Second Order Periodic Problem with ϕ-Laplacian and Impulses

Irena Rachůnková* and Milan Tvrdýt

September 23, 2004

Abstract

Existence principles for the BVP $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), u\left(t_{i}+\right)=J_{i}\left(u\left(t_{i}\right)\right), u^{\prime}\left(t_{i}+\right)=$ $M_{i}\left(u^{\prime}\left(t_{i}\right)\right), i=1,2, \ldots, m, u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$ are presented. They are based on the method of lower/upper functions which need not be well-ordered. Mathematics Subject Classification 2000. 34B37, 34B15, 34C25

Keywords. ϕ-Laplacian, impulses, lower/upper functions, periodic solutions

1. Formulation of the problem

Let $m \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{m}<t_{m+1}=T$ and $\mathrm{D}=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$. Define \mathbb{C}_{D} (or $\mathbb{C}_{\mathrm{D}}^{1}$) as the sets of functions $u:[0, T] \mapsto \mathbb{R}$,

$$
u(t)= \begin{cases}u_{[0]}(t) & \text { if } t \in\left[0, t_{1}\right], \\ u_{[1]}(t) & \text { if } t \in\left(t_{1}, t_{2}\right], \\ \cdots & \cdots \\ u_{[m]}(t) & \text { if } t \in\left(t_{m}, T\right],\end{cases}
$$

where $u_{[i]}$ is continuous on $\left[t_{i}, t_{i+1}\right]$ (or continuously differentiable on $\left[t_{i}, t_{i+1}\right]$) for $i=0,1, \ldots, m$. We put $\|u\|_{\mathrm{D}}=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}$, where $\|u\|_{\infty}=\sup \operatorname{ess}_{t \in[0, T]}|u(t)|$. Then \mathbb{C}_{D} and $\mathbb{C}_{\mathrm{D}}^{1}$ respectively with the norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_{\mathrm{D}}$ become Banach spaces. Further, \mathbb{A}_{D} is the set of functions $u \in \mathbb{C}_{\mathrm{D}}$ which are absolutely continuous on each subinterval $\left(t_{i}, t_{i+1}\right), i=0,1, \ldots, m$.

We consider the problem

$$
\begin{align*}
& \left(\phi\left(u^{\prime}(t)\right)\right)^{\prime}=f\left(t, u(t), u^{\prime}(t)\right) \quad \text { a.e. on }[0, T], \tag{1.1}\\
& u\left(t_{i}+\right)=J_{i}\left(u\left(t_{i}\right)\right), \quad u^{\prime}\left(t_{i}+\right)=M_{i}\left(u^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m, \tag{1.2}\\
& u(0)=u(T), \tag{1.3}\\
& u^{\prime}(0)=u^{\prime}(T)
\end{align*}
$$

[^0]where $u^{\prime}\left(t_{i}\right)=u^{\prime}\left(t_{i}-\right)=\lim _{t \rightarrow t_{i}-} u^{\prime}(t)$ for $i=1,2, \ldots, m+1, u^{\prime}(0)=u^{\prime}(0+)=$ $\lim _{t \rightarrow 0+} u^{\prime}(t), f$ is an \mathbb{L}_{1}-Carathéodory function, functions J_{i}, M_{i} are continuous on \mathbb{R} and ϕ is an increasing homeomorphism such that $\phi(0)=0$ and $\phi(\mathbb{R})=\mathbb{R}$. A typical example of a proper function ϕ is the p-Laplacian $\phi_{p}(y)=|y|^{p-2} y$, where $p>1$.

A solution of the problem (1.1)-(1.3) is a function $u \in \mathbb{C}_{\mathrm{D}}^{1}$ such that $\phi\left(u^{\prime}\right) \in \mathbb{A}_{\mathrm{D}}$ and (1.1)-(1.3) hold.

A function $\sigma \in \mathbb{C}_{\mathrm{D}}^{1}$ is called a lower function of (1.1)-(1.3) if $\phi\left(\sigma^{\prime}\right) \in \mathbb{A}_{\mathrm{D}}$ and

$$
\left\{\begin{array}{l}
\phi\left(\sigma^{\prime}(t)\right)^{\prime} \geq f\left(t, \sigma(t), \sigma^{\prime}(t)\right) \quad \text { for a.e. } t \in[0, T] \tag{1.4}\\
\sigma\left(t_{i}+\right)=J_{i}\left(\sigma\left(t_{i}\right)\right), \sigma^{\prime}\left(t_{i}+\right) \geq M_{i}\left(\sigma^{\prime}\left(t_{i}\right)\right), i=1,2, \ldots, m \\
\sigma(0)=\sigma(T), \sigma^{\prime}(0) \geq \sigma^{\prime}(T)
\end{array}\right.
$$

Similarly, a function $\sigma \in \mathbb{C}_{\mathrm{D}}^{1}$ with $\phi\left(\sigma^{\prime}\right) \in \mathbb{A}_{\mathrm{D}}$ is an upper function of (1.1)-(1.3) if it satisfies the relations (1.4) but with reversed inequalities.

The aim of this paper is to offer existence principles for problem (1.1)-(1.3) in terms of lower/upper functions. Hence our basic assumption is the existence of lower/upper functions. We will suppose that either

$$
\begin{equation*}
\sigma_{1} \quad \text { and } \quad \sigma_{2} \text { are respectively lower and upper functions of (1.1)-(1.3) } \tag{1.5}
\end{equation*}
$$ such that $\sigma_{1} \leq \sigma_{2}$ on $[0, T]$

or
(1.6) $\quad \sigma_{1}$ and σ_{2} are respectively lower and upper functions of (1.1)-(1.3) such that $\sigma_{1} \not \leq \sigma_{2}$ on $[0, T]$, i.e. $\sigma_{1}(\tau)>\sigma_{2}(\tau)$ for some $\tau \in[0, T]$.

Note that problems with ϕ-Laplacians and impulses have not been studied yet. As concerns problem (1.1), (1.3) (without impulses), there are various results about its solvability. For example the papers [4] and [19] present some results about the existence or multiplicity of periodic solutions of the equation

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=f(t, u) \tag{1.7}
\end{equation*}
$$

under non resonance conditions imposed on f. The paper [10] presents general existence principles for the vector problem (1.1), (1.3). Using this the authors provide various existence theorems and illustrative examples. The vector case is also considered in [9], [11] and [12]. The existence of periodic solutions of the Liénard type equations with p-Laplacians has been proved in the resonance case under the Landesman-Lazer conditions in [5] and [6]. Multiplicity results of the Ambrosetti-Prodi type for this problem (with a real parameter) can be found in [8].

The papers which are devoted to the lower/upper functions method for the problem (1.1), (1.3) mostly deal with the condition (1.5), i.e. they assume well-ordered
σ_{1} / σ_{2}. We can refer to the papers [1] and [3] which study the problem (1.1), (1.3) under the Nagumo type two-sided growth conditions and to the paper [17] where the second order equation with a ϕ-Laplacian is considered provided a functional right-hand side of this equation fulfils one-sided growth conditions of the Nagumo type. The significance of the lower/upper functions method is shown in the papers [7] and [18] where this method is used in the investigation of singular periodic problems with a ϕ-Laplacian. The paper [2] is, to our knowledge, the only one presenting the lower/upper functions method for the problem (1.7), (1.3) (with a ϕ-Laplacian) under the assumption that $\sigma_{1} \geq \sigma_{2}$, i.e. lower/upper functions are in the reverse order. If $\phi=\phi_{p}$ the authors get the solvability of (1.7), (1.3) for $1<p \leq 2$, only. Therefore the existence principles (Theorems 2.3 and 2.4) which we state here for the impulsive problem (1.1)-(1.3) and the case (1.6) are new even for the non-impulsive problem (1.1), (1.3).

We will work with the following assumptions, where the sets $A_{i}, B(t) \subset \mathbb{R}$, $t \in[0, T]$, will be determined later, according to whether (1.5) or (1.6) is assumed:

$$
\begin{align*}
& \left\{\begin{array}{l}
x>\sigma_{1}\left(t_{i}\right) \Longrightarrow J_{i}(x)>J_{i}\left(\sigma_{1}\left(t_{i}\right)\right) \\
x<\sigma_{2}\left(t_{i}\right) \Longrightarrow J_{i}(x)<J_{i}\left(\sigma_{2}\left(t_{i}\right)\right)
\end{array} \text { for } x \in A_{i}, i=1,2, \ldots, m ;\right. \tag{1.8}\\
& \left\{\begin{array}{l}
y \leq \sigma_{1}^{\prime}\left(t_{i}\right) \Longrightarrow M_{i}(y) \leq M_{i}\left(\sigma_{1}^{\prime}\left(t_{i}\right)\right), \\
y \geq \sigma_{2}^{\prime}\left(t_{i}\right) \Longrightarrow M_{i}(y) \geq M_{i}\left(\sigma_{2}^{\prime}\left(t_{i}\right)\right),
\end{array} \quad i=1,2, \ldots, m ;\right. \tag{1.9}
\end{align*}
$$

$$
\left\{\begin{array}{l}
\text { there is } h \in \mathbb{L}_{1} \text { such that } \tag{1.10}\\
|f(t, x, y)| \leq h(t) \text { for a.e. } t \in[0, T] \text { and all } x, y \in \mathbb{R}
\end{array}\right.
$$

$\left\{\begin{array}{l}\text { there are } \omega:[0, \infty) \mapsto(0, \infty) \text { continuous and } h \in \mathbb{L}_{1} \text { such that } \\ \int_{0}^{\infty} \frac{\mathrm{d} s}{\omega(s)}=\infty \text { and }|f(t, x, y)| \leq \omega(\phi(|y|))(|y|+h(t)) \\ \text { for a.e. } t \in[0, T], \text { all } x \in B(t) \text { and }|y| \geq 1,\end{array}\right.$

$$
\left\{\begin{array}{l}
\text { there are } c_{j}, d_{j} \in \mathbb{R}, c_{j} \leq \sigma_{k}^{\prime}(t) \leq d_{j} \text { on }\left(t_{j-1}, t_{j}\right], k=1,2, \tag{1.12}\\
\text { such that } f\left(t, x, c_{j}\right) \leq 0, f\left(t, x, d_{j}\right) \geq 0 \text { for a.e. } t \in\left(t_{j-1}, t_{j}\right] \\
\text { and all } x \in B(t), j=1,2, \ldots, m+1, \text { and } c_{1} \geq c_{m+1}, d_{1} \leq d_{m+1}, \\
M_{i}\left(c_{i}\right) \leq c_{i+1}, M_{i}\left(d_{i}\right) \geq d_{i+1}, i=1,2, \ldots, m .
\end{array}\right.
$$

2. Main results

Below we formulate our main results:

I. Existence principles for well-ordered case

2.1. Theorem. Assume that (1.5), (1.8) with $A_{i}=\left[\sigma_{1}\left(t_{i}\right), \sigma_{2}\left(t_{i}\right)\right], i=1,2, \ldots, m$, (1.9) and (1.11) with $B(t)=\left[\sigma_{1}(t), \sigma_{2}(t)\right]$ hold. Then the problem (1.1) - (1.3) has
a solution u satisfying

$$
\begin{equation*}
\sigma_{1} \leq u \leq \sigma_{2} \text { on }[0, T] . \tag{2.1}
\end{equation*}
$$

2.2. Theorem. Assume that (1.5), (1.8) with $A_{i}=\left[\sigma_{1}\left(t_{i}\right), \sigma_{2}\left(t_{i}\right)\right], i=1,2, \ldots, m$, (1.9) and (1.12) with $B(t)=\left[\sigma_{1}(t), \sigma_{2}(t)\right]$ hold.

Then the problem (1.1) - (1.3) has a solution u satisfying (2.1) and

$$
\begin{equation*}
c_{j} \leq u^{\prime}(t) \leq d_{j} \quad \text { for } t \in\left(t_{j-1}, t_{j}\right], j=1,2, \ldots, m+1 \tag{2.2}
\end{equation*}
$$

II. Existence principles for non-Ordered case

2.3. Theorem. Assume that (1.6), (1.8) with $A_{i}=\mathbb{R}, i=1,2, \ldots, m$, (1.9) and (1.10) hold. Then the problem (1.1) - (1.3) has a solution u satisfying

$$
\begin{equation*}
\left|u\left(t_{u}\right)\right| \leq \max \left\{\left|\sigma_{1}\left(t_{u}\right)\right|,\left|\sigma_{2}\left(t_{u}\right)\right|\right\} \quad \text { for some } t_{u} \in[0, T] \tag{2.3}
\end{equation*}
$$

2.4. Theorem. Assume that (1.6), (1.8) with $A_{i}=\mathbb{R}, i=1,2, \ldots, m$, (1.9) and (1.12) with $B(t)=\mathbb{R}$ hold. Then the problem (1.1)-(1.3) has a solution u satisfying (2.2) and (2.3).

Note that Theorems 2.2 and 2.4 impose no growth restrictions on f. For example, taking $f(t, x, y)=y\left(y^{2 k} x^{2 n}+1\right)-x^{2 n-1}+e(t)$, where $e \in \mathbb{C}_{\mathrm{D}}, k, n \in \mathbb{N}$, we can check that there are $c_{j} \in(-\infty, 0) d_{j} \in(0, \infty), j=1,2, \ldots, m+1$, such that $c_{1} \geq c_{m+1}$, $d_{1} \leq d_{m+1}, f\left(t, x, c_{j}\right) \leq 0$ and $f\left(t, x, d_{j}\right) \geq 0$ for a.e. $t \in\left(t_{j-1}, t_{j}\right]$ and all $x \in \mathbb{R}$, $j=1,2, \ldots, m+1$.

3. A fixed point operator

We will transform the problem (1.1)-(1.3) into a fixed point problem in $\mathbb{C}_{\mathrm{D}}^{1}$. First, we borrow some ideas from [10] to get the following two lemmas.
3.1. Lemma. For each $\ell \in \mathbb{C}_{D}$ and $d \in \mathbb{R}$, the function

$$
\Psi_{\ell, d}: \mathbb{R} \mapsto \mathbb{R}, \quad \Psi_{\ell, d}(a)=d+\int_{0}^{T} \phi^{-1}(a+\ell(t)) \mathrm{d} t
$$

has exactly one zero point $a(\ell, d)$ in \mathbb{R}.
Proof. Choose $\ell \in \mathbb{C}_{\mathrm{D}}$ and $d \in \mathbb{R}$. Since $\Psi_{\ell, d}$ is continuous, increasing on \mathbb{R} and $\Psi_{\ell, d}(\mathbb{R})=\mathbb{R}$, there is a unique real number $a(\ell, d)$ such that

$$
\begin{equation*}
\Psi_{\ell, d}(a(\ell, d))=0 \tag{3.1}
\end{equation*}
$$

3.2. Lemma. The mapping $a: \mathbb{C}_{D} \times \mathbb{R} \mapsto \mathbb{R}$ defined by (3.1) is continuous and maps bounded sets into bounded sets. ${ }^{1}$

Proof. (i) Assume that $\mathcal{A} \subset \mathbb{C}_{\mathrm{D}} \times \mathbb{R}$ and $\gamma \in(0, \infty)$ are such that $\|\ell\|_{\infty}+|d| \leq \gamma$ for each $(\ell, d) \in \mathcal{A}$ and that there is a sequence $\left\{a\left(\ell_{n}, d_{n}\right)\right\}_{n=1}^{\infty} \subset a(\mathcal{A})$ such that $\lim _{n \rightarrow \infty} a\left(\ell_{n}, d_{n}\right)=\infty$ or $\lim _{n \rightarrow \infty} a\left(\ell_{n}, d_{n}\right)=-\infty$. Let the former possibility occur. Then, by (3.1), we have $0=\lim _{n \rightarrow \infty} \Psi_{\ell_{n}, d_{n}}\left(a\left(\ell_{n}, d_{n}\right)\right) \geq \lim _{n \rightarrow \infty}(-\gamma+$ $\left.T \phi^{-1}\left(a\left(\ell_{n}, d_{n}\right)-\gamma\right)\right)=\infty$, a contradiction. The latter possibility can be argued similarly.
(ii) Let $\lim _{n \rightarrow \infty}\left(\ell_{n}, d_{n}\right)=\left(\ell_{0}, d_{0}\right)$ in $\mathbb{C}_{\mathrm{D}} \times \mathbb{R}$. By (i) the sequence $\left\{a\left(\ell_{n}, d_{n}\right)\right\}_{n=1}^{\infty}$ is bounded and hence we can choose a subsequence such that $\lim _{n \rightarrow \infty} a\left(\ell_{k_{n}}, d_{k_{n}}\right)=$ $a_{0} \in \mathbb{R}$. By (3.1), we get

$$
0=\Psi_{\ell_{k_{n}}, d_{k_{n}}}\left(a\left(\ell_{k_{n}}, d_{k_{n}}\right)\right)=d_{k_{n}}+\int_{0}^{T} \phi^{-1}\left(a\left(\ell_{k_{n}}, d_{k_{n}}\right)+\ell_{k_{n}}(t)\right) \mathrm{d} t
$$

which, for $n \rightarrow \infty$, yields

$$
0=d_{0}+\int_{0}^{T} \phi^{-1}\left(a_{0}+\ell_{0}(t)\right) \mathrm{d} t
$$

Thus, with respect to Lemma 3.1, we have $a_{0}=a\left(\ell_{0}, d_{0}\right)=\lim _{n \rightarrow \infty} a\left(\ell_{n}, d_{n}\right)$.
3.3. Lemma. The operator $\mathcal{N}: \mathbb{C}_{D}^{1} \mapsto \mathbb{C}_{D}$ given by

$$
\begin{equation*}
(\mathcal{N}(x))(t)=\int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) \mathrm{d} s+\sum_{i=1}^{m}\left[\phi\left(M_{i}\left(x^{\prime}\left(t_{i}\right)\right)\right)-\phi\left(x^{\prime}\left(t_{i}\right)\right)\right] \chi_{\left(t_{i}, T\right]}(t) \tag{3.2}
\end{equation*}
$$

is absolutely continuous. ${ }^{2}$
Proof. The continuity of \mathcal{N} follows from the continuity of all the mappings involved in the right-hand side of (3.2). Furthermore, let $\mathcal{H} \subset \mathbb{C}_{\mathrm{D}}^{1}$ be bounded. We need to show that the closure $\overline{\mathcal{N}(\mathcal{H})}$ of $\mathcal{N}(\mathcal{H})$ in \mathbb{C}_{D} is compact. To this aim, let $\|x\|_{\mathrm{D}} \leq$ $\gamma<\infty$ for each $x \in \mathcal{H}$. Then there are $c \in(0, \infty)$ and $h \in \mathbb{L}_{1}$ such that

$$
\sum_{i=1}^{m}\left[\phi\left(M_{i}\left(x^{\prime}\left(t_{i}\right)\right)\right)-\phi\left(x^{\prime}\left(t_{i}\right)\right)\right] \leq c \quad \text { and } \quad\left|f\left(t, x(t), x^{\prime}(t)\right)\right| \leq h(t) \quad \text { a.e. on }[0, T]
$$

for all $x \in \mathcal{H}$. Therefore

$$
\begin{equation*}
\|\mathcal{N}(x)\|_{\infty} \leq\|h\|_{1}+c \quad \text { for each } \quad x \in \mathcal{H} . \tag{3.3}
\end{equation*}
$$

[^1]Put $\left(\mathcal{N}_{1}(x)\right)(t)=\int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) \mathrm{d} s$. Then, for $t_{1}, t_{2} \in[0, T]$, we have

$$
\left|\left(\mathcal{N}_{1}(x)\right)\left(t_{2}\right)-\left(\mathcal{N}_{1}(x)\right)\left(t_{1}\right)\right| \leq\left|\int_{t_{1}}^{t_{2}} h(s) \mathrm{d} s\right|
$$

wherefrom, by (3.3), we deduce that the functions in $\mathcal{N}_{1}(\mathcal{H})$ are uniformly bounded and equicontinuous on $[0, T]$. Hence, making use of the Arzelà-Ascoli Theorem in \mathbb{C} (the space of functions continuous on $[0, T]$ with the norm $\|\cdot\|_{\infty}$), we get that each sequence in $\mathcal{N}_{1}(\mathcal{H})$ contains a subsequence convergent with respect to the norm $\|\cdot\|_{\infty}$. This shows that $\overline{\mathcal{N}_{1}(\mathcal{H})}$ is compact in \mathbb{C}_{D}. We know that the operator $\mathcal{N}_{2}=\mathcal{N}-\mathcal{N}_{1}$ is continuous. By (3.3), it maps bounded sets into bounded sets. Moreover, its values are contained in an m-dimensional subspace of \mathbb{C}_{D}. Thus, $\overline{\mathcal{N}_{2}(\mathcal{H})}$ is compact in \mathbb{C}_{D}.
3.4. Theorem. Let $a: \mathbb{C}_{D} \times \mathbb{R} \mapsto \mathbb{R}$ and $\mathcal{N}: \mathbb{C}_{D}^{1} \mapsto \mathbb{C}_{D}$ be respectively defined by (3.1) and (3.2). Furthermore define $\mathcal{J}: \mathbb{C}_{\mathrm{D}}^{1} \mapsto \mathbb{C}_{\mathrm{D}}^{1}$ by

$$
\begin{equation*}
(\mathcal{J}(x))(t)=\sum_{i=1}^{m}\left[J_{i}\left(x\left(t_{i}\right)\right)-x\left(t_{i}\right)\right] \chi_{\left(t_{i}, T\right]}(t) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{gather*}
(\mathcal{F}(x))(t)=\int_{0}^{t} \phi^{-1}(a(\mathcal{N}(x),(\mathcal{J}(x))(T))+(\mathcal{N}(x))(s)) \mathrm{d} s \tag{3.5}\\
+x(0)+x^{\prime}(0)-x^{\prime}(T)+(\mathcal{J}(x))(t)
\end{gather*}
$$

Then $\mathcal{F}: \mathbb{C}_{\mathrm{D}}^{1} \mapsto \mathbb{C}_{\mathrm{D}}^{1}$ is an absolutely continuous operator. Moreover, u is a solution of the problem (1.1) - (1.3) if and only if $\mathcal{F}(u)=u$.
Proof. For $x \in \mathbb{C}_{\mathrm{D}}^{1}$ and $t \in[0, T]$, we have

$$
\begin{equation*}
(\mathcal{F}(x))^{\prime}(t)=\phi^{-1}(a(\mathcal{N}(x),(\mathcal{J}(x))(T))+(\mathcal{N}(x))(t)) . \tag{3.6}
\end{equation*}
$$

Since the mappings a, \mathcal{N} and \mathcal{J} included in (3.5) and (3.6) are continuous, it follows that \mathcal{F} is continuous in $\mathbb{C}_{\mathrm{D}}^{1}$.

Choose an arbitrary bounded set $\mathcal{H} \subset \mathbb{C}_{\mathrm{D}}^{1}$. We will show that then the set $\overline{\mathcal{F}(\mathcal{H})}$ is compact in $\mathbb{C}_{\mathrm{D}}^{1}$. Let a sequence $\left\{v_{n}\right\} \subset \mathcal{F}(\mathcal{H})$ be given. It suffices to show that it contains a subsequence convergent in $\mathbb{C}_{\mathrm{D}}^{1}$. Let $\left\{x_{n}\right\} \subset \mathcal{H}$ be such that $v_{n}=\mathcal{F}\left(x_{n}\right)$ for $n \in \mathbb{N}$. By Lemma 3.3, there is a subsequence $\left\{x_{k_{n}}\right\}$ such that $\left\{\mathcal{N}\left(x_{k_{n}}\right)\right\}$ is convergent in \mathbb{C}_{D}. According to (3.3) and (3.4), there exists $\gamma \in(0, \infty)$ such that $\|\mathcal{N}(x)\|_{\infty}+|(\mathcal{J}(x))(T)| \leq \gamma$ for all $x \in \mathcal{H}$. Hence, by Lemma 3.2, the sequence $\left\{a\left(\mathcal{N}\left(x_{k_{n}}\right),\left(\mathcal{J}\left(x_{k_{n}}\right)\right)(T)\right)\right\} \subset \mathbb{R}$ is bounded and we can choose a subsequence $\left\{x_{\ell_{n}}\right\} \subset\left\{x_{k_{n}}\right\}$ such that $\left\{a\left(\mathcal{N}\left(x_{\ell_{n}}\right),\left(\mathcal{J}\left(x_{\ell_{n}}\right)\right)(T)\right)+\mathcal{N}\left(x_{\ell_{n}}\right)\right\}$ is convergent in \mathbb{C}_{D}. Consequently, $\left\{\left(\mathcal{F}\left(x_{\ell_{n}}\right)\right)^{\prime}\right\}$ and $\left\{\mathcal{F}\left(x_{\ell_{n}}\right)\right\}$ are convergent in \mathbb{C}_{D}, as well. Finally, by a direct computation we check that (1.1)-(1.3) is equivalent to the problem $u=\mathcal{F}(u)$. For more details, see our preprint [15].

4. Proofs of the main results

Sketch of the proof of Theorem 2.1. We can modify the arguments and constructions of [13], where the case $\phi(y) \equiv y$ is considered. By virtue of Theorem 3.4, the problem (1.1)-(1.3) has a solution if and only if the operator \mathcal{F} which is defined by (3.5) has a fixed point. To prove it we argue as follows: (i) we construct an auxiliary operator $\widetilde{\mathcal{F}}$ and prove that its Leray-Schauder topological degree is nonzero and consequently $\widetilde{\mathcal{F}}$ has a fixed point u; (ii) using the method of a priori estimates we show that u is a fixed point of \mathcal{F} satisfying (2.1). Since the realization of these ideas is quite close to the arguments of [13], we skip it. Detailed computation can be found in our preprint [15].

Proof of Theorem 2.2. Step 1. Define

$$
\beta_{j}(y)=\left\{\begin{array}{ll}
c_{j} & \text { for } y<c_{j}, \tag{4.1}\\
y & \text { for } c_{j} \leq y \leq d_{j}, \\
d_{j} & \text { for } y>d_{j}
\end{array} \quad j=1,2, \ldots, m+1 ;\right.
$$

$$
\begin{align*}
\widetilde{f}(t, x, y)= & f\left(t, x, \beta_{j}(y)\right)+\frac{y-\beta_{j}(y)}{\left|y-\beta_{j}(y)\right|+1} \tag{4.2}\\
& \text { for a.e. } t \in\left(t_{j-1}, t_{j}\right], x, y \in \mathbb{R}, j=1,2, \ldots, m+1
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{M}_{i}(y)=M_{i}\left(\beta_{i}(y)\right)+\frac{y-\beta_{j}(y)}{\left|y-\beta_{j}(y)\right|+1} \text { for } y \in \mathbb{R}, i=1,2, \ldots, m \tag{4.3}
\end{equation*}
$$

Now, consider the auxiliary problem

$$
\begin{gather*}
\left(\phi\left(u^{\prime}(t)\right)\right)^{\prime}=\widetilde{f}\left(t, u(t), u^{\prime}(t)\right) \quad \text { a.e. on }[0, T] ; \tag{4.4}\\
u\left(t_{i}+\right)=J_{i}\left(u\left(t_{i}\right)\right), \quad u^{\prime}\left(t_{i}+\right)=\widetilde{M}_{i}\left(u^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m, \tag{4.5}\\
u(0)=u(T), \quad \beta_{1}\left(u^{\prime}(0)\right)=u^{\prime}(T) . \tag{4.6}
\end{gather*}
$$

We see that \tilde{f} and \widetilde{M}_{i} have the same properties as f and M_{i}. In particular, \widetilde{f} satisfies (1.11) with $\omega(s) \equiv 1, \widetilde{M}_{i}$ fulfils (1.9) and σ_{1} / σ_{2} are lower/upper functions for (4.4)(4.6). Since we work with (4.6) instead of (1.3), we have to replace the expression $x(0)+x^{\prime}(0)-x^{\prime}(T)$ in (3.5) by $x(0)+\beta_{1}\left(x^{\prime}(0)\right)-x^{\prime}(T)$. Then we get the existence of a solution u of (4.4)-(4.6) satisfying (2.1) in the same way as in the proof of Theorem 2.1 for (1.1)-(1.3).

Step 2. Having the solution u of (4.4)-(4.6), it remains to show that (2.2) is true.
(i) Let $j \in\{1,2, \ldots, m+1\}$ and $\xi \in\left[t_{j-1}, t_{j}\right)$ be such that

$$
\begin{equation*}
\sup \left\{u^{\prime}(t): t \in[0, T]\right\}=u^{\prime}(\xi+)>d_{j} . \tag{4.7}
\end{equation*}
$$

Then there is $\delta>0$ such that $(\xi, \xi+\delta) \subset\left(t_{j-1}, t_{j}\right)$ and $u^{\prime}>d_{j}$ on $(\xi, \xi+\delta)$. By (1.12),

$$
\left(\phi\left(u^{\prime}(t)\right)\right)^{\prime}=f\left(t, u(t), d_{j}\right)+\frac{u^{\prime}(t)-d_{j}}{u^{\prime}(t)-d_{j}+1}>0 \text { for a.e. } t \in(\xi, \xi+\delta)
$$

i.e. $\phi\left(u^{\prime}(t)\right)>\phi\left(u^{\prime}(\xi+)\right)$ and so $u^{\prime}(t)>u^{\prime}(\xi+)$ for each $t \in(\xi, \xi+\delta)$), which contradicts (4.7).
(ii) Assume that

$$
\begin{equation*}
\sup \left\{u^{\prime}(t): t \in[0, T]\right\}=u^{\prime}\left(t_{j}\right)>d_{j} \quad \text { for some } t_{j} \in \mathrm{D} \tag{4.8}
\end{equation*}
$$

If $j=m+1$, i.e. $u^{\prime}(T)>d_{m+1}$, then, by (1.12), we have also $u^{\prime}(T)>d_{1}$. Since (4.1) and (4.6) imply $u^{\prime}(T) \leq d_{1}$, we get a contradiction.

If $j<m+1$, then

$$
\widetilde{M}_{j}\left(u^{\prime}\left(t_{j}\right)\right)=M_{j}\left(d_{j}\right)+\frac{u^{\prime}(t)-d_{j}}{u^{\prime}(t)-d_{j}+1}>M_{j}\left(d_{j}\right) \geq d_{j+1}
$$

so $u^{\prime}\left(t_{j}+\right)>d_{j+1}$. By part (i) we know that $u^{\prime}(t)-d_{j+1}$ cannot achieve a positive maximum inside $\left(t_{j}, t_{j+1}\right)$. Consequently, we have $u^{\prime}\left(t_{j+1}\right)>d_{j+1}$. Repeating this procedure we get $u^{\prime}(T)>d_{m+1}$ and a contradiction as before.

We have proved that $u^{\prime}(t) \leq d_{j}$ on $\left(t_{j-1}, t_{j}\right], j=1,2, \ldots, m+1$. The remaining inequalities in (2.2) can be derived analogously. Finally, since u fulfils (2.2), u is a solution of (1.1)-(1.3).

Sketch of the proof of Theorem 2.3. We borrow ideas of [14], where nonordered lower/upper functions to periodic impulsive problem without ϕ-Laplacian $(\phi(y)=y)$ have been studied. Here, we define the operator \mathcal{F} by (3.5). Then, according to \mathcal{F}, we construct auxiliary operators and compute their Leray-Schauder degrees by a similar procedure as in [14]. For this we need a priori estimates of solutions of corresponding auxiliary problems. Now we consider problems with ϕ Laplacians but the basic evaluation of estimates of $\phi\left(u^{\prime}\right)$ are similar to those of u^{\prime} in [14] and hence we omit their computation here. For details see our preprint [16].

Proof of Theorem 2.4. First, we will prove the following a priori estimate:
Claim. There exist $a_{j} \in(0, \infty), j=1,2, \ldots, m+1$, such that for each function $u \in \mathbb{C}_{\mathrm{D}}^{1}$ satisfying (1.2), (1.3), (2.2) and (2.3), the estimates

$$
\begin{equation*}
|u(t)| \leq a_{j} \quad \text { for } t \in\left(t_{j-1}, t_{j}\right], j=1,2, \ldots, m+1 \tag{4.9}
\end{equation*}
$$

are valid.

Indeed, let u satisfy the assumptions of Claim and let

$$
\rho_{0}=\max \left\{\left\|\sigma_{1}\right\|_{\infty},\left\|\sigma_{2}\right\|_{\infty}\right\} \quad \text { and } \quad \gamma_{i}=\max \left\{\left|c_{i}\right|,\left|d_{i}\right|\right\}, i=1,2, \ldots, m+1 .
$$

(i) If $t_{u} \in\left[0, t_{1}\right]$, then $|u(t)| \leq \gamma_{1} t_{1}+\rho_{0}$ for $t \in\left[0, t_{1}\right]$. Put

$$
a_{1}^{0}=\gamma_{1} t_{1}+\rho_{0} \quad \text { and } \quad b_{1}^{0}=\max \left\{\left|J_{1}(x)\right|: x \in\left[-a_{1}^{0}, a_{1}^{0}\right]\right\} .
$$

Then

$$
|u(t)| \leq \gamma_{2}\left(t_{2}-t_{1}\right)+b_{1}^{0} \text { for } t \in\left(t_{1}, t_{2}\right] .
$$

Further, put

$$
a_{2}^{0}=\gamma_{2}\left(t_{2}-t_{1}\right)+b_{1}^{0} \quad \text { and } \quad b_{2}^{0}=\max \left\{\left|J_{2}(x)\right|: x \in\left[-a_{2}^{0}, a_{2}^{0}\right]\right\} .
$$

Then

$$
|u(t)| \leq \gamma_{3}\left(t_{3}-t_{2}\right)+b_{2}^{0} \text { for } t \in\left(t_{2}, t_{3}\right] .
$$

By induction we get that $|u(t)| \leq a_{i}^{0}$ for $t \in\left(t_{i-1}, t_{i}\right]$, where

$$
a_{i+1}^{0}=\gamma_{i+1}\left(t_{i+1}-t_{i}\right)+\max \left\{\left|J_{i}(x)\right|: x \in\left[-a_{i}^{0}, a_{i}^{0}\right]\right\}, \quad i=1,2, \ldots, m .
$$

(ii) If $t_{u} \in\left(t_{j}, t_{j+1}\right]$ for some $j \in\{1,2, \ldots, m\}$, we get similarly as in (i) that

$$
|u(t)| \leq a_{i}^{j} \text { for } t \in\left(t_{i-1}, t_{i}\right], \quad i=1,2, \ldots, m+1,
$$

where

$$
\begin{aligned}
a_{j+1}^{j} & =\gamma_{j+1}\left(t_{j+1}-t_{j}\right)+\rho_{0}, \\
a_{i+1}^{j} & =\gamma_{i+1}\left(t_{i+1}-t_{i}\right)+\max \left\{\left|J_{i}(x)\right|: x \in\left[-a_{i}^{j}, a_{i}^{j}\right]\right\}, i=1,2, \ldots, j-1, j+1, \ldots, m, \\
a_{1}^{j} & =\gamma_{1} t_{1}+a_{m+1}^{j} .
\end{aligned}
$$

Setting

$$
a_{j}=\max \left\{\rho_{0}, a_{j}^{0}, a_{j}^{1}, \ldots, a_{j}^{m}\right\} \text { for } j=1,2, \ldots, m+1,
$$

we complete the proof of Claim.
Now, take β_{j} by (4.1) and for a_{j} of Claim put

$$
\alpha_{j}(x)=\left\{\begin{array}{cl}
-a_{j} & \text { for } x<-a_{j}, \\
x & \text { for }-a_{j} \leq x \leq a_{j}, \\
a_{j} & \text { for } x>a_{j}
\end{array}\right.
$$

and

$$
\widetilde{f}(t, x, y)=f\left(t, \alpha_{j}(x), \beta_{j}(y)\right)+\frac{y-\beta_{j}(y)}{\left|y-\beta_{j}(y)\right|+1}
$$

for a.e. $t \in\left(t_{j-1}, t_{j}\right]$, all $x, y \in \mathbb{R}, j=1,2, \ldots, m+1$.
Finally, define \widetilde{M}_{i} by (4.3). We see that all assumptions of Theorem 2.3 are satisfied for the problem (4.4)-(4.6) and consequently it has a solution u satisfying (2.3). As in the proof of Theorem 2.2, Step 2, we get that u fulfils (2.2). Hence u satisfies (1.2), (1.3) and, by Claim, also (4.8). Therefore, u is a solution of (1.1)-(1.3).

References

[1] A. Cabada and R. Pouso. Existence result for the problem $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right)$ with periodic and Neumann boundary conditions. Nonlinear Anal., Theory Methods Appl. 30 (1997), 1733-1742.
[2] A. Cabada, P. Habets and R. Pouso. Lower and upper solutions for the periodic problem associated with a ϕ-Laplacian equation. EQUADIFF 1999 - International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), 491-493, World Sci. Publishing, River Edge, NJ, 2000.
[3] M. Cherpion, C. De Coster and P. Habets. Monotone iterative methods for boundary value problems. Differ. Integral. Equ. 12 (3) (1999), 309-338.
[4] M. Del Pino, R. Manásevich and A. Murúa. Existence and multiplicity of solutions with prescribed period for a second order quasilinear O.D.E. Nonlinear Anal., Theory Methods Appl. 18 (1992), 79-92.
[5] C. Fabry and D. Fayyad. Periodic solutions of second order differential equation with a p-Laplacian and asymmetric nonlinearities. Rend. Ist. Mat. Univ. Trieste 24 (1992), 207-227.
[6] P. Girg. Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative. Electron. J. Differ. Equ., 2000, Paper No.63, 28 p., electronic only (2000).
[7] P. Jebelean and J. Mawhin. Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian. Adv. Nonlinear Stud. 2 (2002), 299-312.
[8] Bin Liu. Multiplicity results for periodic solutions of a second order quasilinear ordinary differential equations with asymmetric nonlinearities. Nonlinear Anal., Theory Methods Appl. 33 (2) (1998), 139-160.
[9] Bing Liu. Periodic solutions of dissipative dynamical systems with singular potential and p-Laplacian. Ann. Pol. Math. 79 (2)(2002), 109-120.
[10] R. Manásevich and J. Mawhin. Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differ. Equations 145 (1998), 367-393.
[11] J. Mawhin. Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian. Nonlinear Anal., Theory Methods Appl. 40 (2000), 497-503.
[12] J. Mawhin and A. Ureña. A Hartman-Nagumo inequality for the vector ordinary p Laplacian and application to nonlinear boundary value problem. J. Inequal. Appl. 7(5) (2002), 701-725.
[13] I. Rachůnková and M. Tvrdý. Nonmonotone impulse effects in second order periodic boundary value problems. Abstr. Anal. Appl. 2004: 7, 577-590.
[14] I. RachŮnková and M. TvrdÝ. Existence results for impulsive second order periodic problems. Nonlinear Anal., Theory Methods Appl., to appear.
[15] I. Rachůnková and M. Tvrdý. I. Rachůnková and M. Tvrdý. Second Order Periodic Problem with ϕ-Laplacian and Impulses - Part I. Mathematical Institute of the Academy of Sciences of the Czech Republic, Preprint 155/2004 [available as \http://www.math.cas.cz/ ~tvrdy/lapl1.pdf or \http://www.math.cas.cz/~tvrdy/lapl1.ps].
[16] I. Rachůnková and M. Tvrdý. Second Order Periodic Problem with ϕ-Laplacian and Impulses - Part II. Mathematical Institute of the Academy of Sciences of the Czech Republic, Preprint 156/2004 [available as \backslash http: //www.math.cas.cz/~tvrdy/lapl2.pdf or \http://www.math.cas.cz/~tvrdy/lapl2.ps].
[17] S. StanĚk. Periodic boundary value problem for second order functional differential equations. Math. Notes, Miskolc 1 (2000), 63-81.
[18] S. StanĚK. On solvability of singular periodic boundary value problems. Nonlinear Oscil. 4 (2001), 529-538.
[19] Ping Yan. Nonresonance for one-dimensional p-Laplacian with regular restoring. J. Math. Anal. Appl. 285 (2003),141-154.

Irena Rachůnková, Department of Mathematics, Palacký University, 77900 OLOMOUC, Tomkova 40, Czech Republic (e-mail: rachunko@inf.upol.cz)
Milan Tvrdý, Mathematical Institute, Academy of Sciences of the Czech Republic, 11567 PRAHA 1, Žitná 25, Czech Republic (e-mail: tvrdy@math.cas.cz)

[^0]: *Supported by the grant No. 201/04/1077 of the Grant Agency of the Czech Republic and by the Council of Czech Government J14/98:153100011
 ${ }^{\dagger}$ Supported by the grant No. 201/04/1077 of the Grant Agency of the Czech Republic

[^1]: ${ }^{1}$ The norm of $(\ell, d) \in \mathbb{C}_{\mathrm{D}} \times \mathbb{R}$ is defined by $\|\ell\|_{\infty}+|d|$.
 ${ }^{2}$ As usual, χ_{M} stands for the characteristic function of the set $M \subset \mathbb{R}$.

