] → L(X) and g : [a, b ] → X and a partition P = (D, ξ)
of [a, b ], where D = {α0, α1, . . . , αν(D)}, ξ = {ξ1, . . . , ξν(D)}, we define

S(dF, g, P ) =

ν(D)∑
j=1

[F (αj)−F (αj−1)] g(ξj) .

We say that J ∈X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of g with

respect to F on [a, b ] and denote I =

∫ b

a

d[F ] g if for every ε> 0 there exists a gauge

δ on [a, b ] such that
∥∥∥S(dF, g, P )− J

∥∥∥
X

< ε for all δ-fine partitions P of [a, b ] .

Analogously, we define the integral

∫ b

a

F d[g] using sums of the form

S(F, dg, P ) =

ν(D)∑
j=1

F (ξj) [g(αj)− g(αj−1)] .

Some basic estimates for the KS-integrals are summarized in the following propo-
sition. For the proofs, see [14, Proposition 2.1] and [13, Lemma 2.2].

2.1 . Proposition. Let F : [a, b ] → L(X) and g : [a, b ] → X.

(i) If F ∈BV ([a, b ], L(X)) and g ∈G([a, b ], X), then
∫ b

a
d[F ] g exists and

∥∥∥
∫ b

a

d[F ] g
∥∥∥

X
≤ (varb

a F ) ‖g‖∞ .
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(ii) If F ∈G([a, b ], L(X)) and g ∈BV ([a, b ], X), then
∫ b

a
d[F ] g exists and

∥∥∥
∫ b

a

d[F ] g
∥∥∥

X
≤ 2 ‖F‖∞ ‖g‖BV .

For more details concerning the abstract KS-integration and further references, see
[18]–[20], [3] and [13].

3 Main result

Our main result is based on the following lemma which is an analogue of the assertion
formulated for ODEs by Kiguradze in [6, Lemma 2.5]. Its variant was used also in the
study of FDEs by Hakl, Lomtatidze and Stavrolaukis in [5, Lemma 3.5].

3.1 . Lemma. Let A, Ak ∈ BV ([a, b ], L(X)) for k ∈N and assume that (1.2) and
(1.10) hold.

Then there exist r∗ > 0 and k0 ∈N such that

‖y‖∞ ≤ r∗
(
‖y(a)‖X +

(
1 + varb

a Ak

)
sup

t∈[a,b ]

∥∥∥y(t)− y(a)−
∫ t

a

d[Ak] y
∥∥∥

X

)

for all y ∈G([a, b ], X) and k≥ k0 .





(3.1)

Proof. Assume that (3.1) is not true, i.e. assume that for each n∈N there are kn ∈N
and yn ∈G([a, b ], X) such that

‖yn‖∞ > n

(
‖yn(a)‖X +

(
1 + varb

a Akn

)
sup

t∈[a,b ]

∥∥∥yn(t)− yn(a)−
∫ t

a

d[Akn ] yn

∥∥∥
X

)
. (3.2)

We will prove that (3.2) leads to a contradiction. To this aim, first, rewrite inequality
(3.2) as

1

n
> ‖un(a)‖X +

(
1 + varb

a Akn

)
sup

t∈ [a,b ]

∥∥∥un(t)−un(a)−
∫ t

a

d[Akn ] un

∥∥∥
X

(3.3)

where

un(t) =
yn(t)

‖yn‖∞ for t∈ [a, b ] and n∈N . (3.4)

Then, by (3.3) and (3.4) we can immediately see that ‖un(a)‖X< 1
n

for all n∈N. Hence,

lim
n→∞

‖un(a)‖X = 0. (3.5)
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Now, denote

vn(t) = un(t)− un(a)−
∫ t

a

d[Akn ] un for t∈ [a, b ] and n∈N (3.6)

and

zn(t) = un(t)− vn(t) for t∈ [a, b ] and n∈N. (3.7)

By (3.3) we have

‖vn‖∞ =
1

‖yn‖∞
(

sup
t∈[a,b ]

∥∥∥yn(t)− yn(a)−
∫ t

a

d[Akn ] yn

∥∥∥
X

)

<
1

n (1 + varb
a Akn)

≤ 1

n
for n∈N,





(3.8)

and, in particular,

lim
n→∞

‖vn‖∞ = 0. (3.9)

Moreover, the equalities (3.6) and (3.7) yield

zn(t) = un(a) +

∫ t

a

d[Akn ] un for t∈ [a, b ] and n∈N.

Consequently,

zn ∈BV ([a, b ], X), zn(a) = un(a) and ‖zn‖BV ≤ 1 + varb
a Akn for n∈N . (3.10)

Now, let n∈N be fixed. We have

zn(t) = zn(a) +

∫ t

a

d[Akn ] zn +

∫ t

a

d[Akn ] vn

= zn(a) +

∫ t

a

d[A] zn +

∫ t

a

d[Akn−A] zn +

∫ t

a

d[Akn ] vn for t∈ [a, b ] ,

i.e.

zn(t) = zn(a) +

∫ t

a

d[A] zn + hn(t) for t∈ [a, b ] , (3.11)

where

hn(t) =

∫ t

a

d[Akn −A] zn +

∫ t

a

d[Akn ] vn for t∈ [a, b ] . (3.12)

We claim that

lim
n→∞

‖hn‖∞ = 0 (3.13)
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Indeed, by (3.10) and Proposition 2.1 (ii) we have

sup
t∈[a,b ]

∥∥∥
∫ t

a

d[Akn −A] zn

∥∥∥
X
≤ 2 ‖Akn−A‖∞ ‖zn‖BV ≤ 2 ‖Akn−A‖∞

(
1 + varb

a Akn

)
,

wherefrom

lim
n→∞

sup
t∈[a,b ]

∥∥∥
∫ t

a

d[Akn −A] zn

∥∥∥
X

= 0 (3.14)

follows due to (1.10). Moreover, using Proposition 2.1 (i) and (3.8), we get

sup
t∈[a,b ]

∥∥∥
∫ t

a

dAknvn

∥∥∥
∞
≤ (

varb
a Akn

) ‖vn‖∞ ≤ 1

n

varb
a Akn

(1 + varb
a Akn)

≤ 1

n

and, hence,

lim
n→∞

sup
t∈[a,b ]

∥∥∥
∫ t

a

dAkn vn

∥∥∥
X

= 0 . (3.15)

Now, (3.13) follows immediately from (3.14) and (3.15).
Finally, having in mind Proposition 1.1 (cf.(1.3)) and relations (3.11), (3.5) and

(3.13), we conclude that

lim
n→∞

‖zn‖∞ ≤ lim
n→∞

cA

(‖zn(a)‖X + 2 ‖hn‖∞
)
exp

(
cA varb

aA
)

= 0,

i.e.
lim

n→∞
‖zn‖∞ = 0 . (3.16)

This, together with (3.7) and (3.9), implies that lim
n→∞

‖un‖∞ = 0, which is impossible

as ‖un‖∞ = 1 for all n∈N. The assertion of the lemma is true.

3.2. Theorem. Let A, Ak ∈ BV ([a, b ], L(X)), f ∈BV ([a, b ], X), fk ∈G([a, b ], X) and
x̃, x̃k ∈X for k ∈N. Assume (1.2), (1.9), (1.10),

lim
k→∞

(
1 + varb

a Ak

)(
‖fk− f‖∞

)
= 0 . (3.17)

Then (1.1) has a unique solution x∈BV ([a, b ], X) on [a, b ]. Moreover, for each k ∈N
sufficiently large, the equation (1.4) has a unique solution xk ∈G([a, b ], X) on [a, b ]
and (1.5) is true.

Proof . First, recall that, by Lemma 1.4 our assumption (1.10) implies that (1.7) is true, as
well. Therefore, by [14, Lemma 4.2], there is k0 ∈ N such that

[
IX −∆−Ak(t)

]−1 ∈L(X) for all t ∈ (a, b ] and k ≥ k0
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and equation (1.4) has a unique solution xk ∈G([a, b ], X) for each k≥ k0 (cf. Proposition 1.1).
By Lemma 3.1 we may choose k0 ∈ N and r∗ ∈ (0,∞) in such way that (3.1) holds.

Put uk =xk−x for k≥ k0. Then uk(a) = x̃k− x̃ and

uk(t)−
∫ t

a
d[Ak] uk − (x̃k− x̃) =

∫ t

a
d[Ak−A] x + (fk(t)− f(t))− (fk(a)− f(a))

for t∈ [a, b ] and k≥ k0. Using (3.1) we deduce that the inequality

‖uk‖∞ ≤ r∗
(
‖x̃k− x̃‖X +

(
1+ varb

a Ak

)(
2 ‖Ak−A‖∞ ‖x‖BV +2 ‖fk− f‖∞

))

holds for all k≥ k0. Thus, due to (1.9), (1.10) and (3.17), we have lim
k→∞

‖uk‖∞=0, wherefrom

(1.5) immediately follows. The proof of the theorem has been completed. ¤

3.3. Remark. The proof of Theorem 3.2 could be substantially simplified and also extended
to the case f ∈ G([a, b ], X) if the following assertion was true:

Let A, Ak ∈BV ([a, b ], L(X)) for k∈N and

lim
k→∞

(
1+varb

a Ak

)
‖Ak−A‖∞ = 0. (3.18)

Then

lim
k→∞

(
sup

t∈ [a,b ]

∥∥∥
∫ t

a
d[Ak] f−

∫ t

a
d[A] f

∥∥∥
X

)
= 0 (3.19)

holds for each f ∈G([a, b ], X).
Unfortunately, this is in general not true even in the scalar case as shown by the following

example that was communicated to us by Ivo Vrkoč.

3.4. Example. Let [a, b] = [0, 1]. For k∈N put 1

nk = [k 3/2] + 1, τm,k =
1

2nk−m
if m∈{0, 1, . . . , nk} ,

a0,k =
2nk

k
(−1)nk , b0,k =

1
k

(−1)nk−1,

am,k =
2nk−m+1

k
(−1)nk−m, bm,k =

3
k

(−1)nk−m+1 if m∈{1, 2, . . . , nk−1}

and define

Ak(t) =





0 if t ∈ [0, τ0,k] ,

am,k t+ bm,k if t ∈ [τm,k, τm+1,k] and m∈{0, 1, . . . , nk−1} ,
(3.20)

and
1[x] stands, as usual, for the integer part of the nonnegative real number x
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A(t) = 0 for t∈ [0, 1] .

It is easy to verify that

var10 Ak ≤ 1
k

+
2 (nk−1)

k
≤ 1

k
+ 2

√
k < ∞ ,

and
(
1 +var10 Ak

) ‖Ak−A‖∞ ≤
(

1+
2nk−1

k

)
1
k
≤ 1

k
+

2√
k

+
1
k2

for all k∈N. In particular, (3.18) is true. However, if

f(t) =





(−1)n

4
√

n
if t∈ (2−n, 2−(n−1)] for some n∈N,

0 if t =0 ,

(3.21)

then f is regulated, var10 f =∞ and (3.19) is not valid since

∫ 1

0
d[Ak] f ≥ 2

k

nk−1∑

m=1

1
4
√

m
>

2
k

∫ nk

1

1
4
√

t
dt =

8
3 k

(
4
√

(nk)3− 1
)
, (3.22)

where the right hand side evidently tends to ∞ for k→∞.

Moreover, the functions (3.20) and (3.21) provide us with the argument explaining that
the condition f ∈BV ([a, b ], X) in Theorem 3.2 can not be extended to f ∈G([a, b ], X). In-
deed, consider the equations

x(t) =
∫ t

0
d[A] x + f(t), t∈ [0, 1], (3.23)

and

xk(t) =
∫ t

0
d[Ak]xk + fk(t), t∈ [0, 1], k ∈ N, (3.24)

where fk(t)= f(t) for t∈ [0, 1] and k∈N. Obviously, x= f is a solution to (3.23) on [0, 1] and,
for any k∈N, equation (3.24) possesses a solution xk on [0, 1]. Furthermore, conditions (1.10)
and (3.17) are satisfied. However, as we will see, xk does not converge to x.

Let k∈N be fixed. It is not difficult to verify that the solution to (3.24) on [0, 1] is given
by

xk(t) =





f(t) if t ∈ [0, τ0,k] ,

cm,k exp(am,k t) if t ∈ (τm,k, τm+1,k] and m∈{0, 1, . . . , nk−1} ,

where
c0,k = f(τ1,k) exp(−a0,k τ0,k) = f(τ1,k) exp

(1
k

(−1)nk+1
)

and

cm,k = cm−1,k exp
(
(am−1,k−am,k) τm,k

)
+

(
f(τm+1,k)− f(τm,k)

)
exp(−am,k τm,k)
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for m =1, . . . , nk−1.

Since
(a0,k− a1,k) τ1,k =

4
k

(−1)nk and a1,k τ1,k = −2
k

(−1)nk ,

we have
c1,k = c0,k exp

(4
k

(−1)nk

)
+

(
f(τ2,k)− f(τ1,k)

)
exp

(2
k

(−1)nk

)
.

Similarly, for m =2, 3, . . . , nk−1 we have

(am−1,k− am,k) τm,k =
6
k

(−1)nk−m+1 and τm,k am,k =
2
k

(−1)nk−m ,

and hence

cm,k = cm−1,k exp
(6

k
(−1)nk−m+1

)
+

(
f(τm+1,k)− f(τm,k)

)
exp

(2
k

(−1)nk−m+1
)

.

From these formulas we can deduce that

cm,k = exp
(2

k
(−1)nk+1

)(
c0,k +

m+1∑

j=2

(−1)j+1 f(τj,k)
)

+ exp
(4

k
(−1)nk+1

) m∑

j=1

(−1)j f(τj,k)

if m is even, while for m odd and m> 1 we get

cm,k = exp
(4

k
(−1)nk

) (
c0,k +

m∑

j=2

(−1)j+1 f(τj,k)
)

+ exp
(2

k
(−1)nk

) m+1∑

j=1

(−1)j f(τj,k) .

In particular, xk(1)= cnk−1,k exp(−4/k) for k ∈ N. Using the above relations and the defini-
tion of f , we get

cnk−1,k = exp
(4

k

)(
c 0,k +

nk−1∑

j=2

(−1)j+1 (−1)nk−j+1

4
√

nk−j+1

)
+ exp

(2
k

) nk∑

j=1

(−1)j (−1)nk−j+1

4
√

nk−j+1

= exp
(4

k

)(
c0,k +

nk−1∑

m=2

1
4
√

m

)
− exp

(2
k

) nk∑

m=1

1
4
√

m

= exp
(2

k

)(
c 0,k exp

(2
k

)
−1

)
+exp

(2
k

)(
exp

(2
k

)
−1

)nk−1∑

m=2

1
4
√

m
− exp

(2
k

) 1
4
√

nk

if nk is even, and

cnk−1,k = exp
(2

k

)(
c0,k−

nk−1∑

m=1

1
4
√

m

)
+ exp

(4
k

) nk∑

m=2

1
4
√

m

= exp
(2

k

)(
c 0,k− 1

)
+ exp

(2
k

)(
exp

(2
k

)
−1

) nk−1∑

m=2

1
4
√

m
+exp

(4
k

) 1
4
√

nk

if nk is odd.
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Clearly, lim
k→∞

c0,k =0,

lim
k→∞

exp
(2

k

)(
c 0,k exp

(2
k

)
− 1

)
= lim

k→∞
exp

(2
k

)(
c 0,k− 1

)
= −1,

and

lim
k→∞

exp
(2

k

) 1
4
√

nk
= lim

k→∞
exp

(4
k

) 1
4
√

nk
= 0 .

On the other hand, like in (3.22), we have

exp
(
2/k

)(
exp

(
2/k

)−1
)nk−1∑

m=2

1
4
√

m
= exp

(
2/k

) exp
(
2/k

)− 1
2/k

2
k

nk−1∑

m=2

1
4
√

m

> exp
(
2/k

) exp
(
2/k

)− 1
2/k

2
k

∫ nk

2

1
4
√

t
dt

= exp
(
2/k

) exp
(
2/k

)− 1
2/k

8
3 k

(
4
√

(nk)3− 4
√

23
)
,

where the right-hand side tends to ∞ when k→∞. Consequently, the sequence xk(1) cannot
have a finite limit for k→∞.

3.5. Remark. Reasonable examples of sequences {fk}⊂G([a, b ], X) that tend to a function
f of bounded variation are provided e.g. by sequences of the form fk = gk +hk, where
{gk}⊂BV ([a, b ], X) tends to f ∈BV ([a, b ], X) and {hk}⊂G([a, b ], X) tends to 0.

3.6. Remark. For F : [a, b ]→L(X) and D = {α0, α1, . . . , αm}∈D[a, b ], define

V b
a (F, D) = sup

{∥∥
m∑

j=1

[F (αj)− F (αj−1)] yj

∥∥
X

: yj ∈X, ‖yj‖X ≤ 1, j =1, 2, . . . , m
}

and
SVb

a(F ) = sup{V b
a (F, D);D∈D[a, b ]} .

Then SVb
a(F ) is said to be the semi-variation of F on [a, b ] (cf. e.g. [4]). 2 It is clear

that if F ∈BV ([a, b ], L(X)) then F has bounded semi-variation on [a, b ] while the reversed
implication is not true in general (cf. [22, Theorem 2], [12]). By [18] and [13], the Kurzweil-

Stieltjes integral
∫ b

a
d[A] x is well defined when both functions, A and x, are regulated and A

has bounded semi-variation. Therefore, the study of generalized linear differential equations
has a good sense also when A is regulated and has bounded semi-variation instead of having

2Sometimes it is called also the B-variation of F on [a, b ] (with respect to the bilinear triple
B = (L(X), X,X), cf. e.g. [18]).
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A∈BV ([a, b ], X), cf. [19] and [20]. However, the possible extension of Theorem 3.1 to such
a case remains open.

Analogously to operator valued functions, the semi-variation of a function f : [a, b ]→X
could be defined using

V b
a (f, D) = sup

{∥∥
m∑

j=1

Fj [f(αj)− f(αj−1)]
∥∥

X
: Fj ∈L(X), ‖Fj‖L(X)≤ 1, j =1, 2, . . . , m

}
.

However, it may be shown (cf. [12]) that, in this case, f has a bounded semi-variation if and
only f ∈BV ([a, b ], X). Therefore, the possible replacement of the condition f ∈BV ([a, b ], X)
in Theorem 3.1 by the requirement that f has a bounded semi-variation is not interesting.

4 Some applications

Second order measure equations.
Let Y be a Banach space, ỹ, z̃ ∈ Y , P, Q∈BV ([a, b ], L(Y )) and g, h ∈ BV ([a, b ], Y ).

Consider the following system of generalized linear differential equations

y(t) = ỹ +
∫ t

a
d[P ] z + g(t)− g(a),

z(t) = z̃ +
∫ t

a
d[Q] y + h(t)− h(a),

t ∈ [a, b ].





(4.1)

Put X = Y × Y and ‖(y, z)‖X = ‖y‖Y + ‖z‖Y for (y, z) ∈ X and define functions
A : [a, b ] → L(X) and f : [a, b ] → X by

A(t)(y, z)=
(
P (t) z, Q(t) y

) ∈ X and f(t)= (g(t), h(t))∈X for y, z ∈ Y and t∈ [a, b ]. (4.2)

Clearly,

‖A(t)‖L(X) = ‖P (t)‖L(Y ) + ‖Q(t)‖L(Y ) for t ∈ [a, b ], and varb
aA ≤ varb

aP +varb
aQ

and system (4.1) can be reformulated as equation (1.1), where x̃ = (ỹ, z̃) and x = (y, z) is
a function with values in X. One can verify that condition (1.2) is satisfied whenever one of
the following conditions is true

[IY −∆−Q(t)∆−P (t)]−1 ∈ L(Y ) for t ∈ (a, b], (4.3)

[IY −∆−P (t)∆−Q(t)]−1 ∈ L(Y ) for t ∈ (a, b], (4.4)

where IY stands for the identity operator on Y.

Indeed, assume e.g. that (4.3) holds and let [IX −∆−A(t)]x=0 for some x =(y, z) ∈ X
and t ∈ (a, b ]. Then

y−∆−P (t) z = 0 and z−∆−Q(t) y = 0 ,



14

i.e.
y =∆−P (t) z and [IY −∆−Q(t)∆−P (t)] z = 0.

By (4.3) the latter equality can happen only if z =0. Consequently y = 0, and hence x=0, as
well. Similarly, we would show that [IX −∆−A(t)]x = 0 implies x=0 also in the case that
(4.4) is satisfied. This shows that the operator IX −∆−A(t) is injective.

To prove its surjectivity, assume first (4.3) and let (u, v) ∈ X be given. Put

z = ([IY −∆−Q(t)∆−P (t)]−1) (v + ∆−Q(t) u) and y = u+∆−P (t) z.

Then, y −∆−P (t)z = u and

z −∆−Q(t) y = z −∆−Q(t)∆−P (t) z −∆−Q(t) u

= [IY −∆−Q(t)∆−P (t)] z −∆−Q(t) u = v

that is, [IX −∆−A(t)]x = (u, v) for x = (y, z). Similarly, we can show that for each (u, v) ∈ X
there is x ∈ X such that [IX −∆−A(t)]x=(u, v). The operator IX −∆−A(t) is surjective. To
summarize, according to the Banach theorem, the operator IX −∆−A(t) possesses a bounded
[IX −∆−A(t)]−1.

Now, consider the systems

yk(t) = ỹk +
∫ t

a
d[Pk] zk + gk(t)− gk(a),

zk(t) = z̃k +
∫ t

a
d[Qk] yk + hk(t)− hk(a),

t ∈ [a, b ], k ∈ N.





(4.5)

where ỹk, z̃k ∈ Y, Pk, Qk ∈ BV ([a, b ], L(Y )), gk, hk ∈ G([a, b ], Y ) and k ∈ N. Assume that
(4.3) or (4.4) is true and

lim
k→∞

‖ỹk − ỹ‖Y = 0, lim
k→∞

‖z̃k − z̃‖Y = 0, (4.6)

lim
k→∞

(
1 + varb

aPk + varb
aQk

)(‖Pk − P‖∞ + ‖Qk −Q‖∞
)

= 0 (4.7)

and
lim

k→∞
(
1 + varb

aPk + varb
aQk

)(‖gk − g‖∞ + ‖hk − h‖∞
)

= 0 . (4.8)

Define Ak : [a, b ] → L(X) and fk : [a, b ] → X for k ∈ N like we defined A, f in (4.2) (however
replace P, Q, g, and h by Pk, Qk, gk and hk, respectively). It is easy to see that then
the assumptions of Theorem 3.2 are satisfied. Therefore, we can state the following assertion.

4.1 . Corollary. Assume that (4.3) or (4.4) holds and that (4.6)–(4.8) are satisfied. Then
system (4.1) has a unique solution (y, z)∈BV ([a, b ], Y ×Y ) on [a, b ]. Moreover, for each
k∈N sufficiently large, the system (4.5) has a unique solution (yk, zk)∈G([a, b ], Y ×Y ) on
[a, b ] and

lim
k→∞

‖yk− y‖∞ + ‖zk− z‖∞ = 0 .
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In [11], Meng and Zhang investigated continuous dependence on a parameter k for second-
order linear measure differential equations of the form

dy• + d[µk(t)] y = 0, t ∈ [0, 1], y(0) = ỹ, y•(0) = z̃, k ∈ N , (4.9)

where µk are normalized measures on [0, 1] (generated by functions of bounded variation on
[0, 1] and right-continuous in (0, 1)), ỹ, z̃ ∈ R and y• stands for the generalized right-derivative
of y. The main result of [11] is Theorem 1.1 which states that the weak* convergence µk → µ
implies the uniform convergence yk ⇒ y of the corresponding solutions, the weak* convergence
y•k → y• and the ending velocity convergence y•k(1) → y•(1).

Notice that our systems (4.5) reduce to (4.9) when [a, b ] = [0, 1], X =R, Pk(t)= t and
Qk(t)= µk(t) for t ∈ [0, 1] and both gk and hk are constant ([11, Definition 3.1]). Similarly,
if, in addition, P (t)= t and Q(t)= µ(t) for t ∈ [0, 1] and both g and h are constant, then
system (4.1) reduces to the second-order linear measure differential equation of the form

dy• + d[µ(t)] y = 0, t ∈ [0, 1], y(0) = ỹ, y•(0) = z̃, k ∈ N , (4.10)

where µ is a normalized measure on [0, 1] and ỹ, z̃ ∈ R. Obviously, both existence conditions
(4.3) and (4.4) are now satisfied. In view of this, assuming that µ and µk have a bounded
variation on [0, 1] and

lim
k→∞

(1 + var10µk)‖µk − µ‖∞ = 0,

it follows from our Corollary 4.1

lim
k→∞

(‖yk − y‖∞ + ‖y•k − y•‖∞) = 0

holds for the corresponding solutions of (4.9) and (4.10).
Thus, in comparison with Theorem 1.1 in [11], our convergence assumptions are partially

stronger. The reason is that our result includes also the uniform convergence of the sequence
{y•k}. On the other hand, the weak* convergence which appears in [11] is equivalent to the
uniform boundedness of the variations var10 µk which is not required in our case.3

Linear dynamic equations on time scales.
Let us recall some basics of the theory of dynamic equations on time scales. A nonempty

closed subset T of R is called time scale. For given a, b ∈ T, we put [a, b]T = [a, b]∩T. For
t ∈ T, we define

ρ(t) := sup [a, t)∩T and σ(t) := inf (t, b]∩T .

The point t ∈ T is said to be right-dense if σ(t)= t, while it is left-dense if ρ(t)= t. A
function f : [a, b ]T→Rm is rd-continuous in [a, b ]T if f is continuous at every right-dense
point of [a, b ]T and there exists f(t−) for every left-dense point t ∈ [a, b ]T (see e.g.[2]).

Let us consider the linear dynamic equation

y∆(t) = P (t) y(t) + h(t) , y(a) = ỹ, t ∈ [a, b]T , (4.11)

3At the end, we didn’t find any good reference for this. Did we?
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where ỹ ∈ Rm and P : [a, b ]T→L(Rm), h : [a, b ]T → Rm are rd-continuous functions and y∆

stands for the ∆-derivative. By a solution of (4.11) we understand a function y : [a, b ]T → Rm

satisfying the integral equation

y(t) = ỹ +
∫ t

a

[
P (s) y(s) + h(s)

]
∆s , t ∈ [a, b]T

where the integral is the Riemann ∆-integral defined e.g. in [2].
As noticed by A. Slav́ık (see [16, Theorem 5]), the Riemann ∆-integral can be regarded

as a special case of the Kurzweil-Stieltjes integral. More precisely,
Let f : [a, b ]T→Rm be an rd-continuous function and

σ̃(t) := inf [t, b] ∩ T for t ∈ [a, b ] ,

F1(t) =
∫ t

a
f(s)∆s for t ∈ [a, b ]T, and F2(t) =

∫ t

a
f(σ̃(s)) d[σ̃(s)] for t ∈ [a, b ].

Then F2(t)= F1(σ̃(t)) holds for t ∈ [a, b ].
As a consequence, a relationship between the solutions of (4.11) and generalized linear

differential equations can be deduced.

4.2. Proposition ([16, Theorem 12]). If y : [a, b ]T → Rm is a solution of (4.11) then

x = y ◦ σ̃ : [a, b ] → Rm

is a solution of (1.1), where

A(t) =
∫ t

a
P (σ̃(s)) d [σ̃(s)] and f(t) =

∫ t

a
h(σ̃(s)) d [σ̃(s)] for t ∈ [a, b ] . (4.12)

Symmetrically, if x: [a, b ]→Rm is a solution of (1.1), with A and f given by (4.12), then
y : [a, b ]T→Rm defined by y(t)= x(t) for t ∈ [a, b ]T is a solution of (4.11).

It is important to mention that, thanks to the properties of σ̃ : [a, b ]→ [a, b ]T, the functions
A : [a, b ]→L(Rn) and f : [a, b ]→Rn given by (4.12) are well-defined, left-continuous and of
bounded variation on [a, b ].

Using the correspondence stated in Proposition 4.2 and Theorem 3.2 we obtain the fol-
lowing result.

4.3 . Theorem. Let P, Pk : [a, b ]T→L(Rm), h, hk : [a, b ]T→Rm for k ∈ N be rd-continuous
functions in [a, b ]T and let ỹ, ỹk ∈ Rm, k ∈ N, be given. Assume that

lim
k→∞

‖ỹk − ỹ‖Rm = 0 (4.13)

lim
k→∞

[
1+ sup

t∈[a,b ]T

‖Pk(t)‖L(Rm)

]
sup

t∈[a,b ]T

∥∥∥
∫ t

a
(Pk(s)−P (s))∆s

∥∥∥
L(Rm)

= 0,

lim
k→∞

[
1+ sup

t∈[a,b ]T

‖Pk(t)‖L(Rm)

]
sup

t∈[a,b ]T

∥∥∥
∫ t

a
(hk(s)−h(s))∆s

∥∥∥
Rm

= 0.





(4.14)
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Then initial value problem (4.11) has a solution y, initial value problems

y∆
k (t) = Pk(t) yk(t) + hk(t) , yk(a) = ỹk , t ∈ [a, b ]T (4.15)

have solutions yk for all k ∈ N, and

lim
k→∞

sup
t∈[a,b ]T

‖yk(t)− y(t)‖Rm = 0 .

Proof . For each k ∈ N and t ∈ [a, b ], define

Ak(t) =
∫ t

a
Pk(σ̃(s)) d [σ̃(s)] and fk(t)=

∫ t

a
hk(σ̃(s)) d [σ̃(s)] (4.16)

It is not difficult to see that, if a≤ c< d≤ b, then

‖Ak(d)−Ak(c)‖L(Rm) =
∥∥∥∥
∫ d

c
Pk(σ̃(s)) d [σ̃(s)]

∥∥∥∥
L(Rm)

≤
(

sup
t∈[a,b ]T

‖Pk(t)‖L(Rm)

)
(
vard

c σ̃
)
.

and, consequently,

varb
a Ak ≤

(
sup

t∈[a,b ]T

‖Pk(t)‖L(Rm)

)
(
varb

a σ̃
)
, k ∈ N.

On the other hand,

‖Ak−A‖∞ = sup
t∈[a,b ]

∥∥∥
∫ eσ(t)

a
(Pk(s)−P (s))∆s

∥∥∥
L(Rm)

≤ sup
t∈[a,b ]T

∥∥∥
∫ t

a
(Pk(s)−P (s)) ∆s

∥∥∥
L(Rm)

and, analogously,

‖fk − f‖∞ ≤ sup
t∈[a,b ]T

∥∥∥
∫ t

a
(hk(s)−h(s))∆s

∥∥∥
Rm

.

These estimates, together with (4.13) and (4.14) imply that the assumptions of Theorem 3.2
are satisfied. Therefore, the uniform convergence of solutions xk of equations (1.5) to the
solution x of (1.1) follows. Since by Proposition 4.2 the solutions of (4.11) and (4.15) are
respectively obtained as the restriction of x and xk to [a, b ]T, the proof is complete. ¤

4.4 .Remark. It is worth to mention that Theorem 4.3 given above encompasses Theo-
rem 5.5 from [14]. This is due to the fact that the weighted convergence assumptions in [14,
Theorem 5.5] involves not only the supremum sup

t∈[a,b ]T

‖Pk(t)‖L(Rm), but also sup
t∈[a,b ]T

‖hk(t)‖Rm .
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[14] Monteiro G.A. and Tvrdý M.: Generalized linear differential equations in a Ba-
nach space: Continuous dependence on a parameter. Discrete Contin. Dyn. Syst. 33 (1)
(2013), 283–303, doi:10.3934/dcds.2013.33.283.

[15] Opial Z.: Continuous Parameter Dependence in Linear Systems of Differential Equa-
tions. J. Differential Equations 3 (1967), 571–579.



19

[16] Slav́ık A.: Dynamic equations on time scales and generalized ordinary differential
equations, J. Math. Anal. Appl. 385 (2012), 534–550.
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114 (1989), 187–209.
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