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Abstract. Existence principles for the BVP (φ(u′))′ = f(t, u, u′), u(ti+) = Ji(u(ti)), u′(ti+) =
Mi(u′(ti)), i = 1, 2, . . . , m, u(0) = u(T ), u′(0) = u′(T ) are presented. They are based on
the method of lower/upper functions which are not well-ordered. We continue our investigations
from [16], where existence principles based on well-ordered lower/upper functions have been proved
and from [13]–[15], where related results for the case that φ is the identity have been delivered.
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1. Introduction

We will consider the problem

(φ(u′(t)))′ =f(t, u(t), u′(t)) a.e. on [0, T ],(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . , m,(1.2)

u(0) = u(T ), u′(0) = u′(T ),(1.3)

where

u′(ti) = u′(ti−) = lim
t→ti−

u′(t), i = 1, 2, . . . , m + 1, u′(0) = u′(0+) = lim
t→0+

u′(t)

and 



m ∈ N, 0 = t0 < t1 < · · · < tm < tm+1 = T < ∞,

f is a Carathéodory function on [0, T ]× R2,

Ji and Mi are continuous on R, i = 1, 2, . . . ,m,

φ is an increasing homeomorphism R → R, φ(0) = 0, φ(R) = R.

(1.4)
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Throughout the paper we keep the following notation and conventions:
For a function u defined a.e. on [0, T ], we put

‖u‖∞ = sup ess
t∈[0,T ]

|u(t)| and ‖u‖1 =

∫ T

0

|u(s)| ds.

For a given interval J ⊂ R, C(J) is the set of functions which are continuous on
J, C1(J) is the set of functions having continuous first derivatives on J and L(J)
is the set of functions which are Lebesgue integrable on J.

Denote D = {t1, t2, . . . , tm} and define CD (or C1
D ) as the sets of functions

u : [0, T ] 7→ R,

u(t) =





u[0](t) if t ∈ [0, t1],
u[1](t) if t ∈ (t1, t2],
. . . . . .
u[m](t) if t ∈ (tm, T ],

where u[i] is continuous on [ti, ti+1] (or continuously differentiable on [ti, ti+1]) for
i = 0, 1, . . . , m. If u ∈ C1

D, we define ‖u‖D = ‖u‖∞ + ‖u′‖∞. CD and C1
D re-

spectively with the norms ‖.‖∞ and ‖.‖D are Banach spaces. Further, ACD is
the set of functions u ∈ CD which are absolutely continuous on each subinterval
(ti, ti+1), i = 0, 1, . . . , m. The set of functions satisfying the Carathéodory condi-
tions on [0, T ]×R2 will be denoted by Car([0, T ]×R2). As usual, χM will denote
the characteristic function of the set M ⊂ R. For ψ ∈ C(R) increasing on R and
x ∈ R, we define {

x
}

ψ
= max{|ψ(−x)|, |ψ(x)|}.

Given a Banach space X and its subset M, let cl(M) and ∂M denote the closure
and the boundary of M, respectively.

Let Ω be an open bounded subset of X. Assume that the operator F : cl(Ω) 7→
X is completely continuous and Fu 6= u for all u ∈ ∂ Ω. Then deg(I−F , Ω) denotes
the Leray-Schauder topological degree of I − F with respect to Ω, where I is the
identity operator on X.

A solution of the problem (1.1)–(1.3) is a function u ∈ C1
D such that φ(u′) ∈ ACD

and (1.1)–(1.3) hold.

A function σ ∈ C1
D is called a lower function of (1.1)–(1.3) if φ(σ′) ∈ ACD and

(1.5)





φ(σ′(t))′ ≥ f(t, σ(t), σ′(t)) for a.e. t ∈ [0, T ],

σ(ti+) = Ji(σ(ti)), σ′(ti+) ≥ Mi(σ
′(ti)), i = 1, 2, . . . , m,

σ(0) = σ(T ), σ′(0) ≥ σ′(T ).
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Similarly, a function σ ∈ C1
D with φ(σ′) ∈ ACD is an upper function of (1.1)–(1.3)

if it satisfies the relations (1.5) but with reversed inequalities.

Up to now, the only paper dealing with the problems with a φ -Laplacian and
impulses is our previous paper [16], where we have established existence principles
based on the existence of well-ordered lower/upper functions. As concerns problem
(1.1), (1.3) (without impulses), there are various results about its solvability, see
e.g. [4], [5], [6], [8], [9], [10], [11], [12] and [19]. The papers which are devoted
to the lower/upper functions method for the problem (1.1), (1.3) mostly assume
well-ordered σ1/σ2. We can refer to the papers [1], [3], [7] and [18]. The paper
[2] is, to our knowledge, the only one presenting the lower/upper functions method
for the problem (φ(u′)′ = f(t, u), (1.3) under the assumption that σ1 ≥ σ2 , i.e.
lower/upper functions are in the reverse order. If φ = φp the authors get the
existence results for 1 < p ≤ 2 , only. Therefore the existence principle (Theorem
3.1) which we state here for the impulsive problem (1.1)–(1.3) and the case (1.6) are
new even for the non-impulsive problem (1.1), (1.3).

Our basic assumption is the existence of lower/upper functions:

σ1 and σ2 are respectively lower and upper functions of (1.1)–(1.3)(1.6)

such that σ1(τ) > σ2(τ) for some τ ∈ [0, T ],

i.e., in contrast to [16], they are not well-ordered. Furthermore, as in [14]–[16], we
will assume that the impulse functions Ji, Mi fulfil the following weak monotonicity
like conditions

{
x > σ1(ti) =⇒ Ji(x) > Ji(σ1(ti)),

x < σ2(ti) =⇒ Ji(x) < Ji(σ2(ti)), i = 1, 2, . . . , m,
(1.7)

{
y ≤ σ′1(ti) =⇒ Mi(y) ≤ Mi(σ

′
1(ti)),

y ≥ σ′2(ti) =⇒ Mi(y) ≥ Mi(σ
′
2(ti)), i = 1, 2, . . . , m,

(1.8)

To transfer the given problem (1.1)–(1.3) into a fixed point problem in C1
D, we

will borrow some ideas from [10] and [16]. First, notice that it can be equivalently
rewritten as (1.1), (1.2),

(1.9) u(0) = u(T ) = u(0) + u′(0)− u′(T ).

Further, for (`, d) ∈ CD × R denote by a(`, d) the unique solution a ∈ R of the
equation

(1.10) d +

∫ T

0

φ−1
(
a + `(t)

)
dt = 0
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(see [16, Lemma 3.2]) and define the operators N : C1
D 7→ CD and J : C1

D 7→ C1
D

respectively by




(N (x))(t) =

∫ t

0

f(s, x(s), x′(s)) ds

+
m∑

i=1

[
φ
(
Mi(x

′(ti))
)− φ

(
x′(ti)

)]
χ(ti, T ](t), t ∈ [0, T ],

(1.11)

and

(J (x))(t) =
m∑

i=1

[
Ji(x(ti))− x(ti)

]
χ(ti, T ](t), t ∈ [0, T ].(1.12)

Finally, for x ∈ C1
D and t ∈ [0, T ], define

(1.13)





(F(x))(t) =

∫ t

0

φ−1
(
a
(N (x), (J (x))(T )

)
+ (N (x))(s)

)
ds

+x(0) + x′(0)− x′(T ) + (J (x))(t).

Then F : C1
D 7→ C1

D is an absolutely continuous operator and u is a solution of
(1.1)–(1.3) if and only if F(u) = u (see [16, Theorem 3.5]).

In the proof of our main result we will need to evaluate the Leray-Schauder
degree of a certain auxiliary operator with respect to sets determined by couples
of well-ordered lower/upper functions. This is enabled by the following proposition
which follows from [16, Theorem 4.4].

1.1. Proposition. Assume that (1.4) holds and let α and β be respectively lower
and upper functions of (1.1)− (1.3) such that

α(t) < β(t) for t ∈ [0, T ] and α(τ+) < β(τ+) for τ ∈ D,(1.14)

α(ti) ≤ x ≤ β(ti) =⇒ Ji(α(ti)) < Ji(x) < Ji(β(ti)), i = 1, 2, . . . ,m(1.15)

and {
y ≤ α′(ti) =⇒ Mi(y) ≤ Mi(α

′(ti)),

y ≥ β′(ti) =⇒ Mi(y) ≥ Mi(β
′(ti)), i = 1, 2, . . . , m.

(1.16)

Further, let h ∈ L[0, T ] be such that

(1.17) |f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [α(t), β(t)]× R
and let the operator F be defined by (1.10)− (1.13). Finally, for γ ∈ (0,∞) denote

(1.18)

{
Ω(α, β, γ) = {u ∈ CD : α(t) < u(t) < β(t) for t ∈ [0, T ],

α(τ+) < u(τ+) < β(τ+) for τ ∈ D, ‖u′‖∞ < γ}.
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Then deg(I−F , Ω(α, β, γ)) = 1 whenever Fu 6= u on ∂Ω(α, β, γ) and

(1.19) γ >
{
‖h‖1

}
φ−1

+
‖α‖∞ + ‖β‖∞

∆
, where ∆ = min

i=1,2,...,m+1
(ti − ti−1).

Proof. Using the Mean Value Theorem, we can show that

(1.20) ‖u′‖∞ ≤
{
‖h‖1

}
φ−1

+
‖α‖∞ + ‖β‖∞

∆

holds for each u ∈ CD fulfilling α(t) < u(t) < β(t) on [0, T ] and α(τ+) < u(τ+) <
β(τ+) on D . Thus, if we denote by c the right-hand side of (1.20), we can follow
the proof of [16, Theorem 4.4].

2. A priori estimates

Notice that from a priori estimates given by Lemmas 2.1–2.3 in [15] and Lemma 2.4
in [14], only the first one depend on the form of the differential equation (1.1) and
requires a modification for the purposes of this paper.

2.1. Lemma. Let ρ1 ∈ (0,∞), h̃ ∈ L[0, T ], Mi ∈ C(R), i = 1, 2, . . . , m. Then
there exists d ∈ (ρ1,∞) such that the estimate

(2.1) ‖u′‖∞ < d

is valid for each u ∈ AC1
D and each M̃i ∈ C(R), i = 1, 2, . . . , m, satisfying (1.3),

|φ(u′(ξu))| < ρ1 for some ξu ∈ [0, T ],(2.2)

u′(ti+) = M̃i(u
′(ti)), i = 1, 2, . . . , m,(2.3)

|(φ(u′(t)))′| < h̃(t) for a.e. t ∈ [0, T ](2.4)

and

sup {|Mi(y)| : |y| < a} < b =⇒ sup {|M̃i(y)| : |y| < a} < b(2.5)

for i = 1, 2, . . . , m, a ∈ (0,∞), b ∈ (a,∞).

Proof. Suppose that u ∈ AC1
D and M̃i ∈ C(R), i = 1, 2, . . . , m, satisfy (1.3)

and (2.2)–(2.5). Due to (1.3), we can assume that ξu ∈ (0, T ], i.e. there is j ∈
{1, 2, . . . , m + 1} such that ξu ∈ (tj−1, tj]. We will distinguish 3 cases: either j = 1
or j = m + 1 or 1 < j < m + 1.

Let j = 1. Then, using (2.2) and (2.4), we obtain |φ(u′(t))| < ρ1 + ‖h̃‖1 for
t ∈ [0, t1], i.e.

(2.6) |u′(t)| < a1 on [0, t1],
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where a1 =
{

ρ1 + ‖h̃‖1

}
φ−1

. Since M1 ∈ C(R), we can find b1(a1) ∈ (a1,∞) such

that |M1(y)| < b1(a1) for all y ∈ (−a1, a1). Hence, in view of (2.3) and (2.5), we
have |u′(t1+)| < b1(a1), wherefrom, using (2.4), we deduce that

|u′(t)| <
{{

b1(a1)
}

φ
+ ‖h̃‖1

}
φ−1

for t ∈ (t1, t2].

Continuing by induction, we get bi(ai) ∈ (ai,∞) such that

|u′(t)| < ai+1 =
{{

bi(ai)
}

φ
+ ‖h̃‖1

}
φ−1

on (ti, ti+1]

for i = 2, . . . , m, i.e.

(2.7) ‖u′‖∞ < d := max{ai : i = 1, 2, . . . , m + 1}.

Assume that j = m + 1. Then, using (2.2) and (2.4), we obtain

(2.8) |u′(t)| < am+1 on (tm, T ],

where
am+1 =

{
ρ1 + ‖h̃‖1

}
φ−1

.

Furthermore, due to (1.3), we have |u′(0)| < am+1 which together with (2.4) yields
that (2.6) is true with

a1 =
{{

am+1

}
φ

+ ‖h̃‖1

}
φ−1

.

Now, proceeding as in the case j = 1, we show that (2.7) is true also in the case
j = m + 1.

Assume that 1 < j < m + 1. Then (2.2) and (2.4) yield

|u′(t)| < aj+1 =
{

ρ1 + ‖h̃‖1

}
φ−1

on (tj, tj+1].

If j < m, then

|u′(t)| < aj+2 =
{{

bj+1(aj+1)
}

φ
+ ‖h̃‖1

}
φ−1

on (tj+1, tj+2],

where bj+1(aj+1) > aj+1. Proceeding by induction we get (2.8) with

am+1 =
{{

bm(am)
}

φ
+ ‖h̃‖1

}
φ−1

and bm(am) > am, wherefrom (2.7) again follows as in the previous case.
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Remaining a priori estimates can be taken from [15] and [16] without any change:

2.2. Lemma. ([15, Lemma 2.2].) Let ρ0, d, q ∈ (0,∞) and Ji ∈ C(R), i =
1, 2, . . . ,m. Then there exists c ∈ (ρ0,∞) such that the estimate

(2.9) ‖u‖∞ < c

is valid for each u ∈ CD and each J̃i ∈ C(R), i = 1, 2, . . . , m, satisfying (1.3),
(2.1),

u(ti+) = J̃i(u(ti)), i = 1, 2, . . . ,m,(2.10)

|u(τu)| < ρ0 for some τu ∈ [0, T ](2.11)

and

sup {|Ji(x)| : |x| < a} < b =⇒ sup {|J̃i(x)| : |x| < a} < b(2.12)

for i = 1, 2, . . . , m, a ∈ (0,∞), b ∈ (a + q,∞).

2.3. Lemma. ([15, Lemma 2.3].) Assume that σ1, σ2 ∈ AC1
D, Ji, Mi, J̃i,

M̃i ∈ C(R), i = 1, 2, . . . , m, satisfy (1.7), (1.8),
{

x > σ1(ti) =⇒ J̃i(x) > J̃i(σ1(ti)) = Ji(σ1(ti)),

x < σ2(ti) =⇒ J̃i(x) < J̃i(σ2(ti)) = Ji(σ2(ti)), i = 1, 2, . . . ,m
(2.13)

and {
y ≤ σ′1(ti) =⇒ M̃i(y) ≤ Mi(σ

′
1(ti)),

y ≥ σ′2(ti) =⇒ M̃i(y) ≥ Mi(σ
′
2(ti)), i = 1, 2, . . . ,m.

(2.14)

Define

B = {u ∈ CD : u satisfies (1.3), (2.10), (2.3) and one(2.15)

of the conditions (2.16), (2.17), (2.18)},
where

u(su) < σ1(su) and u(tu) > σ2(tu) for some su, tu ∈ [0, T ],(2.16)

u ≥ σ1 on [0, T ] and inf
t∈[0,T ]

|u(t)− σ1(t)| = 0,(2.17)

u ≤ σ2 on [0, T ] and inf
t∈[0,T ]

|u(t)− σ2(t)| = 0.(2.18)

Then each function u ∈ B satisfies

(2.19)





|u′(ξu)| < ρ1 for some ξu ∈ [0, T ], where

ρ1 =
2

t1
(‖σ1‖∞ + ‖σ2‖∞) + ‖σ′1‖∞ + ‖σ′2‖∞ + 1.
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2.4. Lemma. ([14, Lemma 2.4].) Assume that σ1, σ2 ∈ AC1
D, Ji, J̃i ∈ C(R),

i = 1, 2, . . . , m, satisfy (1.7) and (2.13). Then

min{σ1(τu+), σ2(τu+)} ≤ u(τu+) ≤max{σ1(τu+), σ2(τu+)}(2.20)

for some τu ∈ [0, T )

is true for each u ∈ CD fulfilling (1.3), (2.10) and one of the conditions (2.16)–
(2.18).

3. Main result

3.1. Theorem. Assume that (1.4), (1.6), (1.7) and (1.8) hold and let h ∈ L[0, T ]
be such that

(3.1) |f(t, x, y)| ≤ h(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2.

Then the problem (1.1)– (1.3) has a solution u satisfying one of the conditions
(2.16)− (2.18).

Proof. • Step 1. We construct a proper auxiliary problem.
Let σ1 and σ2 be respectively lower and upper functions of (1.1)–(1.3) and let

ρ1 be associated with them as in (2.19). Put

h̃(t) = 2 h(t) + 1 for a.e. t ∈ [0, T ] and ρ̃ = ρ1 +
m∑

i=1

(|Mi(σ
′
1(ti))|+ |Mi(σ

′
2(ti))|

)
.

By Lemma 2.1, find d ∈ (ρ̃,∞) satisfying (2.1). Furthermore, put ρ0 = ‖σ1‖∞ +
‖σ2‖∞ + 1 and

(3.2) q =
T

m
max

{( m∑
i=1

max
|y|≤d+1

|Mi(y)|
)
, d + 1

}

and, by Lemma 2.2, find c ∈ (ρ0 + q,∞) fulfilling (2.9). In particular, we have

(3.3) c > ‖σ1‖∞ + ‖σ2‖∞ + q + 1, d > ‖σ′1‖∞ + ‖σ′2‖∞ + 1.

Finally, for a.e. t ∈ [0, T ] and all x, y ∈ R and i = 1, 2, . . . , m, define functions

(3.4) f̃(t, x, y) =





f(t, x, y)− h(t)− 1 if x ≤ −c− 1,

f(t, x, y) + (x + c) (h(t) + 1) if − c− 1 < x < −c,

f(t, x, y) if − c ≤ x ≤ c,

f(t, x, y) + (x− c) (h(t) + 1) if c < x < c + 1,

f(t, x, y) + h(t) + 1 if x ≥ c + 1,
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J̃i(x) =





x + q if x ≤ −c− 1,

Ji(−c) (c + 1 + x)− (x + q) (x + c) if − c− 1 < x < −c,

Ji(x) if − c ≤ x ≤ c,

Ji(c) (c + 1− x) + (x− q) (x− c) if c < x < c + 1,

x− q if x ≥ c + 1,

(3.5)

M̃i(y) =





y if y ≤ −d− 1,

Mi(−d) (d + 1 + y)− y (y + d) if − d− 1 < y < −d,

Mi(y) if − d ≤ y ≤ d,

Mi(d) (d + 1− y) + y (y − d) if d < y < d + 1,

y if y ≥ d + 1

(3.6)

and consider the auxiliary problem

(3.7) (φ(u′))′ = f̃(t, u, u′), (2.10), (2.3), (1.3).

Due to (1.6), f̃ ∈ Car([0, T ] × R), J̃i, M̃i ∈ C(R) for i = 1, 2, . . . , m, and, as
in the proof of [15, Theorem 3.1], they satisfy the assumptions of Lemmas 2.1–2.4.
According to (3.3)–(3.6) the functions σ1 and σ2 are respectively lower and upper
functions of (3.7). By (3.1) we have

|f̃(t, x, y)| ≤ h̃(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ R2(3.8)

and {
f̃(t, x, y) < 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ (−∞,−c− 1]× R,

f̃(t, x, y) > 0 for a.e. t ∈ [0, T ] and all (x, y) ∈ [c + 1,∞)× R.
(3.9)

•Step 2. We construct a well-ordered pair of ”big” lower/upper functions for (3.7) .
Put

A∗ = q +
m∑

i=1

max
|x|≤c+1

|J̃i(x)|(3.10)

and 



σ4(0) = A∗ + m q,

σ4(t) = A∗ + (m− i) q + m q
T

t for t ∈ (ti, ti+1], i = 0, 1, . . . ,m,

σ3(t) = −σ4(t) for t ∈ [0, T ].

(3.11)

Then σ3, σ4 ∈ AC1
D and, by (3.5) and (3.10),

(3.12) σ3(t) < −A∗ < −c− 1, σ4(t) > A∗ > c + 1 for t ∈ [0, T ].
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In view of (3.2),

(3.13) σ′3(t) = −mq

T
≤ −(d + 1) and σ′4(t) =

mq

T
≥ d + 1 for t ∈ [0, T ].

Furthermore, by (3.5) and (3.9), (3.11), (3.12), we have

σ4(ti+) = A∗ + (m− i) q +
mq

T
ti = σ4(ti)− q = J̃i(σ4(ti))

and

0 = (φ(σ′4(t)))
′ < f̃(t, σ4(t), σ

′
4(t)) for a.e. t ∈ [0, T ],

respectively. Moreover, σ4(0) = A∗ + mq = σ4(T ) and σ′4(0) = m q
T

= σ′4(T ) and,
by virtue of (3.2) and (3.6),

σ′4(ti+) =
mq

T
= σ′4(ti) = M̃i(σ

′
4(ti)) for i = 1, 2, . . . , m,

i.e. σ4 is an upper function of (3.7). Finally, since σ3 = −σ4, we see that σ3 is
a lower function of (3.7).

Clearly,

(3.14) σ3 < σ4 on [0, T ] and σ3(τ+) < σ4(τ+) for τ ∈ D .

Having a from (1.10), let us define for x ∈ C1
D and t ∈ [0, T ]

(Ñ (x))(t) =

∫ t

0

f̃(s, x(s), x′(s)) ds

+
m∑

i=1

[
φ
(
M̃i(x

′(ti))
)− φ

(
x′(ti)

)]
χ(ti, T ](t),

(J̃ (x))(t) =
m∑

i=1

[
J̃i(x(ti))− x(ti)

]
χ(ti, T ](t)

and




(F̃(x))(t) =

∫ t

0

φ−1
(
a
(Ñ (x), (J̃ (x))(T )

)
+ (Ñ (x))(s)

)
ds

+x(0) + x′(0)− x′(T ) + (J̃ (x))(t).

(3.15)

By [16, Theorem 3.5], F̃ : C1
D 7→ C1

D is completely continuous and u is a solution

of (3.7) whenever F̃u = u.
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• Step 3. We prove the first a priori estimate for solutions of (3.7).
Define

Ω0 = {u ∈ CD : ‖u′‖∞ < C∗, σ3 < u < σ4 on [0, T ],(3.16)

σ3(τ+) < u(τ+) < σ4(τ+) for τ ∈ D},
where

C∗ = 1 +

{
‖h̃‖1 +

{‖σ3‖∞ + ‖σ4‖∞
∆

}

φ

}

φ−1

(3.17)

and ∆ is defined in (1.19). We are going to prove that for each solution u of (3.7)
the estimate

(3.18) u ∈ cl(Ω0) =⇒ u ∈ Ω0

is true. To this aim, suppose that u is a solution of (3.7) and u ∈ cl(Ω0), i.e.
‖u′‖∞ ≤ C∗ and

(3.19) σ3 ≤ u ≤ σ4 on [0, T ].

By the Mean Value Theorem, there are ξi ∈ (ti, ti+1), i = 1, 2, . . . , m, such that
|u′(ξi)| ≤ (‖σ3‖∞ + ‖σ4‖∞)/∆. Hence, by (3.8), we get

(3.20) ‖u′‖∞ < C∗,

where C∗ is defined in (3.17). It remains to show that σ3 < u < σ4 on [0, T ] and
σ3(τ+) < u(τ+) < σ4(τ+) for τ ∈ D . Assume the contrary. Then there exists
k ∈ {3, 4} such that

u(ξ) = σk(ξ) for some ξ ∈ [0, T ](3.21)

or

u(ti+) = σk(ti+) for some ti ∈ D .(3.22)

Case A. Let (3.21) hold for k = 4.

(i) If ξ = 0, then u(0) = σ4(0) = σ4(T ) = u(T ) = A∗ + q m which gives, in view
of (1.3), (3.13) and (3.19),

u′(0) = u′(T ) =
mq

T
= σ′4(t) for t ∈ [0, T ].

Further, due to (3.9) and (3.12), we can find δ > 0 such that u > c + 1 on
[0, δ] and

φ(u′(t))− φ(u′(0)) =

∫ t

0

f̃(s, u(s), u′(s)) ds > 0 for t ∈ [0, δ].

Hence u′(t) > u′(0) = σ′4(t) on (0, δ] which implies that u > σ4 on (0, δ],
contrary to (3.19).
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(ii) If ξ ∈ (ti, ti+1) for some ti ∈ D, then u′(ξ) = σ′4(ξ) = m q
T

= σ′4(t) for
t ∈ [0, T ] and we reach a contradiction as above.

(iii) If ξ = ti ∈ D, then u(ti) = σ4(ti) and, by (3.5), (3.12) and (3.3),

u(ti+) = σ4(ti+) = σ4(ti)− q > c + 1− q > ‖σ1‖∞ + ‖σ2‖∞.

By virtue of (3.19) we have u′(ti+) ≤ σ′4(ti+) and u′(ti) ≥ σ′4(ti). Now, since
the last inequality together with (3.6) and (3.13) yield u′(ti+) ≥ σ′4(ti+), we
get u′(ti+) = σ′4(ti+) = m q

T
= σ′4(t) for t ∈ [0, T ]. Similarly as above, this

leads again to a contradiction.

Case B. Let (3.22) hold for k = 4, i.e. u(ti+) = σ4(ti+). By (3.5) and (3.12),

J̃i(u(ti)) = σ4(ti+) = σ4(ti)− q > A∗− q, wherefrom, with respect to (3.10), we get

u(ti) > c + 1 and hence J̃i(u(ti)) = u(ti) − q. Therefore u(ti) = σ4(ti) and we can
continue as in Case A (iii).

If (3.21) or (3.22) hold for k = 3, then we use analogical arguments as in Case
A or Case B.

• Step 4. We prove the second a priori estimate for solutions of (3.7).
Define sets

Ω1 = {u ∈ Ω0 : u(t) > σ1(t) for t ∈ [0, T ], u(τ+) > σ1(τ+) for τ ∈ D},
Ω2 = {u ∈ Ω0 : u(t) < σ2(t) for t ∈ [0, T ], u(τ+) < σ2(τ+) for τ ∈ D}

and Ω̃ = Ω0 \ cl(Ω1 ∪ Ω2). Then

(3.23) Ω̃ = {u ∈ Ω0 : u satisfies (2.16)}

and, due to (1.18) and (3.16),

Ω0 = Ω(σ3, σ4, C
∗), Ω1 = Ω(σ1, σ4, C

∗) and Ω2 = Ω(σ3, σ2, C
∗).

Moreover, by (1.6), we have Ω1 ∩ Ω2 = ∅.
Consider c from Step 1. We will show that the estimates

(3.24) u ∈ cl(Ω̃) =⇒ ‖u‖∞ < c, ‖u′‖∞ < d

are valid for each solution u of (3.7). Indeed, let u be a solution of (3.7) and let

u ∈ cl(Ω̃). Then u ∈ B, due to (3.18) and (2.15), and u satisfies (2.2)–(2.4). We

have already noticed that f̃ , J̃i and M̃i, i = 1, 2, . . . , m, satisfy the corresponding
assumptions of Lemmas 2.1–2.4. So, by Lemma 2.3, there is ξu ∈ [0, T ] such that
(2.19) holds and by Lemma 2.1 the estimate (2.1) is true. Further, by Lemma 2.4,
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u satisfies (2.11) with ρ0 defined in Step 1. Finally, by Lemma 2.2, we have (2.9),
i.e. each solution u of (3.7) satisfies (3.24).

• Step 5. We prove the existence of a solution to the problem (1.1)– (1.3) .

Consider the operator F̃ defined by (3.15). We distinguish two cases: either F̃
has a fixed point in ∂Ω̃ or it has no fixed point in ∂Ω̃.

Assume that F̃ u = u for some u ∈ ∂Ω̃. Then u is a solution of (3.7) and, with
respect to (3.24), we have ‖u‖∞ < c, ‖u′‖∞ < d, which means, by (3.4)–(3.6), that
u is a solution of (1.1)–(1.3). Furthermore, due to (3.18), u satisfies (2.17) or (2.18).

Now, assume that F̃ u 6= u for all u ∈ ∂Ω̃. Then F̃u 6= u for all u ∈ ∂Ω0 ∪
∂Ω1 ∪ ∂Ω2. If we replace f, h, Ji, Mi, i = 1, 2, . . . , m, α, β and γ respectively
by f̃ , h̃, J̃i, M̃i, i = 1, 2, . . . ,m, σ3, σ4 and C∗ in Proposition 1.1, we see that
the assumptions (1.14)–(1.17) and (1.19) are satisfied. Thus, by Proposition 1.1, we
obtain that

(3.25) deg(I− F̃ , Ω(σ3, σ4, C
∗)) = deg(I− F̃ , Ω0) = 1.

Similarly, we can apply Proposition 1.1 to show that

deg(I− F̃ , Ω(σ1, σ4, C
∗)) = deg(I− F̃ , Ω1) = 1(3.26)

and

deg(I− F̃ , Ω(σ3, σ2, C
∗)) = deg(I− F̃ , Ω2) = 1.(3.27)

Using the additivity property of the Leray-Schauder topological degree we derive
from (3.25)–(3.27) that

deg(I− F̃ , Ω̃) = deg(I− F̃ , Ω0)− deg(I− F̃ , Ω1)− deg(I− F̃ , Ω2) = −1.

Therefore, F̃ has a fixed point u ∈ Ω̃. By (3.24) we have ‖u‖∞ < c and ‖u′‖∞ < d.
This together with (3.4)–(3.6) and (3.23) yields that u is a solution to (1.1)–(1.3)
fulfilling (2.16).
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