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Dedicated to the memory of Mikhail Drakhlin

Abstract. This contribution deals with systems of linear generalized linear differential
equations of the form

x(t) = x̃ +
∫ t

a

d[A(s)] x(s) + g(t)− g(a), t ∈ [a, b],

where −∞ < a < b < ∞, A is an n × n-complex matrix valued function, g is an n-
complex vector valued function, A and g have bounded variation on [a, b]. The integrals
are understood in the Kurzweil-Stieltjes sense.

Our aim is to present some new results on continuous dependence of solutions to
linear generalized differential equations on parameters and initial data. In particular, we
generalize in several aspects the known result by Ashordia. Our main goal consists in a
more general notion of a solution to the given system. In particular, neither g nor x need
not be of bounded variation on [a, b] and, in general, they can be regulated functions.

Key Words. Generalized linear differential equation, continuous dependence on a pa-
rameter, Perron-Stieltjes integral, Kurzweil-Stieltjes integral.
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1. Introduction. Starting with Kurzweil [10], generalized differ-
ential equations have been extensively studied by many authors, like e.g.
Hildebrandt [7], Schwabik, Tvrdý and Vejvoda [16]–[18], [20]–[22], Hönig [8],
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Ashordia [2], [3]. In particular, see the monographs [18], [16], [21] and [8]
and the references therein. Moreover, during several recent decades, the in-
terest in their special cases like equations with impulses or discrete systems
increased considerably, cf. e.g. monographs [12], [24], [4], [15] or [1].

The importance of generalized linear differential equations with regulated
solutions consists in the fact that they enable us to treat in a unified way
both the continuous and discrete systems and, in addition, also systems with
fast oscillating data.

In the paper we keep the following notation:

As usual, N is the set of natural numbers and C stands for the set
of complex numbers. Cm×n is the space of complex matrices of the type
m× n, Cn = Cn×1 and C1 = C. For a matrix

A = (ai,j)i=1,2,...,m
j=1,2,...,n

∈ Cm×n,

its norm |A| is defined by

|A| = max
j=1,2,...,n

m∑
i=1

|ai,j|.

In particular, we have |x| =
∑n

i=1 |xi| for x ∈ Cn. The symbols I and 0
stand respectively for the identity and the zero matrix of the proper type.
For an n×n-matrix A, det [A] denotes its determinant.

If −∞ < a < b < ∞, then [a, b] and (a, b) denote the corresponding
closed and open intervals, respectively. Furthermore, [a, b) and (a, b] are the
corresponding half-open intervals. When the intervals [a, a) and (b, b] occur,
they are understood to be empty.

For an arbitrary function F : [a, b] → Cm×n we set

‖F‖∞ = sup{|F (t)| : t ∈ [a, b]}.
The set D = {t0, t1, . . . , tp} ⊂ [a, b], p ∈ N, is called a division of the interval
[a, b] if a = t0 < t1 < · · · < tp = b. If, for each t ∈ [a, b) and s ∈ (a, b], the
function F : [a, b] → Cm×n possesses in Cm×n limits

F (t+) := lim
τ→t+

F (τ), F (s−) := lim
τ→s−

F (τ),

we say that the function F is regulated on the interval [a, b]. The set of all
k × n-matrix valued functions regulated on the interval [a, b] is denoted by
Gm×n[a, b]. Furthermore, we denote

∆+F (t) = F (t+)− F (t) for t ∈ [a, b), ∆+F (b) = 0

and
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∆−F (s) = F (s)− F (s−) for s ∈ (a, b], ∆−F (a) = 0.

It is known that, for each F ∈ Gm×n[a, b], the set of all points of its discon-
tinuity on the interval [a, b] is at most countable. Moreover, for each ε > 0
there are at most finitely many points t ∈ [a, b) such that |∆+F (t)| ≥ ε
and at most finitely many points s ∈ [a, b] such that |∆−F (s)| ≥ ε. Clearly,
each function regulated on [a, b] is bounded on [a, b], i.e. ‖F‖∞ < ∞ for
F ∈ Gm×n[a, b].

For a function F : [a, b] → Cm×n we denote by varb
a F its variation over

[a, b]. We say that F has a bounded variation on [a, b] if varb
a F <∞. The

set of k × n-complex matrix valued functions of bounded variation on [a, b]
is denoted by BV m×n[a, b]. By AC m×n[a, b] we denote the set of functions
F : [a, b] → Cm×n such that each component fij, i = 1, . . ., k, j = 1, . . ., n, of
F is absolutely continuous on the interval [a, b]. Similarly, C m×n[a, b] stands
for the set of functions F : [a, b] → Cm×n that are continuous on [a, b].
Analogously to the spaces of functions of bounded variation, ACn[a, b] =
ACn×1[a, b], Gn[a, b] = Gn×1[a, b] and Cn[a, b] = Cn×1[a, b]. Obviously,

AC m×n[a, b] ⊂ BV m×n[a, b] ⊂ Gm×n[a, b]

and C m×n[a, b] ⊂ Gm×n[a, b]. Finally, a function f : [a, b] → C is called
a finite step function on [a, b] if there is a division {α0, α1, . . . , αp} of [a, b]
such that f is constant on every interval (αj−1, αj), j = 1, . . ., p. The set of
all finite step functions on [a, b] is denoted by S[a, b], S m×n[a, b] is the set of
all m×n-matrix valued functions whose arguments are finite step functions
and Sn×1[a, b] = Sn[a, b]. It is known that the set S m×n[a, b] is dense in
Gm×n[a, b] with respect to the supremum norm, i.e.

(1.1)

{
for each ε > 0 and each F ∈ Gm×n[a, b]

there is an F̃ ∈ S m×n[a, b] such that ‖F − F̃‖∞ < ε.

2. Kurzweil-Stieltjes integral. The integrals which occur in this
paper are the Perron-Stieltjes ones. For the original definition, see A.J. Ward
[23] or S. Saks [14]. We use the equivalent summation definition due to
J. Kurzweil [10] (cf. also e.g. [11] or [18]). We call this integral the Kurzweil-
Stieltjes integral, in short the KS-integral. For the reader’s convenience, let
us recall the definition of the KS-integral.

Let −∞ < a < b < ∞. For a division D of the integral [a, b], D =
{α0, α1, . . . , αp}, and ξ = (ξ1, ξ2, . . . , ξp) ∈ [a, b]p, the couple P = (D, ξ) is
called a partition of [a, b] if

αj−1 ≤ ξj ≤ αj for j = 1, 2, . . . , p.
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The set of all partitions of the interval [a, b] is denoted by P [a, b].

An arbitrary positive valued function δ : [a, b] → (0,∞) is called a gauge
on [a, b]. Given a gauge δ on [a, b], the partition

P = (D, ξ) =
({α0, α1, . . . , αp}, (ξ1, ξ2, . . . , ξp)

) ∈ P [a, b]

is said to be δ-fine, if

[αj−1, αj] ⊂ (ξj − δ(ξj), ξj + δ(ξj)) for j = 1, 2, . . . , p.

For functions f, g : [a, b] → C and a partition P of [a, b],

P = ({α0, α1, . . . , αp}, (ξ1, ξ2, . . . , ξp)) ,

we define

Σ(f ∆g; P ) =

p∑
i=1

f(ξi) [g(αi)− g(αi−1)].

We say that I ∈ C is the KS-integral of f with respect to g from a to b if

{
for each ε > 0 there is a gauge δ on [a, b] such that

|I − Σ(f ∆g; P )| < ε for all δ-fine P ∈ P [a, b].

In such a case we write

I =

∫ b

a

f d[g] or I =

∫ b

a

f(t) d[g(t)].

It is well-known that the KS-integral
∫ b

a
f d[g] exists provided f ∈ G[a, b]

and g ∈ BV [a, b]. Taking into account [19, Theorem 2.8] or [21, Theorem
2.3.8], we can formulate the following fundamental assertion.

Theorem 2.1. If f, g ∈ G[a, b] and at least one of the functions f, g has a

bounded variation on [a, b], then the integral
∫ b

a
f d[g] exists. Furthermore,





∣∣∣∣
∫ b

a

f d[g]

∣∣∣∣ ≤ 2
(|f(a)| + varb

a f
) ‖g‖∞

if f ∈ BV [a, b] and g ∈ G[a, b],
(2.1)

and 



∣∣∣∣
∫ b

a

f d[g]

∣∣∣∣ ≤ ‖f‖∞ varb
a g

if f ∈ G[a, b] and g ∈ BV [a, b].
(2.2)
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Furthermore, if f ∈ BV [a, b] and g, gk ∈ G[a, b] for k ∈ N, then

lim
k→∞

‖gk − g‖∞ = 0 ⇒ lim
k→∞

∥∥∥∥
∫ t

a

f d[gk − g]

∥∥∥∥
∞

= 0.

Further basic properties of the KS-integral with respect to scalar regulated
functions were described in [19] (see also [21]).

Given an m × `-matrix valued function F and an ` × n-matrix valued
function G defined on [a, b] and such that all the integrals

∫ b

a

fi,k(t) d[gk,j(t)] (i = 1, 2, . . . , m ; k = 1, 2, . . . , `; j = 1, 2, . . . , n)

exist, the symbol

∫ b

a

F (t) d[G(t)] (or more simply

∫ b

a

F d[G])

stands for the m× n-matrix with the entries

∑̀

k=1

∫ b

a

fi,k d[gk,j], i = 1, 2, . . . , m , j = 1, 2, . . . , n.

The extension of the results obtained in [19] or [21] for scalar real valued
functions to complex vector valued or matrix valued functions is obvious
and hence for the basic facts concerning integrals with respect to regulated
functions we will refer to the corresponding assertions from [19] or [21].

The next natural assertion will be very useful for our purposes and, in
our opinion, it is not available in literature.

Lemma 2.2. Let x, xk ∈ Gn[a, b], A, Ak ∈ BV n×n[a, b] for k ∈ N. Further-
more, let

limk→∞ ‖xk − x‖∞ = 0,(2.3)

α∗ := sup {varb
a Ak : k ∈ N} < ∞(2.4)

and
limk→∞ ‖Ak − A‖∞ = 0.(2.5)

Then

lim
k→∞

∥∥∥∥
∫ t

a

d[Ak] xk −
∫ t

a

d[A] x

∥∥∥∥
∞

= 0.
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Proof. Let ε > 0 be given. By (1.1) and (2.3), we can find u ∈ S n[a, b] and
k0 ∈ N such that

‖x− u‖∞ < ε, ‖xk − u‖∞ < ε and ‖Ak − A‖∞ < ε for k ≥ k0.

Furthermore, since varb
a u < ∞, using (2.1) we can see that for t ∈ [a, b] and

k ≥ k0 the relations
∣∣∣∣
∫ t

a

d[Ak] xk −
∫ t

a

d[A] x

∣∣∣∣

=

∣∣∣∣
∫ t

a

d[Ak] (xk − u) +

∫ t

a

d[Ak − A] u +

∫ t

a

d[A] (u− x)

∣∣∣∣

≤ α∗ ε + 2
(
varb

a u
)

ε + α∗ ε = 2
(
α∗ + varb

a u
)

ε

hold, wherefrom our assertion immediately follows.

3. Generalized linear differential equations. Let A∈BV n×n[a, b],
g ∈ Gn[a, b] and x̃ ∈ Cn. Consider an integral equation

(3.1) x(t) = x̃ +

∫ t

a

d[A(s)] x(s) + g(t)− g(a).

We say that a function x : [a, b] → Cn is a solution of (3.1) on the interval
[a, b] if the integral ∫ b

a

d[A(s)] x(s)

has sense and equality (3.1) is satisfied for all t ∈ [a, b]. Equation (3.1) is
usually called a generalized linear differential equation. Such equations with
solutions having values in the space Rn of real n-vectors have been thoroughly
investigated e.g. in the monographs [16] or [18]. In this section we will
describe the basics needed later. Special attention is paid to the features
whose extension to the complex case seems not to be so straightforward.

For our purposes the following property is crucial:

(3.2) det
[
I −∆−A(t)

] 6= 0 for each t ∈ [a, b].

(Recall that we put ∆−A(a) = 0.) Its importance is well illustrated by the
next assertion which is a fundamental existence result for equation (3.1). Its
proof follows immediately from [20, Proposition 2.5].

Theorem 3.1. Let A ∈ BV n×n[a, b] satisfy (3.2). Then, for each x̃ ∈ Cn

and each g ∈ Gn[a, b], equation (3.1) has a unique solution x on [a, b] and
x ∈ Gn[a, b]. Moreover, x− g ∈ BV n[a, b].
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Furthermore, analogously to [18, Theorem III.1.7] where g ∈ BV n[a, b],
we have:

Theorem 3.2. Let A ∈ BV n×n[a, b] satisfy (3.2). Then the relations

cA := sup{|[I −∆−A(t)]−1| : t ∈ [a, b]} < ∞(3.3)

and
|x(t)| ≤ cA (|x̃|+ 2 ‖g‖∞) exp(cA vart

a A) for t ∈ [a, b](3.4)

hold for each x̃ ∈ Cn, g ∈ Gn[a, b] and each solution x of (3.1) on [a, b].

Proof. First, notice that for t ∈ [a, b] such that |∆−A(t)| < 1
2

we have

∣∣[I −∆−A(t)]−1
∣∣ =

∣∣∣∣∣
∞∑

k=1

(∆−A(t))k

∣∣∣∣∣ ≤
∞∑

k=1

|∆−A(t)|k =
1

1− |∆−A(t)| < 2.

Therefore, (3.3) follows easily from the fact that the set

{t ∈ [a, b] : |∆−A(t)| ≥ 1

2
}

has at most finitely many elements.

Now, let x be a solution of (3.1). Put B(a) = A(a) and B(t) = A(t−)
for t ∈ (a, b]. Then, as in the proof of [18, Theorem III.1.7], we can deduce
that A − B ∈ BV n×n[a, b],

A(t)−B(t) = ∆−A(t) and

∫ t

a

d[A−B] x = ∆−A(t) for t ∈ [a, b].

Consequently,

x(t) = [I −∆−A(t)]−1

(
x̃ + g(t)− g(a) +

∫ t

a

d[B] x

)

and

|x(t)| ≤ K1 + K2

∫ t

a

d[h] |x| for t ∈ [a, b],

where

K1 = cA (|x̃|+ 2 ‖g‖∞) , K2 = cA and h(t) = vart
a B for t ∈ [a, b].

The function h is nondecreasing and, since B is left-continuous on (a, b], h is
also left-continuous on (a, b]. Therefore we can use the generalized Gronwall
inequality (see e.g. [18, Lemma I.4.30] or [16, Corollary 1.43]) to get the
estimate (3.4).
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Corollary 3.3. Let A ∈ BV n×n[a, b] satisfy (3.2). Then for each x̃ ∈ Cn,
g ∈ Gn[a, b] and each solution x of (3.1) on [a, b], the estimate

varb
a(x− g) ≤ cA (varb

a A) (|x̃|+ 2 ‖g‖∞) exp(cA varb
a A)

is true, where cA is defined by (3.3).

Proof. By (3.4), we have

‖x‖∞ ≤ cA (|x̃|+ 2 ‖g‖∞) exp(cA varb
a A).

Therefore

varb
a(x− g) ≤ (

varb
a A

) ‖x‖∞
≤ cA

(
varb

a A
)
(|x̃|+ 2 ‖g‖∞) exp(cA varb

a A).

Lemma 3.4. Let A ∈ BV n×n[a, b] satisfy (3.2) and let cA be defined by (3.3).
Then

(3.5) cA =
(
inf

{∣∣[I −∆−A(t)
]

x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

})−1
.

Proof. We have

cA = sup
{|[I −∆−A(t)]−1| : t∈ [a, b]

}

= sup

{ |[I −∆−A(t)]−1||[I −∆−A(t)] x|
|[I −∆−A(t)] x| : t∈ [a, b], x∈Cn, |x|= 1

}

≥ sup

{ |x|
|[I −∆−A(t)] x| : t∈ [a, b], x∈Cn, |x|= 1

}

= sup

{
1

|[I −∆−A(t)] x| : t∈ [a, b], x∈Cn, |x|= 1

}

=
(
inf

{|[I −∆−A(t)] x| : t∈ [a, b], x∈Cn, |x|= 1
})−1

.

Thus, it remains to prove that the inequality

(3.6) cA ≤
(
inf

{∣∣[I −∆−A(t)
]

x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

})−1

is true, as well. To this aim, first let us notice that for each t ∈ [a, b] there is
a z ∈ Cn such that |z| = 1 and

(3.7)
∣∣[I −∆−A(t)]−1

∣∣ =
∣∣[I −∆−A(t)]−1 z

∣∣ .
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Indeed, let t ∈ [a, b] and let B = [I − ∆−A(t)]−1. Let i0 ∈ {1, 2, . . . , n} be
such that |B| =

∑n
j=1 |bi0,j| and let z ∈ Cn be such that zi = sgn(bi0,2) for

i = 1, 2, . . . , n. Then |z| = 1. Furthermore,

|B z| = max
i=1,2,...,n

n∑
j=1

|bi,j zj| = max
i=1,2,...,n

n∑
j=1

|bi,j sgn(bi0,j)|

≤ max
i=1,2,...,n

n∑
j=1

|bi,j| = |B|.

On the other hand, we have

|B| =
n∑

j=1

|bi0,j| =
∣∣∣∣∣

n∑
j=1

sgn(bi0,j) bi0,j

∣∣∣∣∣ ≤ |B z|.

Therefore, we can conclude that (3.7) is true.
Now, due to (3.2), there is w ∈ Cn such that z = [I − ∆−A(t)] w.

Inserting this instead of z into (3.7) and having in mind that |z| = 1, we get

∣∣∣
[
I −∆−A(t)

]−1
∣∣∣ =

|[I −∆−A(t)]−1 [I −∆−A(t)] w|
|[I −∆−A(t)] w|

=
|w|

|[I −∆−A(t)] w| =
1∣∣∣[I −∆−A(t)]

(
w
|w|

)∣∣∣

≤ sup

{
1

|[I −∆−A(t)] x| : x ∈ Cn, |x| = 1

}
.

It follows that

cA ≤ sup

{
1

|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

}

=
(
inf{|[I −∆−A(t)] x| : t ∈ [a, b], x ∈ Cn, |x| = 1

)−1
,

i.e. (3.6) is true. This completes the proof.

4. Continuous dependence of a solution on a parameter. The
main result of this paper is provided by Theorem 4.1. It concerns contin-
uous dependence of solutions of generalized linear differential equations on
a parameter and generalizes the result due to M. Ashordia [2, Theorem 1].
Unlike [2] and [3], we do not utilize the variation-of-constants formula and
therefore we need not assume that, in addition to (3.2), also the condition

det[I + ∆+A(t)] 6= 0 for all t ∈ [a, b]
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is satisfied. Furthermore, both the nonhomogeneous part of the equation
and the solutions may be regulated functions (not necessarily of bounded
variation).

Theorem 4.1. Let A, Ak ∈ BV n×n[a, b], g, gk ∈ Gn[a, b], x̃, x̃k ∈ Cn for
k ∈ N. Assume (2.4), (2.5), (3.2),

limk→∞ ‖gk − g‖∞ = 0(4.1)

and
limk→∞ x̃k = x̃.(4.2)

Then equation (3.1) has a unique solution x on [a, b]. Furthermore, for each
k ∈ N sufficiently large there exists a unique solution xk on [a, b] to the
equation

(4.3) x(t) = x̃k +

∫ t

a

d[Ak(s)] x(s) + gk(t)− gk(a)

and

(4.4) lim ‖xk − x‖∞ = 0.

Proof. Step 1. As in the first part of the proof of [2, Theorem 1], we can
show that there is a k1 ∈ N such that

det[I −∆−Ak(t)] 6= 0 on [a, b]

holds for all k ≥ k1. In particular, (4.3) has a unique solution xk for k ≥ k1.

Step 2. For k ≥ k1, put

cAk
:= sup{

∣∣[I −∆−Ak(t)]
−1

∣∣ : t ∈ (a, b]}.

Then, by Lemma 3.4, we have

(cAk
)−1 = inf

{∣∣[I −∆−Ak(t)
]

x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

}

≥ inf
{∣∣[I −∆−A(t)

]
x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

}

− sup
{∣∣[∆−(Ak(t)− A(t))

]
x
∣∣ : t ∈ [a, b], x ∈ Cn, |x| = 1

}
.

Since, due to assumption (2.5),

lim
k→∞

‖∆−Ak −∆−A‖∞ = 0,
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we conclude that there is a k0 ≥ k1 such that

(cAk
)−1 ≥ (cA)−1 − (2 cA)−1 = (2 cA)−1 for k ≥ k0.

To summarize:

(4.5) cAk
≤ 2 cA < ∞ for k ≥ k0.

Step 3. Set wk = (xk − gk)− (x− g). Then,

wk(t) = w̃k +

∫ t

a

d[Ak] wk + hk(t)− hk(a) for k ≥ k0 and t ∈ [a, b],

where w̃k = (x̃k − gk(a))− (x̃− g(a)) and

hk(t) =

∫ t

a

d[Ak − A] (x− g) +

(∫ t

a

d[Ak] gk −
∫ t

a

d[A] g

)
.

By (4.1) and (4.2) we can see that

(4.6) lim
k→∞

w̃k = 0.

Furthermore, since x− g ∈ BV n[a, b] and limk→∞ ‖Ak −A‖∞ = 0, by Theo-
rem 2.1 we have

lim
k→∞

∥∥∥∥
∫ t

a

d[Ak − A] (x− g)

∥∥∥∥
∞

= 0

and, by Lemma 2.2,

lim
k→∞

∫ t

a

d[Ak] gk =

∫ t

a

d[A] g.

To summarize,

(4.7) lim
k→∞

‖hk‖∞ = 0.

On the other hand, applying Theorem 3.2 and taking into account the rela-
tion (4.5), we get

‖wk‖∞ ≤ 2 cA (|w̃k|+ 2 ‖hk‖∞) exp(2 cA α∗) for t ∈ [a, b] and k ≥ k0,

wherefrom, by virtue of (4.6) and (4.7), the relation

lim
k→∞

‖wk‖∞ = 0

follows. Finally, having in mind assumptions (4.1) and (4.2), we conclude
that the relation

lim ‖xk − x‖∞ = 0

is true, as well. This completes the proof.
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Now, we want to present an example of application of Theorem 4.1. To
this aim let us introduce some additional notation.

Notation 4.2. For a k ∈ N denote by Dk a division of [a, b] given by

(4.8)





Dk =
{
αk

0, α
k
1, . . . , α

k
m

}
, where m = 2k and

αk
i = a +

i (b− a)

2k
for i = 0, 1, . . . , m.

For given A ∈ BV n×n[a, b], g ∈ Gn[a, b] and k ∈ N, we define

(4.9) Ak(t) =





A(t) if t ∈ Dk,

A(αk
i−1) +

A(αk
i )− A(αk

i−1)

αk
i − αk

i−1

(t− αk
i−1) if t ∈ (αk

i−1, α
k
i )

and

(4.10) gk(t) =





g(t) if t ∈ Dk,

g(αk
i−1) +

g(αk
i )− g(αk

i−1)

αk
i − αk

i−1

(t− αk
i−1) if t ∈ (αk

i−1, α
k
i ).

Then, obviously, {Ak} ⊂ ACn×n[a, b] and {gk} ⊂ ACn[a, b]. Moreover, we
have

Lemma 4.3. Let the sequences {Dk} and {Ak} be defined by (4.8) and (4.9),
respectively. Then

varb
a Ak ≤ varb

a A for all k ∈ N.

Proof. Since

var
αk

`

αk
`−1

Ak =
∣∣A(αk

` )− A(αk
`−1)

∣∣ ≤ var
αk

`

αk
`−1

A

for each k ∈ N and ` = 1, 2, . . . , 2k, we have

varb
a Ak =

2k∑

`=1

var
αk

`

αk
`−1

Ak ≤
2k∑

`=1

var
αk

`

αk
`−1

A = varb
a A.

Equations (4.3) with Ak and gk given by (4.9) and (4.10) are just initial
value problems for linear ordinary differential systems

(4.11) x′ = A′
k(t) x + g′k(t), x(a) = x̃k.
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In this view, the next theorem says that the solutions of (3.1) can be uni-
formly approximated by solutions of linear ordinary differential equations
provided the functions A and g are continuous.

Theorem 4.4. Assume that A ∈ BV n×n[a, b] ∩Cn×n[a, b] and g ∈ Cn[a, b].
Let x̃ and x̃k ∈ Cn, k ∈ N, be such that (4.2) holds. Furthermore, let the
sequence {Dk} of divisions of the interval [a, b] be given by (4.8) and let
sequences {Ak} ⊂ ACn×n[a, b], {gk} ⊂ ACn[a, b] be defined by (4.9) and
(4.10), respectively.

Then equation (3.1) has a unique solution x on [a, b]. Furthermore, for
each k ∈ N, equation (4.3) has a solution xk on [a, b] and (4.4) holds.

Proof. Step 1. Since A is uniformly continuous on [a, b], we have:

(4.12)





for each ε > 0 there is a δ > 0 such that

|A(t)− A(s)| < ε
2

holds for all t, s ∈ [a, b] such that |t− s| < δ .

Let 1
2k0

< δ and let t be an arbitrary point of [a, b]. Furthermore, let

α`−1, α` ∈ Pk0 = {α0, α1, . . . , αpk0
} and t ∈ [α`−1, α`].

Then

|α` − α`−1| = 1

2k0
< δ

and, according to (4.8), (4.9) and (4.12), we get for k ≥ k0

|Ak(t)− A(t)| = |Ak(t)− Ak(α`−1) + A(α`−1)− A(t)|

≤
∣∣∣∣A(α`−1) + [A(α`)− A(α`−1)]

[
t − α`−1

α` − α`−1

]
− A(α`−1)

∣∣∣∣ +
ε

2

= |A(α`)− A(α`−1)|
[

t − α`−1

α` − α`−1

]
+

ε

2
≤ ε.

As k0 was chosen independently of t, we can conclude that (2.5) is true.

Step 2. Analogously we can show that (4.1) holds for {gk} and g.

Step 3. By Lemma 4.3, relation (2.4) holds. Moreover, A and Ak, k ∈ N,
are continuous. Therefore, by Theorem 3.1, equations (3.1) and (4.3) have
unique solutions for each k ∈ N and we can complete the proof using Theorem
4.1.
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Remark 4.5. Piecewise linear approximations (4.9) and (4.10) of A, g can
be constructed also in the general case when A, g need not be continuous.
Some results in this direction for homogeneous equations were obtained by
M. Pelant in his unpublished thesis [13]. If A and/or g are not continuous on
[a, b] the situation is rather more complicated and, in general, the solutions of
(4.3) do not converge to the solution of (3.1), but to solutions of a somewhat
modified equation. Nevertheless, using matrix logarithms, one can always
define a sequence (4.3) of approximating initial value problems for ODE’s
whose solutions tend to the solution of (3.1). Of course, even if A and g are
real valued, such approximating piecewise linear functions will be, in general,
complex valued. We intend to expose this topic in more details later.
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