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Abstract. Existence principles for the BVP (φ(u′))′ = f(t, u, u′), u(0) = u(T ), u′(0) = u′(T ) are
presented. They are based on the method of lower/upper functions and on the Leray-Schauder
topological degree. In contrast to the results known up to now, we need not assume that they are
well-ordered.
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1 . Formulation of the problem and the fixed point

operator

This paper is devoted to the periodic problem with a one-dimensional φ-Laplacian

(φ(u′))′ = f(t, u, u′),(1.1)

u(0) = u(T ), u′(0) = u′(T ),(1.2)

where

(1.3)

{
0 < T < ∞, f is an L1-Carathéodory function on [0, T ]× R2,

φ : R 7→ R is an increasing homeomorphism such that φ(R) = R.

A typical example of a function φ is the p-Laplacian φp(y) = |y|p−2 y, p > 1.
Recently, the problem (1.1), (1.2) in special cases, when φ is a p-Laplacian or the

right hand side does not depend on u′, have been investigated by several authors.
Existence and multiplicity results for the non resonance case have been presented e.g.
by M. Del Pino, R. Manásevich and A. Murúa [4], J. Mawhin and Manásevich [9],
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Liu Bing [8] and Yan Ping [17], while the resonance case has been considered e.g.
by C. Fabry and D. Fayyad [5] or Liu Bin [7]. A nice survey of the subject with an
exhaustive bibliography has been provided by J. Mawhin in [10].

The papers which are devoted to the lower/upper functions method for the prob-
lem (1.1), (1.2) mostly assume well-ordered σ1/σ2, i.e. σ1 ≤ σ2 on [0, T ]. We can refer
to the papers by A. Cabada and R. Pouso [1], by M. Cherpion, C. De Coster and
P. Habets [3] and by S. Staněk [15]. While [1] and [3] concerned the problem (1.1),
(1.2) under the Nagumo type two-sided growth conditions, in [15] only one-sided
growth conditions of the Nagumo type were needed. Making use of the lower/upper
functions method P. Jebelean and J. Mawhin in [6] and S. Staněk in [16] obtained
the first existence results also for singular periodic problems with a φ-Laplacian.
The paper [2] by A. Cabada, P. Habets and R. Pouso is, to our knowledge, the only
one presenting the lower/upper functions method for the problem (φ(u′))′ = f(t, u),
(1.2) under the assumption that σ1 ≥ σ2 on [0, T ], i.e. lower/upper functions are in
the reverse order. If φ = φp the authors get the solvability for 1 < p ≤ 2, only.

Our aim is to offer existence principles for the problem (1.1), (1.2) in terms of
lower/upper functions which need not be well-ordered (see Theorem 3.2). Moreover,
we will not impose any additional restrictions on φ.

As usual, we denote by C the set of functions continuous on [0, T ], C1 is the
set of functions u ∈ C with the first derivative continuous on [0, T ], L1 is the set
of functions Lebesgue integrable on [0, T ] and AC is the set of functions absolutely
continuous on [0, T ]. For x ∈ L1, we put

‖x‖∞ = sup ess
t∈[0,T ]

|x(t)|, ‖x‖1 =

∫ T

0

|x(t)| dt and x =
1

T

∫ T

0

x(s) ds.

It is well known that C1 becomes a Banach space when equipped with the norm
‖x‖C1 = ‖x‖∞ + ‖x′‖∞. For R ∈ (0,∞) we define B(R) = {u ∈ C1 : ‖u‖C1 < R}.
The set of L1-Carathéodory functions on [0, T ] × R2 is denoted by Car, i.e. Car
is the set of functions f : [0, T ] × R2 7→ R having the following properties: (i) for
each x ∈ R and y ∈ R the function f(·, x, y) is measurable on [0, T ]; (ii) for almost
every t ∈ [0, T ] the function f(t, ·, ·) is continuous on R2; (iii) for each compact set
K ⊂ R2 there is a function mK ∈ L1 such that |f(t, x, y)| ≤ mK(t) holds for a.e.
t ∈ [0, T ] and all (x, y) ∈ K.

If Ω is an open bounded subset of a Banach space X and the operator F :
cl(Ω) 7→ X is completely continuous and such that F(u) 6= u for all u ∈ ∂ Ω,
then we can define the Leray-Schauder topological degree deg(I − F , Ω). Here I is
the identity operator on X and cl(Ω) and ∂Ω denote the closure and the boundary
of Ω, respectively.

For a homeomorphism ψ : R 7→ R and q ∈ R we denote

(1.4) {q}ψ := max{−ψ(−q), ψ(q)}.
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1.1 . Definition. A solution of the problem (1.1), (1.2) is a function u ∈ C1 such
that φ(u′) ∈ AC, (φ(u′(t)))′ = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ] and (1.2) is satisfied.

1.2. Remark. Notice that the condition (1.2) is equivalent to the condition u(0) =
u(T ) = u(0) + u′(0)− u′(T ).

1.3 . Definition. A function σ ∈ C1 is an upper function of (1.1), (1.2) if φ(σ′) ∈
AC,

(φ(σ′(t)))′ ≤ f(t, σ(t), σ′(t)) for a.e. t ∈ [0, T ],(1.5)

σ(0) = σ(T ), σ′(0) ≤ σ′(T ).(1.6)

If the inequalities in (1.5)–(1.6) are reversed, σ is called an upper function.

To transform the problem (1.1), (1.2) into a fixed point problem in C1, we will
make use of some ideas from [9] (see also e.g. [1], [10], [17] or [13]). Having in mind
Remark 1.2, let us consider the quasilinear Dirichlet problem

(1.7) (φ(x′(t)))′ = h(t) a.e. on [0, T ], x(0) = x(T ) = d,

with h ∈ L1 and d ∈ R. A function x ∈ C1 is a solution of (1.7) if and only if

x(t) = d +

∫ t

0

φ−1
(
φ(x′(0)) +

∫ s

0

h(τ) dτ
)

ds for t ∈ [0, T ]

and ∫ T

0

φ−1
(
φ(x′(0)) +

∫ s

0

h(τ) dτ
)

ds = 0.

Since φ is increasing on R and φ(R) = R, for each fixed ` ∈ C the equation
∫ T

0

φ−1
(
a + `(t)

)
dt = 0

has exactly one solution a = a(`) in R for each ` ∈ C. So, we can define an operator
K : L1 7→ C1 by

(1.8) (K(h))(t) =

∫ t

0

φ−1
(
a
( ∫ τ

0

h(s) ds
)

+

∫ τ

0

h(s) ds
)

dτ for a.e. t ∈ [0, T ].

Furthermore, let N : C1 7→ L1 and F : C1 7→ C1 have the form

(N (u))(t) = f(t, u(t), u′(t)) for a.e. t ∈ [0, T ]

and

(F(u))(t) = u(0) + u′(0)− u′(T ) + (K(N (u)))(t) for t ∈ [0, T ].(1.9)

It follows from the definition of K that x ∈ C1 is a solution to (1.7) if and only
if x = d + K(h). Consequently, u ∈ C1 is a solution to (1.1), (1.2) if and only if
F(u) = u. Taking into account [9, Proposition 2.2], we can summarize:

1.4 . Lemma. Let F : C1 7→ C1 be defined by (1.9). Then F is completely contin-
uous and u ∈ C1 is a solution to (1.1), (1.2) if and only if F(u) = u.
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2 . Well-ordered case

The main result of this section is Theorem 2.1 which determines the Leray-Schauder
degree of the operator representing the problem (1.1), (1.2) in the case that it has
a couple of well-ordered lower/upper functions.

Beside (1.3), we will work with the following assumptions:

σ1 and σ2 are respectively lower and upper functions of (1.1), (1.2),(2.1)

σ1 < σ2 on [0, T ](2.2)

and with the following class of auxiliary problems:

(2.3) (φ(v′))′ = η(v′) f(t, v, v′), v(0) = v(T ), v′(0) = v′(T ),

where η may be an arbitrary continuous function mapping R into [0, 1].
For ρ > 0 we define

(2.4) Ωρ =
{
u ∈ C1 : σ1 < u < σ2 on [0, T ] and ‖u′‖∞ < ρ

}
.

2.1. Theorem. Assume that (1.3), (2.1) and (2.2) hold. Furthermore, suppose that
there exists r∗ ∈ (0,∞) such that

(2.5)

{
‖v′‖∞ < r∗ for each continuous η : R 7→ [0, 1] and for

each solution v of (2.3) such that σ1 ≤ v ≤ σ2 on [0, T ].

Finally, let F : C1 7→ C1 and Ωρ be defined by (1.9) and (2.4), respectively. Then

deg(I−F , Ωρ) = 1 for each ρ ≥ r∗ such that F(u) 6= u on ∂Ωρ.

Proof. We will start with the following ”maximum principle” assertion:
Claim. Assume (1.3), (2.1), (2.2) and let f̃ ∈ Car and d ∈ R be such that

(2.6)





f̃(t, x, y) < f(t, σ1(t), σ
′
1(t)) for a.e. t ∈ [0, T ], all x ∈ (−∞, σ1(t))

and all y ∈ R such that |y − σ′1(t)| ≤
σ1(t)− x

σ1(t)− x + 1
,

f̃(t, x, y) > f(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ], all x ∈ (σ2(t),∞)

and all y ∈ R such that |y − σ′2(t)| ≤
x− σ2(t)

x− σ2(t) + 1

and

(2.7) σ1(0) ≤ d ≤ σ2(0).
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Then any solution u of the problem

(2.8)

{
(φ(u′(t)))′ = f̃(t, u(t), u′(t)) a.e. on [0, T ],

u(0) = u(T ) = d

satisfies the estimate

(2.9) σ1 ≤ u ≤ σ2 on [0, T ].

Proof of Claim. Let u be a solution of (2.8) and v = u−σ2 on [0, T ]. Assume that

(2.10) sup
t∈[0,T ]

v(t) > 0.

Due to (1.6) and (2.7), we have v(0) = v(T ) ≤ 0 and hence there are α ∈ (0, T ) and
β ∈ (α, T ] such that v(α) = supt∈[0,T ] v(t), v′(α) = 0, and

(2.11) v(t) > 0 and |v′(t)| < v(t)

v(t) + 1
for t ∈ [α, β].

Using (1.5) and (2.6), we obtain (φ(u′(t)))′−(φ(σ′2(t)))
′ = f̃(t, u(t), u′(t))−(φ(σ′2(t)))

′

> f(t, σ2(t), σ
′
2(t))− (φ(σ′2(t)))

′ ≥ 0 for a.e. t ∈ [α, β]. Hence

0 <

∫ t

α

(
φ(u′(s)))′ − (φ(σ′2(s))

′
)

ds = φ(u′(t))− phi(σ′2(t))

for all t ∈ (α, β]. Therefore v′(t) = u′(t)−σ′2(t) > 0 for all t ∈ (α, β]. This contradicts
the fact that v has a maximum at α, i.e. u ≤ σ2 on [0, T ].

If we put v = σ1−u on [0, T ] and use the properties of σ1 instead of σ2, we prove
that u ≥ σ1 on [0, T ] by a similar argument and so we complete the proof of Claim.

Let r∗ be such that (2.5) is true and let

Ω =
{
u ∈ C1 : σ1 < u < σ2 on [0, T ] and ‖u′‖∞ < r∗

}
(2.12)

and

F(x) 6= x for each x ∈ ∂Ω.(2.13)

Furthermore, let

R∗ = r∗ + ‖σ′1‖∞ + ‖σ′2‖∞,(2.14)

η(y) =





1 for |y| ≤ R∗,

2− |y|
R∗ for R∗ < |y| < 2 R∗,

0 for |y| ≥ 2 R∗

(2.15)

and
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g(t, x, y) = η(y) f(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2.(2.16)

Then σ1/σ2 are lower/upper functions for the modified problem

(2.17) (φ(u′))′ = g(t, u(t), u′(t)), u(0) = u(T ), u′(0) = u′(T )

and there is an m ∈ L1 such that |g(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all
(x, y) ∈ [σ1(t), σ2(t)]× R2. Put

ωi(t, ζ) = sup
z∈R, |σ′i(t)−z|≤ζ

|f(t, σi(t), σ
′
i(t))− f(t, σi(t), z)|

for i = 1, 2 and (t, ζ) ∈ [0, T ]× [0,∞) and

f̃(t, x, y) =





g(t, σ1(t), y)− ω1(t,
σ1(t)− x

σ1(t)− x + 1
) if x < σ1(t),

g(t, x, y) if x ∈ [σ1(t), σ2(t)],

g(t, σ2(t), y) + ω2(t,
x− σ2(t)

x− σ2(t) + 1
) if x > σ2(t).

Then f̃ ∈ Car,

(2.18) f̃(t, x, y) = g(t, x, y) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R,

there is m̃ ∈ L1 such that

(2.19) |f̃(t, x, y)| ≤ m̃(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2,

and the relations (2.6) are valid if f is replaced by g. Define

(2.20) α(x) =





σ1(0) for x < σ1(0),

x for σ1(0) ≤ x ≤ σ2(0),

σ2(0) for x > σ2(0).

Consider an auxiliary problem

(2.21) (φ(u′))′ = f̃(t, u, u′), u(0) = u(T ) = α(u(0) + u′(0)− u′(T )).

By Lemma 1.4, (2.21) is equivalent to the operator equation F̃(u) = u, where

F̃ : C1 7→ C1 is a completely continuous operator defined by

F̃(u) = α(u(0) + u′(0)− u′(T )) +K(Ñ (u))(2.22)

with K : L1 7→ C1 given by (1.8) and Ñ : C1 7→ L1 of the form
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(Ñ (u))(t) = f̃(t, u(t), u′(t)) for a.e. t ∈ [0, T ].(2.23)

Due to (2.19), (2.22) and (2.23), we can find R0 ∈ (0,∞) such that

Ω ⊂ B(R0) and F̃(u) ∈ B(R0) for all u ∈ C1.

In particular, ‖u‖C1 < R0 for each λ ∈ [0, 1] and each u ∈ C1 such that u = λ F̃(u).

So, the operator I− λ F̃ is a homotopy on cl(B(R0))× [0, 1]. Hence,

(2.24) deg(I− F̃ ,B(R0)) = deg(I,B(R0)) = 1.

Let

(2.25) Ω̃ =
{
u ∈ Ω : σ1(0) < u(0) + u′(0)− u′(T ) < σ2(0)

}
.

Then

F̃ = F on cl(Ω̃)(2.26)

and (
F(u) = u and u ∈ Ω

)
=⇒ u ∈ Ω̃.(2.27)

We will prove that the following complementary implication is true as well:

(2.28) F̃(u) = u =⇒ u ∈ Ω̃.

Indeed, let u ∈ C1 be a fixed point of F̃ . In particular, we have

(2.29) σ1(0) ≤ u(0) = u(T ) = α(u(0) + u′(0)− u′(T )) ≤ σ2(0).

By Claim, this implies that

(2.30) σ1 ≤ u ≤ σ2 on [0, T ].

In accordance with (2.18), we have

(2.31) f̃(t, u(t), u′(t)) = g(t, u(t), u′(t)) for a.e. t ∈ [0, T ]

Now, we will show that u satisfies also the second condition from (1.2), i.e. that
u′(0) = u′(T ) holds. Obviously, this is true whenever

(2.32) σ1(0) ≤ u(0) + u′(0)− u′(T ) ≤ σ2(0).

If

(2.33) u(0) + u′(0)− u′(T ) > σ2(0),
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then, by (1.6), (2.20) and (2.29), u(0) = u(T ) = σ2(0) = σ2(T ) and u′(0) > u′(T ).
This together with (2.30) and (2.33) may hold only if σ′2(0) ≥ u′(0) > u′(T ) ≥ σ′2(T ),
which contradicts (1.6). Similarly we would prove that the relation u(0) + u′(0)−
u′(T ) ≥ σ1(0) is true as well. This means that (2.32) and hence also u′(0) = u′(T )
hold. To summarize, u satisfies (2.21), (2.31) and (1.2) and, consequently, it is
a solution to (2.17). Now, by (2.30), (2.15), (2.16) and (2.5), the relation ‖u′‖∞ <
r∗ ≤ R∗ follows. Therefore u ∈ cl(Ω) and, due to (2.26) and (2.13), we obtain

u ∈ Ω and F(u) = u.

Finally, by (2.27), we conclude that u ∈ Ω̃, which completes the proof of (2.28).
Making use of (2.27), (2.28) and (2.24) and taking into account the excision

property of the degree, we get

deg(I−F , Ω) = deg(I−F , Ω̃) = deg(I− F̃ , Ω̃) = deg(I− F̃ ,B(R0)) = 1.

Finally, since according to (2.5) all the fixed points u of F such that σ1 < u < σ2

on [0, T ] belong to Ω, we can conclude that

deg(I−F , Ωρ) = deg(I−F , Ω) = 1

holds for each ρ ≥ r∗ such that F(x) 6= x on ∂Ωρ.

2.2. Remark. Let us emphasize that up to now for the problem (1.1), (1.2) no result
giving the degree of the related operator with respect to the set determined by the
associated lower and upper functions like Theorem 2.1 is known to us. Implementing
an arbitrary condition ensuring the existence of r∗ ∈ (0,∞) with the property
(2.5) and making use of the standard approximation technique, we could complete
alternate proofs of already known existence results (see e.g. [1, Theorem 3.1] or
[15, Theorem 1]) valid when the existence of a pair σ1/σ2 of lower/upper functions
associated with the given problem and such that σ1 ≤ σ2 on [0, T ] is supposed.
Usually, conditions of the Nagumo type are used to this aim. To our knowledge, the
most general version of such conditions which covers also the case with φ-Laplacian
is provided by [15, Lemma 2.1] due to S. Staněk. For the purpose of Section 3 the
following simple a priori estimate will be sufficient.

2.3. Lemma. Let φ : R 7→ R be an increasing homeomorphism such that φ(R) = R
and let h ∈ L1. Then there is r∗ ∈ (0,∞) such that ‖u′‖∞ < r∗ holds for each
u ∈ C1 fulfilling (1.2) and such that φ(u′) ∈ AC and

(2.34) (φ(u′(t))′ > h(t) (or (φ(u′(t))′ < h(t)) for a.e. t ∈ [0, T ].

Proof. First, we will prove the following claim:
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Claim. Let h ∈ L1. Then ‖v‖∞ < ‖h‖1 holds for each v ∈ AC such that v(0) =
v(T ), v(tv) = 0 for some tv ∈ (0, T ) and v′(t) > h(t) (or (v′(t) < h(t)) for a.e.
t ∈ [0, T ].
Proof of Claim: We shall restrict ourselves only to the case that v′(t) > h(t) for
a.e. t ∈ [0, T ]. (The latter case can be proved by a similar argument.) We have

v(t) > −
∫ t

tv

|h(s)| ds ≥ −‖h‖1 for t ∈ (t0, T ](2.35)

and

v(t) < +

∫ tv

t

|h(s)| ds ≤ +‖h‖1 for t ∈ [0, t0).(2.36)

In particular,

(2.37) −‖h‖1 ≤ −
∫ T

tv

|h(s)| ds < v(0) = v(T ) <

∫ tv

0

|h(s)| ds ≤ ‖h‖1.

On the other hand, (2.35)–(2.37) imply also

v(t) > v(0)−
∫ t

0

|h(s)| ds > −
∫ t

0

|h(s)| ds−
∫ T

tv

|h(s)| ds ≥ −‖h‖1 for t ∈ [0, tv)

and

v(t) < v(T ) +

∫ T

t

|h(s)| ds <

∫ tv

0

|h(s)| ds +

∫ T

t

|h(s)| ds ≤ ‖h‖1 for t ∈ (tv, T ].

To summarize: we have −‖h‖1 < v(t) < ‖h‖1 for all t ∈ [0, T ] and this completes
the proof of Claim.

Now, let u ∈ C1 be such that φ(u′) ∈ AC, (1.2) and (2.34) are true. By (1.2),
we have φ(u′(0)) = φ(u′(T )). As a result, there is tu such that φ(u′(tu)) = φ(0).
Therefore, the assertion of the lemma follows by Claim if we set v = φ(u′) − φ(0)
and r∗ = {‖h‖1+|φ(0)|}φ−1 , where we are using the notation introduced in (1.4)).

3 . Non-ordered case

Our main result is Theorem 3.2 which is the first known existence principle for pe-
riodic problems with a general φ-Laplacian and non-ordered lower/upper functions.
We shall start this section with the following auxiliary assertion which will be helpful
for its proof.

3.1 . Lemma. Let σ1, σ2 ∈ C and u ∈ C be such that

(3.1) u(tu) < σ1(tu) and u(su) > σ2(su) for some tu, su ∈ [0, T ].
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Then there exists τu ∈ [0, T ] such that

(3.2) min{σ1(τu), σ2(τu)} ≤ u(τu) ≤ max{σ1(τu), σ2(τu)}.
Proof. If u(0) < min{σ1(0), σ2(0)} while (3.2) does not hold, then necessarily u(t) <
min{σ1(t), σ2(t)} on [0, T ] which contradicts (3.1). If u(0) > max{σ1(0), σ2(0)}
while (3.2) does not hold, then u(t) > max{σ1(t), σ2(t)} on [0, T ] which again con-
tradicts (3.1).

3.2 . Theorem. Assume (1.3), (2.1), and

(3.3) σ1(τ) > σ2(τ) for some τ ∈ [0, T ].

Furthermore, let h ∈ L1 be such that

f(t, x, y) > h(t) (or f(t, x, y) < h(t)) for a.e. t ∈ [0, T ] and all x, y ∈ R.

Then the problem (1.1), (1.2) has a solution u satisfying (3.2) for some τu ∈ [0, T ].

Proof. Assume e.g. that

(3.4) f(t, x, y) > h(t) for a.e. t ∈ [0, T ] and all x, y ∈ R

is the case and put h̃(t) = −(|h(t)| + 2) for a.e. t ∈ [0, T ]. By Lemma 2.3, there is
r∗ ∈ (0,∞) such that

(3.5)

{ ‖u′‖∞ < r∗ for each u ∈ C1 fulfilling (1.2), φ(u′) ∈ AC and

(φ(u′(t))′ > h̃(t) for a.e. t ∈ [0, T ].

Furthermore, put

(3.6) c∗ = ‖σ1‖∞ + ‖σ2‖∞ + T r∗

and define

(3.7) f̃(t, x, y) =





−(|h(t)|+ 1) if x ≤ −(c∗ + 1),

f(t, x, y) + (x + c∗) (|h(t)|+ 1 + f(t, x, y))
if − (c∗ + 1) < x < −c∗,

f(t, x, y) if − c∗ ≤ x ≤ c∗,

f(t, x, y) + (x− c∗) |h(t)| if c∗ < x < c∗ + 1,

f(t, x, y) + |h(t)| if x ≥ c∗ + 1.

Let us consider an auxiliary problem

(3.8) (φ(u′))′ = f̃(t, u, u′), u(0) = u(T ), u′(0) = u′(T ).
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The functions σ1 and σ2 are respectively a lower and an upper function of (3.8).
Furthermore,

f̃(t, x, y) > h̃(t) for a.e. t ∈ [0, T ] and all x, y ∈ R.(3.9)

Moreover,

f̃(t, x, y) < 0 for a.e. t ∈ [0, T ] and all x ∈ (−∞,−c∗ − 1], y ∈ R,(3.10)

f̃(t, x, y) > 0 for a.e. t ∈ [0, T ] and all x ∈ [c∗ + 1,∞), y ∈ R.(3.11)

In particular, σ3(t) ≡ −c∗ − 2 and σ4(t) ≡ c∗ + 2 are respectively a lower and an
upper function for (3.8). Let us denote

Ω0 = {u ∈ C1 : σ3 < u < σ4 on [0, T ], ‖u′‖∞ < r∗},
Ω1 = {u ∈ Ω0 : σ3 < u < σ2 on [0, T ]}, Ω2 = {u ∈ Ω0 : σ1 < u < σ4 on [0, T ]}

and

Ω = Ω0 \ cl(Ω1 ∪ Ω2).

Clearly, Ω is the set of all u ∈ Ω0 for which the relations ‖u′‖∞ < r∗ and (3.1) are
satisfied.

By Lemma 1.4, the problem (3.8) is equivalent to the operator equation F̃(u) = u
in C1, where

(3.12) F̃(u) = u(0) + u′(0)− u′(T ) +K(Ñ )(u)

and K : L1 7→ C1 and Ñ : C1 7→ L1 are given respectively by (1.8) and (2.23) (with

f̃ defined now by (3.7)). Next we will prove the following two assertions:

Claim 1. If F̃(u) = u and u ∈ cl(Ω0), then u ∈ Ω0.

Proof of Claim 1. Let F̃(u) = u and u ∈ ∂Ω0. Since, by (3.5) and (3.9), we have
‖u′‖∞ < r∗, this can happen only if

(3.13) u(α) = max
t∈[0,T ]

u(t) = c∗ + 2 or u(α) = min
t∈[0,T ]

u(t) = −(c∗ + 2)

for some α ∈ [0, T ). In the former case, we have u′(α) = 0 and u(t) > c∗+1 on [α, β]

for some β ∈ (α, T ]. Due to (3.11), we have also (φ(u′(t)))′ = f̃(t, u(t), u′(t)) > 0 for
a.e. t ∈ [α, β], i.e. u′(t) > 0 on (α, β], a contradiction. Similarly we can prove that
the latter case in (3.13) is impossible.

Claim 2. If F̃(u) = u and u ∈ cl(Ω), then ‖u‖∞ < c∗.
Proof of Claim 2. Let F̃(u) = u and u ∈ cl(Ω). By (3.5) and (3.9) we have
‖u′‖∞ < r∗ and, by Lemma 3.1 and Claim 1, ‖u‖∞ < ‖σ1‖∞ + ‖σ2‖∞ + T r∗ = c∗.

Now, there are two cases to consider: either F̃(u) = u for some u ∈ ∂Ω or

F̃(u) 6= u on ∂Ω. If F̃(u) = u for some u ∈ ∂Ω, then, by Claim 2, ‖u‖∞ < c∗ must
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hold, i.e. F(u) = F̃(u) = u. Hence, by Lemma 1.4, u is a solution to (1.1), (1.2). If

F̃(u) 6= u on ∂Ω, then, as ∂Ω = ∂Ω0 ∪ ∂Ω1 ∪ ∂Ω2, we can apply Theorem 2.1 to get

deg(I− F̃ , Ω0) = deg(I− F̃ , Ω1) = deg(I− F̃ , Ω2) = 1.

Furthermore, by (3.3) we have Ω1 ∩ Ω2 = ∅. Therefore

deg(I− F̃ , Ω) = deg(I− F̃ , Ω0)− deg(I− F̃ , Ω1)− deg(I− F̃ , Ω2) = −1

and there exists u ∈ Ω such that F̃(u) = u. By Claim 2, we have ‖u‖∞ < c∗ which,

by virtue of (3.7) and (3.12), yields F̃(u) = F(u) = u, i.e. u is a solution to (1.1),
(1.2).

3.3 . Remark. Theorem 3.2 combined with techniques introduced e.g. in [14]
enables one to prove some existence results to certain problems with singularities.
In particular, we can derive results similar to those by P. Jebelean and J. Mawhin
[6], but without restricting ourselves to p-Laplacians. This will be the content of
some of our forthcoming papers. For an extension to impulsive periodic problems
with φ-Laplacian, see our preprints [13].
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