Second Order Periodic Problem with ϕ-Laplacian and Impulses - Part II

Irena Rachůnková* and Milan Tvrdýt ${ }^{\dagger}$

September 23, 2004

Abstract

Existence principles for the BVP $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right), u\left(t_{i}+\right)=J_{i}\left(u\left(t_{i}\right)\right), u^{\prime}\left(t_{i}+\right)=$ $M_{i}\left(u^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m, u(0)=u(T), u^{\prime}(0)=u^{\prime}(T)$ are presented. They are based on the method of lower/upper functions which are not well-ordered. We continue our investigations from [16], where existence principles based on well-ordered lower/upper functions have been proved and from [13]-[15], where related results for the case that ϕ is the identity have been delivered. Mathematics Subject Classification 2000. 34B37, 34B15, 34C25

Keywords. ϕ-Laplacian, impulses, lower/upper functions, periodic solutions, topological degree

1. Introduction

We will consider the problem

$$
\begin{align*}
& \left(\phi\left(u^{\prime}(t)\right)\right)^{\prime}=f\left(t, u(t), u^{\prime}(t)\right) \quad \text { a.e. on }[0, T], \tag{1.1}\\
& u\left(t_{i}+\right)=J_{i}\left(u\left(t_{i}\right)\right), \quad u^{\prime}\left(t_{i}+\right)=M_{i}\left(u^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m, \tag{1.2}\\
& u(0)=u(T), \quad u^{\prime}(0)=u^{\prime}(T), \tag{1.3}
\end{align*}
$$

where

$$
u^{\prime}\left(t_{i}\right)=u^{\prime}\left(t_{i}-\right)=\lim _{t \rightarrow t_{i}-} u^{\prime}(t), i=1,2, \ldots, m+1, \quad u^{\prime}(0)=u^{\prime}(0+)=\lim _{t \rightarrow 0+} u^{\prime}(t)
$$

and

$$
\left\{\begin{array}{l}
m \in \mathbb{N}, 0=t_{0}<t_{1}<\cdots<t_{m}<t_{m+1}=T<\infty, \tag{1.4}\\
f \text { is a Carathéodory function on }[0, T] \times \mathbb{R}^{2}, \\
J_{i} \text { and } M_{i} \text { are continuous on } \mathbb{R}, i=1,2, \ldots, m, \\
\phi \text { is an increasing homeomorphism } \mathbb{R} \rightarrow \mathbb{R}, \phi(0)=0, \phi(\mathbb{R})=\mathbb{R} .
\end{array}\right.
$$

[^0]Throughout the paper we keep the following notation and conventions:
For a function u defined a.e. on $[0, T]$, we put

$$
\|u\|_{\infty}=\sup _{t \in[0, T]}^{\operatorname{ess}}|u(t)| \quad \text { and } \quad\|u\|_{1}=\int_{0}^{T}|u(s)| \mathrm{d} s .
$$

For a given interval $J \subset \mathbb{R}, \mathbb{C}(J)$ is the set of functions which are continuous on $J, \mathbb{C}^{1}(J)$ is the set of functions having continuous first derivatives on J and $\mathbb{L}(J)$ is the set of functions which are Lebesgue integrable on J.

Denote $\mathrm{D}=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$ and define \mathbb{C}_{D} (or $\mathbb{C}_{\mathrm{D}}^{1}$) as the sets of functions $u:[0, T] \mapsto \mathbb{R}$,

$$
u(t)= \begin{cases}u_{[0]}(t) & \text { if } t \in\left[0, t_{1}\right], \\ u_{[1]}(t) & \text { if } t \in\left(t_{1}, t_{2}\right], \\ \cdots & \cdots \\ u_{[m]}(t) & \text { if } t \in\left(t_{m}, T\right]\end{cases}
$$

where $u_{[i]}$ is continuous on $\left[t_{i}, t_{i+1}\right]$ (or continuously differentiable on $\left[t_{i}, t_{i+1}\right]$) for $i=0,1, \ldots, m$. If $u \in \mathbb{C}_{\mathrm{D}}^{1}$, we define $\|u\|_{\mathrm{D}}=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty} . \mathbb{C}_{\mathrm{D}}$ and $\mathbb{C}_{\mathrm{D}}^{1}$ respectively with the norms $\|.\|_{\infty}$ and $\|\cdot\|_{D}$ are Banach spaces. Further, \mathbb{A}_{D} is the set of functions $u \in \mathbb{C}_{\mathrm{D}}$ which are absolutely continuous on each subinterval $\left(t_{i}, t_{i+1}\right), i=0,1, \ldots, m$. The set of functions satisfying the Carathéodory conditions on $[0, T] \times \mathbb{R}^{2}$ will be denoted by $\operatorname{Car}\left([0, T] \times \mathbb{R}^{2}\right)$. As usual, χ_{M} will denote the characteristic function of the set $M \subset \mathbb{R}$. For $\psi \in \mathbb{C}(\mathbb{R})$ increasing on \mathbb{R} and $x \in \mathbb{R}$, we define

$$
\{x\}_{\psi}=\max \{|\psi(-x)|,|\psi(x)|\} .
$$

Given a Banach space \mathbb{X} and its subset M, let $\mathrm{cl}(M)$ and ∂M denote the closure and the boundary of M, respectively.

Let Ω be an open bounded subset of \mathbb{X}. Assume that the operator $\mathcal{F}: \operatorname{cl}(\Omega) \mapsto$ \mathbb{X} is completely continuous and $\mathcal{F} u \neq u$ for all $u \in \partial \Omega$. Then $\operatorname{deg}(\mathrm{I}-\mathcal{F}, \Omega)$ denotes the Leray-Schauder topological degree of $\mathrm{I}-\mathcal{F}$ with respect to Ω, where I is the identity operator on \mathbb{X}.

A solution of the problem (1.1)-(1.3) is a function $u \in \mathbb{C}_{\mathrm{D}}^{1}$ such that $\phi\left(u^{\prime}\right) \in \mathbb{A}_{\mathrm{D}}$ and (1.1)-(1.3) hold.

A function $\sigma \in \mathbb{C}_{\mathrm{D}}^{1}$ is called a lower function of (1.1)-(1.3) if $\phi\left(\sigma^{\prime}\right) \in \mathbb{A}_{\mathrm{D}}$ and

$$
\left\{\begin{array}{l}
\phi\left(\sigma^{\prime}(t)\right)^{\prime} \geq f\left(t, \sigma(t), \sigma^{\prime}(t)\right) \quad \text { for a.e. } t \in[0, T], \tag{1.5}\\
\sigma\left(t_{i}+\right)=J_{i}\left(\sigma\left(t_{i}\right)\right), \sigma^{\prime}\left(t_{i}+\right) \geq M_{i}\left(\sigma^{\prime}\left(t_{i}\right)\right), i=1,2, \ldots, m, \\
\sigma(0)=\sigma(T), \sigma^{\prime}(0) \geq \sigma^{\prime}(T) .
\end{array}\right.
$$

Similarly, a function $\sigma \in \mathbb{C}_{\mathrm{D}}^{1}$ with $\phi\left(\sigma^{\prime}\right) \in \mathbb{A}_{\mathrm{D}}$ is an upper function of (1.1)-(1.3) if it satisfies the relations (1.5) but with reversed inequalities.

Up to now, the only paper dealing with the problems with a ϕ-Laplacian and impulses is our previous paper [16], where we have established existence principles based on the existence of well-ordered lower/upper functions. As concerns problem (1.1), (1.3) (without impulses), there are various results about its solvability, see e.g. [4], [5], [6], [8], [9], [10], [11], [12] and [19]. The papers which are devoted to the lower/upper functions method for the problem (1.1), (1.3) mostly assume well-ordered σ_{1} / σ_{2}. We can refer to the papers [1], [3], [7] and [18]. The paper [2] is, to our knowledge, the only one presenting the lower/upper functions method for the problem $\left(\phi\left(u^{\prime}\right)^{\prime}=f(t, u)\right.$, (1.3) under the assumption that $\sigma_{1} \geq \sigma_{2}$, i.e. lower/upper functions are in the reverse order. If $\phi=\phi_{p}$ the authors get the existence results for $1<p \leq 2$, only. Therefore the existence principle (Theorem 3.1) which we state here for the impulsive problem (1.1)-(1.3) and the case (1.6) are new even for the non-impulsive problem (1.1), (1.3).

Our basic assumption is the existence of lower/upper functions:

$$
\begin{align*}
& \sigma_{1} \text { and } \sigma_{2} \text { are respectively lower and upper functions of (1.1)-(1.3) } \tag{1.6}\\
& \text { such that } \sigma_{1}(\tau)>\sigma_{2}(\tau) \text { for some } \tau \in[0, T]
\end{align*}
$$

i.e., in contrast to [16], they are not well-ordered. Furthermore, as in [14]-[16], we will assume that the impulse functions J_{i}, M_{i} fulfil the following weak monotonicity like conditions

$$
\begin{align*}
& \left\{\begin{array}{r}
x>\sigma_{1}\left(t_{i}\right) \Longrightarrow J_{i}(x)>J_{i}\left(\sigma_{1}\left(t_{i}\right)\right), \\
x<\sigma_{2}\left(t_{i}\right) \Longrightarrow J_{i}(x)<J_{i}\left(\sigma_{2}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m,
\end{array}\right. \tag{1.7}\\
& \left\{\begin{array}{l}
y \leq \sigma_{1}^{\prime}\left(t_{i}\right) \Longrightarrow M_{i}(y) \leq M_{i}\left(\sigma_{1}^{\prime}\left(t_{i}\right)\right), \\
y \geq \sigma_{2}^{\prime}\left(t_{i}\right) \Longrightarrow M_{i}(y) \geq M_{i}\left(\sigma_{2}^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m,
\end{array}\right. \tag{1.8}
\end{align*}
$$

To transfer the given problem (1.1)-(1.3) into a fixed point problem in $\mathbb{C}_{\mathrm{D}}^{1}$, we will borrow some ideas from [10] and [16]. First, notice that it can be equivalently rewritten as (1.1), (1.2),

$$
\begin{equation*}
u(0)=u(T)=u(0)+u^{\prime}(0)-u^{\prime}(T) \tag{1.9}
\end{equation*}
$$

Further, for $(\ell, d) \in \mathbb{C}_{\mathrm{D}} \times \mathbb{R}$ denote by $a(\ell, d)$ the unique solution $a \in \mathbb{R}$ of the equation

$$
\begin{equation*}
d+\int_{0}^{T} \phi^{-1}(a+\ell(t)) \mathrm{d} t=0 \tag{1.10}
\end{equation*}
$$

(see [16, Lemma 3.2]) and define the operators $\mathcal{N}: \mathbb{C}_{\mathrm{D}}^{1} \mapsto \mathbb{C}_{\mathrm{D}}$ and $\mathcal{J}: \mathbb{C}_{\mathrm{D}}^{1} \mapsto \mathbb{C}_{\mathrm{D}}^{1}$ respectively by

$$
\left\{\begin{array}{l}
(\mathcal{N}(x))(t)=\int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) \mathrm{d} s \tag{1.11}\\
\quad+\sum_{i=1}^{m}\left[\phi\left(M_{i}\left(x^{\prime}\left(t_{i}\right)\right)\right)-\phi\left(x^{\prime}\left(t_{i}\right)\right)\right] \chi_{\left(t_{i}, T\right]}(t), \quad t \in[0, T],
\end{array}\right.
$$

and

$$
\begin{equation*}
(\mathcal{J}(x))(t)=\sum_{i=1}^{m}\left[J_{i}\left(x\left(t_{i}\right)\right)-x\left(t_{i}\right)\right] \chi_{\left(t_{i}, T\right]}(t), \quad t \in[0, T] . \tag{1.12}
\end{equation*}
$$

Finally, for $x \in \mathbb{C}_{\mathrm{D}}^{1}$ and $t \in[0, T]$, define

$$
\left\{\begin{array}{c}
(\mathcal{F}(x))(t)=\int_{0}^{t} \phi^{-1}(a(\mathcal{N}(x),(\mathcal{J}(x))(T))+(\mathcal{N}(x))(s)) \mathrm{d} s \tag{1.13}\\
\\
+x(0)+x^{\prime}(0)-x^{\prime}(T)+(\mathcal{J}(x))(t)
\end{array}\right.
$$

Then $\mathcal{F}: \mathbb{C}_{\mathrm{D}}^{1} \mapsto \mathbb{C}_{\mathrm{D}}^{1}$ is an absolutely continuous operator and u is a solution of (1.1)-(1.3) if and only if $\mathcal{F}(u)=u$ (see [16, Theorem 3.5]).

In the proof of our main result we will need to evaluate the Leray-Schauder degree of a certain auxiliary operator with respect to sets determined by couples of well-ordered lower/upper functions. This is enabled by the following proposition which follows from [16, Theorem 4.4].
1.1. Proposition. Assume that (1.4) holds and let α and β be respectively lower and upper functions of (1.1) - (1.3) such that

$$
\begin{align*}
& \alpha(t)<\beta(t) \text { for } t \in[0, T] \quad \text { and } \quad \alpha(\tau+)<\beta(\tau+) \text { for } \tau \in \mathrm{D} \tag{1.14}\\
& \alpha\left(t_{i}\right) \leq x \leq \beta\left(t_{i}\right) \Longrightarrow J_{i}\left(\alpha\left(t_{i}\right)\right)<J_{i}(x)<J_{i}\left(\beta\left(t_{i}\right)\right), \quad i=1,2, \ldots, m \tag{1.15}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
y \leq \alpha^{\prime}\left(t_{i}\right) \Longrightarrow M_{i}(y) \leq M_{i}\left(\alpha^{\prime}\left(t_{i}\right)\right) \tag{1.16}\\
y \geq \beta^{\prime}\left(t_{i}\right) \Longrightarrow M_{i}(y) \geq M_{i}\left(\beta^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m
\end{array}\right.
$$

Further, let $h \in \mathbb{L}[0, T]$ be such that

$$
\begin{equation*}
|f(t, x, y)| \leq h(t) \quad \text { for a.e. } t \in[0, T] \text { and all }(x, y) \in[\alpha(t), \beta(t)] \times \mathbb{R} \tag{1.17}
\end{equation*}
$$

and let the operator \mathcal{F} be defined by (1.10)-(1.13). Finally, for $\gamma \in(0, \infty)$ denote

$$
\left\{\begin{array}{l}
\Omega(\alpha, \beta, \gamma)=\left\{u \in \mathbb{C}_{\mathrm{D}}: \alpha(t)<u(t)<\beta(t) \text { for } t \in[0, T]\right. \tag{1.18}\\
\left.\alpha(\tau+)<u(\tau+)<\beta(\tau+) \text { for } \tau \in \mathrm{D},\left\|u^{\prime}\right\|_{\infty}<\gamma\right\} .
\end{array}\right.
$$

Then $\operatorname{deg}(\mathrm{I}-\mathcal{F}, \Omega(\alpha, \beta, \gamma))=1$ whenever $\mathcal{F} u \neq u$ on $\partial \Omega(\alpha, \beta, \gamma)$ and

$$
\begin{equation*}
\gamma>\left\{\|h\|_{1}\right\}_{\phi^{-1}}+\frac{\|\alpha\|_{\infty}+\|\beta\|_{\infty}}{\Delta}, \quad \text { where } \quad \Delta=\min _{i=1,2, \ldots, m+1}\left(t_{i}-t_{i-1}\right) . \tag{1.19}
\end{equation*}
$$

Proof. Using the Mean Value Theorem, we can show that

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty} \leq\left\{\|h\|_{1}\right\}_{\phi^{-1}}+\frac{\|\alpha\|_{\infty}+\|\beta\|_{\infty}}{\Delta} \tag{1.20}
\end{equation*}
$$

holds for each $u \in \mathbb{C}_{\mathrm{D}}$ fulfilling $\alpha(t)<u(t)<\beta(t)$ on $[0, T]$ and $\alpha(\tau+)<u(\tau+)<$ $\beta(\tau+)$ on D . Thus, if we denote by c the right-hand side of (1.20), we can follow the proof of [16, Theorem 4.4].

2. A priori estimates

Notice that from a priori estimates given by Lemmas 2.1-2.3 in [15] and Lemma 2.4 in [14], only the first one depend on the form of the differential equation (1.1) and requires a modification for the purposes of this paper.
2.1. Lemma. Let $\rho_{1} \in(0, \infty), \widetilde{h} \in \mathbb{L}[0, T], M_{i} \in \mathbb{C}(\mathbb{R}), i=1,2, \ldots, m$. Then there exists $d \in\left(\rho_{1}, \infty\right)$ such that the estimate

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty}<d \tag{2.1}
\end{equation*}
$$

is valid for each $u \in \mathbb{A C}_{\mathrm{D}}^{1}$ and each $\widetilde{M}_{i} \in \mathbb{C}(\mathbb{R}), i=1,2, \ldots, m$, satisfying (1.3),

$$
\begin{align*}
& \left|\phi\left(u^{\prime}\left(\xi_{u}\right)\right)\right|<\rho_{1} \quad \text { for some } \xi_{u} \in[0, T], \tag{2.2}\\
& u^{\prime}\left(t_{i}+\right)=\widetilde{M}_{i}\left(u^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m \tag{2.3}\\
& \left|\left(\phi\left(u^{\prime}(t)\right)\right)^{\prime}\right|<\widetilde{h}(t) \text { for a.e. } t \in[0, T] \tag{2.4}
\end{align*}
$$

and

$$
\begin{align*}
\sup \left\{\left|M_{i}(y)\right|:|y|<a\right\}<b & \Longrightarrow \sup \left\{\left|\widetilde{M}_{i}(y)\right|:|y|<a\right\}<b \tag{2.5}\\
& \text { for } i=1,2, \ldots, m, a \in(0, \infty), b \in(a, \infty) .
\end{align*}
$$

Proof. Suppose that $u \in \mathbb{A} \mathbb{C}_{\mathrm{D}}^{1}$ and $\widetilde{M}_{i} \in \mathbb{C}(\mathbb{R}), i=1,2, \ldots, m$, satisfy (1.3) and (2.2)-(2.5). Due to (1.3), we can assume that $\xi_{u} \in(0, T]$, i.e. there is $j \in$ $\{1,2, \ldots, m+1\}$ such that $\xi_{u} \in\left(t_{j-1}, t_{j}\right]$. We will distinguish 3 cases: either $j=1$ or $j=m+1$ or $1<j<m+1$.

Let $j=1$. Then, using (2.2) and (2.4), we obtain $\left|\phi\left(u^{\prime}(t)\right)\right|<\rho_{1}+\|\widetilde{h}\|_{1}$ for $t \in\left[0, t_{1}\right]$, i.e.

$$
\begin{equation*}
\left|u^{\prime}(t)\right|<a_{1} \quad \text { on }\left[0, t_{1}\right], \tag{2.6}
\end{equation*}
$$

where $a_{1}=\left\{\rho_{1}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}}$. Since $M_{1} \in \mathbb{C}(\mathbb{R})$, we can find $b_{1}\left(a_{1}\right) \in\left(a_{1}, \infty\right)$ such that $\left|M_{1}(y)\right|<b_{1}\left(a_{1}\right)$ for all $y \in\left(-a_{1}, a_{1}\right)$. Hence, in view of (2.3) and (2.5), we have $\left|u^{\prime}\left(t_{1}+\right)\right|<b_{1}\left(a_{1}\right)$, wherefrom, using (2.4), we deduce that

$$
\left|u^{\prime}(t)\right|<\left\{\left\{b_{1}\left(a_{1}\right)\right\}_{\phi}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}} \text { for } t \in\left(t_{1}, t_{2}\right]
$$

Continuing by induction, we get $b_{i}\left(a_{i}\right) \in\left(a_{i}, \infty\right)$ such that

$$
\left|u^{\prime}(t)\right|<a_{i+1}=\left\{\left\{b_{i}\left(a_{i}\right)\right\}_{\phi}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}} \text { on }\left(t_{i}, t_{i+1}\right]
$$

for $i=2, \ldots, m$, i.e.

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty}<d:=\max \left\{a_{i}: i=1,2, \ldots, m+1\right\} . \tag{2.7}
\end{equation*}
$$

Assume that $j=m+1$. Then, using (2.2) and (2.4), we obtain

$$
\begin{equation*}
\left|u^{\prime}(t)\right|<a_{m+1} \text { on }\left(t_{m}, T\right], \tag{2.8}
\end{equation*}
$$

where

$$
a_{m+1}=\left\{\rho_{1}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}}
$$

Furthermore, due to (1.3), we have $\left|u^{\prime}(0)\right|<a_{m+1}$ which together with (2.4) yields that (2.6) is true with

$$
a_{1}=\left\{\left\{a_{m+1}\right\}_{\phi}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}}
$$

Now, proceeding as in the case $j=1$, we show that (2.7) is true also in the case $j=m+1$.

Assume that $1<j<m+1$. Then (2.2) and (2.4) yield

$$
\left|u^{\prime}(t)\right|<a_{j+1}=\left\{\rho_{1}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}} \text { on }\left(t_{j}, t_{j+1}\right] .
$$

If $j<m$, then

$$
\left|u^{\prime}(t)\right|<a_{j+2}=\left\{\left\{b_{j+1}\left(a_{j+1}\right)\right\}_{\phi}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}} \quad \text { on }\left(t_{j+1}, t_{j+2}\right]
$$

where $b_{j+1}\left(a_{j+1}\right)>a_{j+1}$. Proceeding by induction we get (2.8) with

$$
a_{m+1}=\left\{\left\{b_{m}\left(a_{m}\right)\right\}_{\phi}+\|\widetilde{h}\|_{1}\right\}_{\phi^{-1}}
$$

and $b_{m}\left(a_{m}\right)>a_{m}$, wherefrom (2.7) again follows as in the previous case.

Remaining a priori estimates can be taken from [15] and [16] without any change:
2.2. Lemma. ([15, Lemma 2.2].) Let $\rho_{0}, d, q \in(0, \infty)$ and $J_{i} \in \mathbb{C}(\mathbb{R}), i=$ $1,2, \ldots, m$. Then there exists $c \in\left(\rho_{0}, \infty\right)$ such that the estimate

$$
\begin{equation*}
\|u\|_{\infty}<c \tag{2.9}
\end{equation*}
$$

is valid for each $u \in \mathbb{C}_{\mathrm{D}}$ and each $\widetilde{J}_{i} \in \mathbb{C}(\mathbb{R}), i=1,2, \ldots, m$, satisfying (1.3),
(2.10) $u\left(t_{i}+\right)=\widetilde{J}_{i}\left(u\left(t_{i}\right)\right), \quad i=1,2, \ldots, m$,
(2.11) $\left|u\left(\tau_{u}\right)\right|<\rho_{0} \quad$ for some $\tau_{u} \in[0, T]$
and
(2.12) $\sup \left\{\left|J_{i}(x)\right|:|x|<a\right\}<b \Longrightarrow \sup \left\{\left|\widetilde{J}_{i}(x)\right|:|x|<a\right\}<b$ for $i=1,2, \ldots, m, a \in(0, \infty), b \in(a+q, \infty)$.
2.3. Lemma. ([15, Lemma 2.3].) Assume that $\sigma_{1}, \sigma_{2} \in \mathbb{A C}_{\mathbb{D}}^{1}, J_{i}, M_{i}, \widetilde{J}_{i}$, $\widetilde{M}_{i} \in \mathbb{C}(\mathbb{R}), i=1,2, \ldots, m$, satisfy (1.7), (1.8),

$$
\left\{\begin{array}{l}
x>\sigma_{1}\left(t_{i}\right) \Longrightarrow \widetilde{J}_{i}(x)>\widetilde{J}_{i}\left(\sigma_{1}\left(t_{i}\right)\right)=J_{i}\left(\sigma_{1}\left(t_{i}\right)\right), \tag{2.13}\\
x<\sigma_{2}\left(t_{i}\right) \Longrightarrow \widetilde{J}_{i}(x)<\widetilde{J}_{i}\left(\sigma_{2}\left(t_{i}\right)\right)=J_{i}\left(\sigma_{2}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
y \leq \sigma_{1}^{\prime}\left(t_{i}\right) \Longrightarrow \widetilde{M}_{i}(y) \leq M_{i}\left(\sigma_{1}^{\prime}\left(t_{i}\right)\right) \tag{2.14}\\
y \geq \sigma_{2}^{\prime}\left(t_{i}\right) \Longrightarrow \widetilde{M}_{i}(y) \geq M_{i}\left(\sigma_{2}^{\prime}\left(t_{i}\right)\right), \quad i=1,2, \ldots, m
\end{array}\right.
$$

Define

$$
\begin{array}{r}
B=\left\{u \in \mathbb{C}_{\mathrm{D}}:\right. \tag{2.15}\\
\text { of the conditions }(2.16),(2.17),(2.18)\},
\end{array}
$$

where

$$
\begin{align*}
& u\left(s_{u}\right)<\sigma_{1}\left(s_{u}\right) \text { and } u\left(t_{u}\right)>\sigma_{2}\left(t_{u}\right) \text { for some } s_{u}, t_{u} \in[0, T], \tag{2.16}\\
& u \geq \sigma_{1} \text { on }[0, T] \text { and } \inf _{t \in[0, T]}\left|u(t)-\sigma_{1}(t)\right|=0, \tag{2.17}\\
& u \leq \sigma_{2} \text { on }[0, T] \text { and } \inf _{t \in[0, T]}\left|u(t)-\sigma_{2}(t)\right|=0 . \tag{2.18}
\end{align*}
$$

Then each function $u \in B$ satisfies

$$
\left\{\begin{array}{l}
\left|u^{\prime}\left(\xi_{u}\right)\right|<\rho_{1} \quad \text { for some } \xi_{u} \in[0, T], \text { where } \tag{2.19}\\
\rho_{1}=\frac{2}{t_{1}}\left(\left\|\sigma_{1}\right\|_{\infty}+\left\|\sigma_{2}\right\|_{\infty}\right)+\left\|\sigma_{1}^{\prime}\right\|_{\infty}+\left\|\sigma_{2}^{\prime}\right\|_{\infty}+1
\end{array}\right.
$$

2.4. Lemma. ([14, Lemma 2.4].) Assume that $\sigma_{1}, \sigma_{2} \in \mathbb{A} \mathbb{C}_{\mathrm{D}}^{1}, J_{i}, \widetilde{J}_{i} \in \mathbb{C}(\mathbb{R})$, $i=1,2, \ldots, m$, satisfy (1.7) and (2.13). Then

$$
\begin{align*}
& \min \left\{\sigma_{1}\left(\tau_{u}+\right), \sigma_{2}\left(\tau_{u}+\right)\right\} \leq u\left(\tau_{u}+\right) \leq \max \left\{\sigma_{1}\left(\tau_{u}+\right), \sigma_{2}\left(\tau_{u}+\right)\right\} \tag{2.20}\\
& \text { for some } \tau_{u} \in[0, T)
\end{align*}
$$

is true for each $u \in \mathbb{C}_{\mathrm{D}}$ fulfilling (1.3), (2.10) and one of the conditions (2.16)(2.18).

3. Main result

3.1. Theorem. Assume that (1.4), (1.6), (1.7) and (1.8) hold and let $h \in \mathbb{L}[0, T]$ be such that

$$
\begin{equation*}
|f(t, x, y)| \leq h(t) \text { for a.e. } t \in[0, T] \text { and all }(x, y) \in \mathbb{R}^{2} \tag{3.1}
\end{equation*}
$$

Then the problem (1.1)-(1.3) has a solution u satisfying one of the conditions (2.16) - (2.18).

Proof. - Step 1. We construct a proper auxiliary problem.
Let σ_{1} and σ_{2} be respectively lower and upper functions of (1.1)-(1.3) and let ρ_{1} be associated with them as in (2.19). Put

$$
\widetilde{h}(t)=2 h(t)+1 \text { for a.e. } t \in[0, T] \text { and } \widetilde{\rho}=\rho_{1}+\sum_{i=1}^{m}\left(\left|M_{i}\left(\sigma_{1}^{\prime}\left(t_{i}\right)\right)\right|+\left|M_{i}\left(\sigma_{2}^{\prime}\left(t_{i}\right)\right)\right|\right) .
$$

By Lemma 2.1, find $d \in(\widetilde{\rho}, \infty)$ satisfying (2.1). Furthermore, put $\rho_{0}=\left\|\sigma_{1}\right\|_{\infty}+$ $\left\|\sigma_{2}\right\|_{\infty}+1$ and

$$
\begin{equation*}
q=\frac{T}{m} \max \left\{\left(\sum_{i=1}^{m} \max _{|y| \leq d+1}\left|M_{i}(y)\right|\right), d+1\right\} \tag{3.2}
\end{equation*}
$$

and, by Lemma 2.2, find $c \in\left(\rho_{0}+q, \infty\right)$ fulfilling (2.9). In particular, we have

$$
\begin{equation*}
c>\left\|\sigma_{1}\right\|_{\infty}+\left\|\sigma_{2}\right\|_{\infty}+q+1, \quad d>\left\|\sigma_{1}^{\prime}\right\|_{\infty}+\left\|\sigma_{2}^{\prime}\right\|_{\infty}+1 \tag{3.3}
\end{equation*}
$$

Finally, for a.e. $t \in[0, T]$ and all $x, y \in \mathbb{R}$ and $i=1,2, \ldots, m$, define functions

$$
\widetilde{f}(t, x, y)= \begin{cases}f(t, x, y)-h(t)-1 & \text { if } x \leq-c-1, \tag{3.4}\\ f(t, x, y)+(x+c)(h(t)+1) & \text { if }-c-1<x<-c, \\ f(t, x, y) & \text { if }-c \leq x \leq c, \\ f(t, x, y)+(x-c)(h(t)+1) & \text { if } c<x<c+1, \\ f(t, x, y)+h(t)+1 & \text { if } x \geq c+1,\end{cases}
$$

$$
\begin{align*}
& \widetilde{J}_{i}(x)= \begin{cases}x+q & \text { if } x \leq-c-1, \\
J_{i}(-c)(c+1+x)-(x+q)(x+c) & \text { if }-c-1<x<-c, \\
J_{i}(x) & \text { if }-c \leq x \leq c, \\
J_{i}(c)(c+1-x)+(x-q)(x-c) & \text { if } c<x<c+1, \\
x-q & \text { if } x \geq c+1,\end{cases} \tag{3.5}\\
& \widetilde{M}_{i}(y)= \begin{cases}y & \text { if } y \leq-d-1, \\
M_{i}(-d)(d+1+y)-y(y+d) & \text { if }-d-1<y<-d, \\
M_{i}(y) & \text { if }-d \leq y \leq d, \\
M_{i}(d)(d+1-y)+y(y-d) & \text { if } d<y<d+1, \\
y & \text { if } y \geq d+1\end{cases} \tag{3.6}
\end{align*}
$$

and consider the auxiliary problem

$$
\begin{equation*}
\left(\phi\left(u^{\prime}\right)\right)^{\prime}=\tilde{f}\left(t, u, u^{\prime}\right), \quad(2.10), \quad(2.3) \tag{3.7}
\end{equation*}
$$

Due to (1.6), $\quad \tilde{f} \in \operatorname{Car}([0, T] \times \mathbb{R}), \quad \widetilde{J}_{i}, \quad \widetilde{M}_{i} \in \mathbb{C}(\mathbb{R})$ for $i=1,2, \ldots, m$, and, as in the proof of [15, Theorem 3.1], they satisfy the assumptions of Lemmas 2.1-2.4. According to (3.3)-(3.6) the functions σ_{1} and σ_{2} are respectively lower and upper functions of (3.7). By (3.1) we have

$$
\begin{equation*}
|\widetilde{f}(t, x, y)| \leq \widetilde{h}(t) \text { for a.e. } t \in[0, T] \text { and all }(x, y) \in \mathbb{R}^{2} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{cases}\tilde{f}(t, x, y)<0 & \text { for a.e. } t \in[0, T] \text { and all }(x, y) \in(-\infty,-c-1] \times \mathbb{R} \tag{3.9}\\ \tilde{f}(t, x, y)>0 & \text { for a.e. } t \in[0, T] \text { and all }(x, y) \in[c+1, \infty) \times \mathbb{R}\end{cases}
$$

- Step 2. We construct a well-ordered pair of "big" lower/upper functions for (3.7). Put

$$
\begin{equation*}
A^{*}=q+\sum_{i=1}^{m} \max _{|x| \leq c+1}\left|\widetilde{J}_{i}(x)\right| \tag{3.10}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\sigma_{4}(0)=A^{*}+m q \tag{3.11}\\
\sigma_{4}(t)=A^{*}+(m-i) q+\frac{m q}{T} t \text { for } t \in\left(t_{i}, t_{i+1}\right], i=0,1, \ldots, m \\
\sigma_{3}(t)=-\sigma_{4}(t) \text { for } t \in[0, T]
\end{array}\right.
$$

Then $\sigma_{3}, \sigma_{4} \in \mathbb{A}_{\mathrm{D}}^{1}$ and, by (3.5) and (3.10),

$$
\begin{equation*}
\sigma_{3}(t)<-A^{*}<-c-1, \quad \sigma_{4}(t)>A^{*}>c+1 \text { for } t \in[0, T] . \tag{3.12}
\end{equation*}
$$

In view of (3.2),

$$
\begin{equation*}
\sigma_{3}^{\prime}(t)=-\frac{m q}{T} \leq-(d+1) \quad \text { and } \quad \sigma_{4}^{\prime}(t)=\frac{m q}{T} \geq d+1 \text { for } t \in[0, T] \tag{3.13}
\end{equation*}
$$

Furthermore, by (3.5) and (3.9), (3.11), (3.12), we have

$$
\sigma_{4}\left(t_{i}+\right)=A^{*}+(m-i) q+\frac{m q}{T} t_{i}=\sigma_{4}\left(t_{i}\right)-q=\widetilde{J}_{i}\left(\sigma_{4}\left(t_{i}\right)\right)
$$

and

$$
0=\left(\phi\left(\sigma_{4}^{\prime}(t)\right)\right)^{\prime}<\widetilde{f}\left(t, \sigma_{4}(t), \sigma_{4}^{\prime}(t)\right) \text { for a.e. } t \in[0, T],
$$

respectively. Moreover, $\sigma_{4}(0)=A^{*}+m q=\sigma_{4}(T)$ and $\sigma_{4}^{\prime}(0)=\frac{m q}{T}=\sigma_{4}^{\prime}(T)$ and, by virtue of (3.2) and (3.6),

$$
\sigma_{4}^{\prime}\left(t_{i}+\right)=\frac{m q}{T}=\sigma_{4}^{\prime}\left(t_{i}\right)=\widetilde{M}_{i}\left(\sigma_{4}^{\prime}\left(t_{i}\right)\right) \text { for } i=1,2, \ldots, m
$$

i.e. σ_{4} is an upper function of (3.7). Finally, since $\sigma_{3}=-\sigma_{4}$, we see that σ_{3} is a lower function of (3.7).

Clearly,

$$
\begin{equation*}
\sigma_{3}<\sigma_{4} \text { on }[0, T] \text { and } \sigma_{3}(\tau+)<\sigma_{4}(\tau+) \text { for } \tau \in \mathrm{D} \tag{3.14}
\end{equation*}
$$

Having a from (1.10), let us define for $x \in \mathbb{C}_{\mathrm{D}}^{1}$ and $t \in[0, T]$

$$
\begin{aligned}
(\widetilde{\mathcal{N}}(x))(t)= & \int_{0}^{t} \widetilde{f}\left(s, x(s), x^{\prime}(s)\right) \mathrm{d} s \\
& +\sum_{i=1}^{m}\left[\phi\left(\widetilde{M}_{i}\left(x^{\prime}\left(t_{i}\right)\right)\right)-\phi\left(x^{\prime}\left(t_{i}\right)\right)\right] \chi_{\left(t_{i}, T\right]}(t) \\
(\widetilde{\mathcal{J}}(x))(t)= & \sum_{i=1}^{m}\left[\widetilde{J}_{i}\left(x\left(t_{i}\right)\right)-x\left(t_{i}\right)\right] \chi_{\left(t_{i}, T\right]}(t)
\end{aligned}
$$

and

$$
\left\{\begin{array}{c}
(\widetilde{\mathcal{F}}(x))(t)= \tag{3.15}\\
\int_{0}^{t} \phi^{-1}(a(\widetilde{\mathcal{N}}(x),(\widetilde{\mathcal{J}}(x))(T))+(\widetilde{\mathcal{N}}(x))(s)) \mathrm{d} s \\
\\
+x(0)+x^{\prime}(0)-x^{\prime}(T)+(\widetilde{\mathcal{J}}(x))(t)
\end{array}\right.
$$

By [16, Theorem 3.5], $\widetilde{\mathcal{F}}: \mathbb{C}_{\mathrm{D}}^{1} \mapsto \mathbb{C}_{\mathrm{D}}^{1}$ is completely continuous and u is a solution of (3.7) whenever $\widetilde{\mathcal{F}} u=u$.

- Step 3. We prove the first a priori estimate for solutions of (3.7). Define

$$
\begin{gather*}
\Omega_{0}=\left\{u \in \mathbb{C}_{\mathrm{D}}:\left\|u^{\prime}\right\|_{\infty}<C^{*}, \sigma_{3}<u<\sigma_{4} \text { on }[0, T],\right. \tag{3.16}\\
\left.\sigma_{3}(\tau+)<u(\tau+)<\sigma_{4}(\tau+) \text { for } \tau \in \mathrm{D}\right\},
\end{gather*}
$$

where

$$
\begin{equation*}
C^{*}=1+\left\{\|\widetilde{h}\|_{1}+\left\{\frac{\left\|\sigma_{3}\right\|_{\infty}+\left\|\sigma_{4}\right\|_{\infty}}{\Delta}\right\}_{\phi}\right\}_{\phi^{-1}} \tag{3.17}
\end{equation*}
$$

and Δ is defined in (1.19). We are going to prove that for each solution u of (3.7) the estimate

$$
\begin{equation*}
u \in \operatorname{cl}\left(\Omega_{0}\right) \Longrightarrow u \in \Omega_{0} \tag{3.18}
\end{equation*}
$$

is true. To this aim, suppose that u is a solution of (3.7) and $u \in \operatorname{cl}\left(\Omega_{0}\right)$, i.e. $\left\|u^{\prime}\right\|_{\infty} \leq C^{*}$ and

$$
\begin{equation*}
\sigma_{3} \leq u \leq \sigma_{4} \text { on }[0, T] . \tag{3.19}
\end{equation*}
$$

By the Mean Value Theorem, there are $\xi_{i} \in\left(t_{i}, t_{i+1}\right), i=1,2, \ldots, m$, such that $\left|u^{\prime}\left(\xi_{i}\right)\right| \leq\left(\left\|\sigma_{3}\right\|_{\infty}+\left\|\sigma_{4}\right\|_{\infty}\right) / \Delta$. Hence, by (3.8), we get

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{\infty}<C^{*} \tag{3.20}
\end{equation*}
$$

where C^{*} is defined in (3.17). It remains to show that $\sigma_{3}<u<\sigma_{4}$ on $[0, T]$ and $\sigma_{3}(\tau+)<u(\tau+)<\sigma_{4}(\tau+)$ for $\tau \in \mathrm{D}$. Assume the contrary. Then there exists $k \in\{3,4\}$ such that

$$
\begin{equation*}
u(\xi)=\sigma_{k}(\xi) \quad \text { for some } \quad \xi \in[0, T] \tag{3.21}
\end{equation*}
$$

or

$$
\begin{equation*}
u\left(t_{i}+\right)=\sigma_{k}\left(t_{i}+\right) \quad \text { for some } t_{i} \in \mathrm{D} \tag{3.22}
\end{equation*}
$$

Case A. Let (3.21) hold for $k=4$.
(i) If $\xi=0$, then $u(0)=\sigma_{4}(0)=\sigma_{4}(T)=u(T)=A^{*}+q m$ which gives, in view of (1.3), (3.13) and (3.19),

$$
u^{\prime}(0)=u^{\prime}(T)=\frac{m q}{T}=\sigma_{4}^{\prime}(t) \text { for } t \in[0, T] .
$$

Further, due to (3.9) and (3.12), we can find $\delta>0$ such that $u>c+1$ on $[0, \delta]$ and

$$
\phi\left(u^{\prime}(t)\right)-\phi\left(u^{\prime}(0)\right)=\int_{0}^{t} \widetilde{f}\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s>0 \text { for } t \in[0, \delta] .
$$

Hence $u^{\prime}(t)>u^{\prime}(0)=\sigma_{4}^{\prime}(t)$ on $(0, \delta]$ which implies that $u>\sigma_{4}$ on $(0, \delta]$, contrary to (3.19).
(ii) If $\xi \in\left(t_{i}, t_{i+1}\right)$ for some $t_{i} \in \mathrm{D}$, then $u^{\prime}(\xi)=\sigma_{4}^{\prime}(\xi)=\frac{m q}{T}=\sigma_{4}^{\prime}(t)$ for $t \in[0, T]$ and we reach a contradiction as above.
(iii) If $\xi=t_{i} \in \mathrm{D}$, then $u\left(t_{i}\right)=\sigma_{4}\left(t_{i}\right)$ and, by (3.5), (3.12) and (3.3),

$$
u\left(t_{i}+\right)=\sigma_{4}\left(t_{i}+\right)=\sigma_{4}\left(t_{i}\right)-q>c+1-q>\left\|\sigma_{1}\right\|_{\infty}+\left\|\sigma_{2}\right\|_{\infty}
$$

By virtue of (3.19) we have $u^{\prime}\left(t_{i}+\right) \leq \sigma_{4}^{\prime}\left(t_{i}+\right)$ and $u^{\prime}\left(t_{i}\right) \geq \sigma_{4}^{\prime}\left(t_{i}\right)$. Now, since the last inequality together with (3.6) and (3.13) yield $u^{\prime}\left(t_{i}+\right) \geq \sigma_{4}^{\prime}\left(t_{i}+\right)$, we get $u^{\prime}\left(t_{i}+\right)=\sigma_{4}^{\prime}\left(t_{i}+\right)=\frac{m q}{T}=\sigma_{4}^{\prime}(t)$ for $t \in[0, T]$. Similarly as above, this leads again to a contradiction.

Case B. Let (3.22) hold for $k=4$, i.e. $u\left(t_{i}+\right)=\sigma_{4}\left(t_{i}+\right)$. By (3.5) and (3.12), $\widetilde{J}_{i}\left(u\left(t_{i}\right)\right)=\sigma_{4}\left(t_{i}+\right)=\sigma_{4}\left(t_{i}\right)-q>A^{*}-q$, wherefrom, with respect to (3.10), we get $u\left(t_{i}\right)>c+1$ and hence $\widetilde{J}_{i}\left(u\left(t_{i}\right)\right)=u\left(t_{i}\right)-q$. Therefore $u\left(t_{i}\right)=\sigma_{4}\left(t_{i}\right)$ and we can continue as in Case A (iii).

If (3.21) or (3.22) hold for $k=3$, then we use analogical arguments as in CASE A or Case B.

- Step 4. We prove the second a priori estimate for solutions of (3.7).

Define sets

$$
\begin{aligned}
& \Omega_{1}=\left\{u \in \Omega_{0}: u(t)>\sigma_{1}(t) \text { for } t \in[0, T], u(\tau+)>\sigma_{1}(\tau+) \text { for } \tau \in \mathrm{D}\right\}, \\
& \Omega_{2}=\left\{u \in \Omega_{0}: u(t)<\sigma_{2}(t) \text { for } t \in[0, T], u(\tau+)<\sigma_{2}(\tau+) \text { for } \tau \in \mathrm{D}\right\}
\end{aligned}
$$

and $\widetilde{\Omega}=\Omega_{0} \backslash \operatorname{cl}\left(\Omega_{1} \cup \Omega_{2}\right)$. Then

$$
\begin{equation*}
\widetilde{\Omega}=\left\{u \in \Omega_{0}: u \text { satisfies (2.16) }\right\} \tag{3.23}
\end{equation*}
$$

and, due to (1.18) and (3.16),

$$
\Omega_{0}=\Omega\left(\sigma_{3}, \sigma_{4}, C^{*}\right), \Omega_{1}=\Omega\left(\sigma_{1}, \sigma_{4}, C^{*}\right) \text { and } \Omega_{2}=\Omega\left(\sigma_{3}, \sigma_{2}, C^{*}\right)
$$

Moreover, by (1.6), we have $\Omega_{1} \cap \Omega_{2}=\emptyset$.
Consider c from Step 1. We will show that the estimates

$$
\begin{equation*}
u \in \operatorname{cl}(\widetilde{\Omega}) \Longrightarrow\|u\|_{\infty}<c, \quad\left\|u^{\prime}\right\|_{\infty}<d \tag{3.24}
\end{equation*}
$$

are valid for each solution u of (3.7). Indeed, let u be a solution of (3.7) and let $u \in \operatorname{cl}(\widetilde{\Omega})$. Then $u \in B$, due to (3.18) and (2.15), and u satisfies (2.2)-(2.4). We have already noticed that $\widetilde{f}, \widetilde{J}_{i}$ and $\widetilde{M}_{i}, i=1,2, \ldots, m$, satisfy the corresponding assumptions of Lemmas 2.1-2.4. So, by Lemma 2.3, there is $\xi_{u} \in[0, T]$ such that (2.19) holds and by Lemma 2.1 the estimate (2.1) is true. Further, by Lemma 2.4,
u satisfies (2.11) with ρ_{0} defined in Step 1. Finally, by Lemma 2.2, we have (2.9), i.e. each solution u of (3.7) satisfies (3.24).

- Step 5. We prove the existence of a solution to the problem (1.1)-(1.3).

Consider the operator $\widetilde{\mathcal{F}}$ defined by (3.15). We distinguish two cases: either $\widetilde{\mathcal{F}}$ has a fixed point in $\partial \widetilde{\Omega}$ or it has no fixed point in $\partial \widetilde{\Omega}$.

Assume that $\widetilde{\mathcal{F}} u=u$ for some $u \in \partial \widetilde{\Omega}$. Then u is a solution of (3.7) and, with respect to (3.24), we have $\|u\|_{\infty}<c,\left\|u^{\prime}\right\|_{\infty}<d$, which means, by (3.4)-(3.6), that u is a solution of (1.1)-(1.3). Furthermore, due to (3.18), u satisfies (2.17) or (2.18).

Now, assume that $\widetilde{\mathcal{F}} u \neq u$ for all $u \in \partial \widetilde{\Omega}$. Then $\widetilde{\mathcal{F}} u \neq u$ for all $u \in \partial \Omega_{0} \cup$ $\partial \Omega_{1} \cup \partial \Omega_{2}$. If we replace $f, h, J_{i}, M_{i}, i=1,2, \ldots, m, \alpha, \beta$ and γ respectively by $\widetilde{f}, \widetilde{h}, \widetilde{J}_{i}, \widetilde{M}_{i}, i=1,2, \ldots, m, \sigma_{3}, \sigma_{4}$ and C^{*} in Proposition 1.1, we see that the assumptions (1.14)-(1.17) and (1.19) are satisfied. Thus, by Proposition 1.1, we obtain that

$$
\begin{equation*}
\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega\left(\sigma_{3}, \sigma_{4}, C^{*}\right)\right)=\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega_{0}\right)=1 \tag{3.25}
\end{equation*}
$$

Similarly, we can apply Proposition 1.1 to show that

$$
\begin{equation*}
\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega\left(\sigma_{1}, \sigma_{4}, C^{*}\right)\right)=\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega_{1}\right)=1 \tag{3.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega\left(\sigma_{3}, \sigma_{2}, C^{*}\right)\right)=\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega_{2}\right)=1 \tag{3.27}
\end{equation*}
$$

Using the additivity property of the Leray-Schauder topological degree we derive from (3.25)-(3.27) that

$$
\operatorname{deg}(\mathrm{I}-\widetilde{\mathcal{F}}, \widetilde{\Omega})=\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega_{0}\right)-\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega_{1}\right)-\operatorname{deg}\left(\mathrm{I}-\widetilde{\mathcal{F}}, \Omega_{2}\right)=-1
$$

Therefore, $\widetilde{\mathcal{F}}$ has a fixed point $u \in \widetilde{\Omega}$. By (3.24) we have $\|u\|_{\infty}<c$ and $\left\|u^{\prime}\right\|_{\infty}<d$. This together with (3.4)-(3.6) and (3.23) yields that u is a solution to (1.1)-(1.3) fulfilling (2.16).

References

[1] A. Cabada and R. Pouso. Existence result for the problem $\left(\phi\left(u^{\prime}\right)\right)^{\prime}=f\left(t, u, u^{\prime}\right)$ with periodic and Neumann boundary conditions. Nonlinear Anal., Theory Methods Appl. 30 (1997), 1733-1742.
[2] A. Cabada, P. Habets and R. Pouso. Lower and upper solutions for the periodic problem associated with a ϕ-Laplacian equation. EQUADIFF 1999 - International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), 491-493, World Sci. Publishing, River Edge, NJ, 2000.
[3] M. Cherpion, C. De Coster and P. Habets. Monotone iterative methods for boundary value problems. Differ. Integral. Equ. 12 (3) (1999), 309-338.
[4] M. Del Pino, R. Manásevich and A. Murúa. Existence and multiplicity of solutions with prescribed period for a second order quasilinear O.D.E. Nonlinear Anal., Theory Methods Appl. 18 (1992), 79-92.
[5] C. Fabry and D. Fayyad. Periodic solutions of second order differential equation with a p-Laplacian and asymmetric nonlinearities. Rend. Ist. Mat. Univ. Trieste 24 (1992), 207-227.
[6] P. Girg. Neumann and periodic boundary-value problems for quasilinear ordinary differential equations with a nonlinearity in the derivative. Electron. J. Differ. Equ., 2000, Paper No.63, 28 p., electronic only (2000).
[7] P. Jebelean and J. Mawhin. Periodic solutions of singular nonlinear perturbations of the ordinary p-Laplacian. Adv. Nonlinear Stud. 2 (2002), 299-312.
[8] Bin Liu. Multiplicity results for periodic solutions of a second order quasilinear ordinary differential equations with asymmetric nonlinearities. Nonlinear Anal., Theory Methods Appl. 33 (2) (1998), 139-160.
[9] Bing Liu. Periodic solutions of dissipative dynamical systems with singular potential and p-Laplacian. Ann. Pol. Math. 79 (2)(2002), 109-120.
[10] R. Manásevich and J. Mawhin. Periodic solutions for nonlinear systems with p-Laplacian like operators. J. Differ. Equations 145 (1998), 367-393.
[11] J. Mawhin. Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian. Nonlinear Anal., Theory Methods Appl. 40 (2000), 497-503.
[12] J. Mawhin and A. Ureña. A Hartman-Nagumo inequality for the vector ordinary p Laplacian and application to nonlinear boundary value problem. J. Inequal. Appl. 7(5) (2002), 701-725.
[13] I. RachŮnková and M. Tvrdý. Nonmonotone impulse effects in second order periodic boundary value problems. Abstr. Anal. Appl., to appear. [Preprint entitled Periodic boundary value problems for nonlinear second order differential equations with impulses - Part I is available as \backslash http: //www.math.cas.cz/~tvrdy/i2.ps]
[14] I. RachŮNKová and M. TvrdÝ. Existence results for impulsive second order periodic problems, submitted. [Preprint entitled Periodic boundary value problems for nonlinear second order differential equations with impulses - Part II is available as \http://www.math.cas.cz/ ~tvrdy/i3.ps]
[15] I. RachŮNková and M. TvrdÝ. Existence results for impulsive second order periodic problems, submitted. [Preprint entitled Periodic boundary value problems for nonlinear second order differential equations with impulses - Part III is available as \http://www.math.cas.cz/ ~tvrdy/i4.ps]
[16] I. Rachůnková and M. Tvrdý. Second Order Periodic Problem with ϕ-Laplacian and Impulses - Part I, Mathematical Institute of the Academy of Sciences of the Czech Republic, Preprint 155/2004 [available as \http: //www.math.cas.cz/~tvrdy/lapl1.ps].
[17] S. StanĚk. Periodic boundary value problem for second order functional differential equations. Math. Notes, Miskolc 1 (2000), 63-81.
[18] S. StanĚK. On solvability of singular periodic boundary value problems. Nonlinear Oscil. 4 (2001), 529-538.
[19] Ping Yan. Nonresonance for one-dimensional p-Laplacian with regular restoring. J. Math. Anal. Appl. 285 (2003), 141-154.

Irena Rachůnková, Department of Mathematics, Palacký University, 77900 OLOMOUC, Tomkova 40, Czech Republic (e-mail: rachunko@inf.upol.cz)

Milan Tvrdý, Mathematical Institute, Academy of Sciences of the Czech Republic, 11567 PRAHA 1, Žitná 25, Czech Republic (e-mail: tvrdy@math.cas.cz)

[^0]: *Supported by the grant No. 201/04/1077 of the Grant Agency of the Czech Republic and by the Council of Czech Government J14/98:153100011
 ${ }^{\dagger}$ Supported by the grant No. 201/04/1077 of the Grant Agency of the Czech Republic

