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Czechoslovak Mathematical Journal, 32 (107) 1982, Praha 

DUALITY THEORY FOR LINEAR n-TH ORDER 
INTEGRO-DIFFERENTIAL OPERATORS WITH DOMAIN 

IN L^ DETERMINED BY INTERFACE SIDE CONDITIONS 

RICHARD C. BROWN, Tuscaloosa, MILAN TVRD^ and OTTO VEJVODA, Praha 

(Received March 2, 1979) 

0. INTRODUCTION 

In this paper wc develop a duaUty theory for linear integro-differential operators 
in the space Ц„ of m-vector valued functions Я-integrable on [0,1] associated with 
the system 

(0,1) (ly) (t) = t iA,{t) /%t) + f Kit, s) Z'Xs) ds + 
i=o Jo 

+"E 2:c,,(o/'Xo-i+) + DUt)/'Ktj-)+fit), 
i=0j=l 

(0,2) Hy^"j: I {M,j/%tj^,+)+N,j/'%-)) +t Ге</'>с1г = 0, 
i = Oj = l i = OjO 

where 0 = ÎQ < t^ < .., tj, = 1 is з. fixed subdivision of [0,1] and у is an m-vector 
valued function which is together with its derivatives y^*^ of the orders i, i ^ n — 1 
absolutely continuous on every subinterval (tj^^^tj), j = 1,2, ...,/c and whose 
n-th order derivative j^^"^ is Я-integrable on [0, 1]. Such systems are usually called 
interface boundary value problems, Parhimovic [13], [14] showed (for p = 2) 
that under certain natural assumptions on the coefficients such problems are normally 
solvable, and found their index. We shall give an exphcit formula for the adjoint 
relation to the operator L : D(L) a Ц^ --> If„, corresponding to (0,1), (0,2) which is 
in general unbounded and nondensely defined. Similarly as in Brown, Krall [1] the 
main tool is the Linear Dependence Principle. Boundary value problems for integro-
dififerential operators have been recently treated e.g. by Maksimov [10], Maksimov 
and Rahmatullina [11], cf. also Schwabik, Tvrdy and Vejvoda [16] or [18], [19] 
and [20]. Interface problems for diö*erential operators were considered e.g. by Bryan 
[3], Conti [5], GonelH [6], Krall [9], Stallard [17] and Zettl [21]. Schwabik [15] 
disclosed the relationship between interface problems and linear generalized dif
ferential equations (in the sense of Kurzweil). 
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Throughout the paper the following notation and conventions are kept. For 
— o o < a < b < o o the closed interval a ^ t S b is denoted by [a, b], its interior 
a < Î < b by {a, b) and the corresponding half-open intervals a < t ^ b and 
a S t < b by (a, b] and [a, b), respectively. Given an m x /c-matrix A. = 

к 
= {^i,j)i=u...,m j=i,...,k^ ^* denotes its transpose and |^| = max X! i^fj!- ^^^ 

i=i,.,.,m J = l 

symbol I stands everywhere for the unit matrix of the proper type and any zero 
matrix is denoted by 0. JR̂  is the space of real column m-vectors with the norm 
\x\ = max jxj| for x == (x^, 'x2,..., x^) G R„^ (R^ = R). L^a, b) denotes the 

j ~ t ,...,m 

Banach space of functions y: [a, b] -• JR„j such that 

= (j>(ON.)" 1/P 

II>'IILP = I I \yWuî] < 00 

L'̂ (a, b) is the Banach space of functions j ; : [a, b] -> R„j measurable and essentially 
bounded on [a, fo], i.e. 

IbiU« = sup ess IXOi < 00 . 
tela b} 

Instead of ЬЦОД) we write only L^. 
Let q = p/(p ~ - l ) i f p > l , q = со i f p = l. Then Д,(а, Ь) is isometrically 

isomorphic with the dual space of HU^a, b). Given z e Цп{а, b), the corresponding 
linear bounded functional <•, z)^^ on L^^ii^, b) is given by 

<y, >̂LP = 2*3; dt for у 6 ЯДа, Ь) . 

An m X /c-matrix valued function is said to be L^-integrable on [a, b] if every its 
column belongs to ЬЦа, Ь). (This concerns also the case p = 00.) 

Let X, 7 be Banach spaces and let T be a linear operator acting from X into 7. 
Then D(T) denotes the domain of definition of T in X, R(T) is the range of Г in 7 and 
N(T) is its null space. If the spaces X* and 7* are respectively dual spaces to X and 7 
and < *, иУх, < • Î 1̂>у denote the linear bounded functionals corresponding respectively 
to и e X* and v e 7*^ then T* с X* x 7* stands for the adjoint of T defined by 

(w, г;)бГ* iff {Тх.уУу = (x,u}x for all X€D{T). 

* If D(T) is dense in X and Tis bounded, then T* is a Unear bounded operator 7* -> X 
defined on the whole 7*((w, O) e T* iif м = 0). In general, T* is a Hnear 
relation with the domain of definition 0(Г*) = {t; e 7*: there exists w e X* such that 
(w, г;) € Г*} and the range Я(Т*) = {w e X*: there exists Ü e 7* such that (w, v) e Г*}, 
Let us notice that if T has a closed range in 7, then the Fredholm alternatives 

R{T) - iV(T*)-̂  = {>̂  € 7 : < J, t'>J. = 0 for all v e iV(T*)} 
and 

N{T^) = ^i^(T) = {t; e 7* : <j;, p) , = 0 for all у e R{T)] 
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hold (where N{T*) = {veY* : (0, v) e Г* is the null space of T*}). For more details 
concerning hnear relations see Coddington, Dijksma [4] Section 2. 

1. THE SPACE Dy 

Let {0 =^ to < ti < .., < tk = 1} be an arbitrarily chosen fixed subdivision of 
the interval [0,1] and let 1 ^ p < oo. 

Let us denote by D^''' the space of all functions y : [ОД] -^ K,„ which together 
with their derivatives y^^^ of the orders i, i ^ n — 1, are absolutely continuous on 
every (tj-i, tj), j = 1, 2, ..0, fc, and whose n-th order derivative y^"^ is F-integrable 
on [0,1]. 

1.1. Lemma. The mapping 

(Ы) х:у€ВУ-^ {y{to + l y{ti+l..., y{tk~i+), /Oo + ) , 

is a one-to-one mapping of D '̂̂  onto R„^j^ x L^. 

Proof. Given ^ = (ai,o. «1,1» •••, «1,^-1, ..., a„_i,o, a„-i,i, ..., Qc„^i,k~i, z) e 
^ Rnmk X if̂  = Z let us put \l/(^) = 3;, where j : [0,1] -^ JR^ is defined by 

>'̂"> = z a.e. on [0,1] , 

y^"-'\t) = ot„^,j-^ 
tj~i 

zdT for te(tj_i,tj), j = 1,2,...,/c, 

y{t) = ai,; + у dz for r e (r,.̂  1, Г,.) , j = 1, 2,..., /c, 
J 0-1 

XO = «oj + У ат: for te{tj^^,tj), j = l,2,..,,k 
Jtj-i 

{y{h)^ J ^ 0,1, . . .Д may be arbitrary). 
Then evidently iA((̂ ) e D '̂̂ , %(iA(̂ )) = ^ for every ^ e У and ^{y^^if)) = Ĵ  for every 

Let us put for у e D'^ 

(1,2) 1Ь1и="£ЕИЬ-:+)| + | / 11 - -
i = o y = i 

Then \\-\\jy is obviously a norm on D^'^ Moreover, \\у\\о = ||Чз )̂1к *) ^̂ ^ ^̂ ^̂ У 
J G D,"„'̂ . Consequently, we have 

*) If II • 11X ^^^ II * II r ^̂ ® norms in X and Г, respectively, then the norm on the product space 
X X У is defined by (Х,У)ЕХХ Y 

l|(^.>')|Uxr= lklU+i^'lk-
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1.2. Lemma. V^^^ equipped with the norm (1,2) becomes a Banach spme iso-
metrically isomorphic with the Banach space Y = R„mk ^ Щп-

1.3. Remark. Let us notice that 
k 

\\y\\D = Jl\\yj\\w for y e D ^ ^ , 
i = i 

where yj (j = 1,2, . . . ,Ä: ) denote respectively the restrictions of у on (tj^^^tj) 
{j = 1,2, ...,/c) and 

n-i / rtj , \\ip 

• • • 11з'.1к=Е|з'Р(о-1+)1+( b f N ^ ^̂  
i = 0 \jtj-i J i 

is the norm of y^ in the Sobolev space Ж '̂̂ (Гу_ i, t^ (m-vector valued functions which 
together with their derivatives of the orders /, i ^ w - 1, are absolutely continuous 
on (rj_.i, t>j and their n-th order derivative is L^-integrable on (г^_1, r^)). 

The zero element in the space D";^ is the class of functions z : [0,1] -> JR^ which 
vanish on every subinterval (^y_i, i^, j = 1, 2 , . . . , fe (the values z(tj) may be ar
bitrary). 

It follows from Lemma 1.2 that the dual space (i)^'^)* of D^'^ is isometrically 
isomorphic with the dual space 7* = Rn^j, ^ Цп {я = рЦр — l) if p > 1, ^ = со 
i f p = l ) o f y = Ä „ , , х Я , . 

1.4. Lemma. Given an arbitrary linear bounded operator H : D"^^ -^ i?,„ there 
exist h X m-matrices M^j (i = 0, 1, ..., n — 1; j = 0, 1 , . . . , /c — 1) and an h x m-
matrix valued function Q, B-integrable on [0,1] {q = pl{p — 1) if p > 1, q ^ со 
if p = l) , such that 

(1,3) Ну = j : i M,j/%tj_, +)+{' Q/"^ at for any у e D"J . 
i=-Oj=l JO 

Remark . In particular, any "side" operator H of the form (0,2) may be trans
formed to the form (1,3). . 

1.5. Linear differential operator in D^'^. Let Ai [i = 0 , 1 , . . . , n) be m x m-matrix 
valued functions defined a.e. on [0,1] and L^ — integrable on [0,1], while A„ is 
essentially bounded on [0,1] and possesses an essentially bounded on [0,1] inverse 
A~^. Let us consider the Hnear differential expression 

^y = t^i/'' 
i = 0 

on the space Djjj'̂ . 
Obviously Лу e Ü^ for any у e D^'^. Furthermore, it is well known that for any 

J = 1,2,..., fc, gjeÜj^tj^^,tj) and Jy = (coy, c^,-,..., c„_i,,) e K„,„, there exists 
a unique function У] e С^'С^у-ь h) such that 

Xyj = g.^.c. on (tj-utj), yj\tj-i+) == Cij (i = 0, 1, . . . , n - 1) . 
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By the variation-of-constants formula these yj may be expressed in the form 

y. = Ujdj + Vjgj, 

where С/,:Л„„.-.Ж^'''0^_1,<^) and Vj : Ll,{tj^„tj) ^ w:'%..„ tj) are linear 
bounded operators. Hence, for a given g e L!l„ and d = (cij)i=o,i,...,«~i j=i,2,...,k^ 
E R„^k, there exists a unique function y e D"^^ left-continuous on every (0-i»^y]> 
right-continuous at 0 and such that 

Ày = g a.e. on [0Д] 
and 

/%tj_,+) = c,j (i = 0, 1 , . . . , n~~l;j = 1, 2 , . . . , k) . 

The function y may be expressed in the form 

(1,4) y = Ud+Vg, 
where U : R^^^ -> D^'^ and F : L^ ~> D^'^ are linear bounded operators. In fact, 
we put y{t) = yj{t) on {tj_,, tj), y{tj) = y{tj-), J = 1, 2, , k, y(0) = y{0 + ) , 

{Ud){t) ={Ujdj){t) for r e ( 0 _ i , f ^ ) , 

(Ud) (tj) = (Ud) (tj-^), (Ud) (0) = (Ud) (0+) , ; = 1, 2 , . . . , fc 
and 

(F^)(r) =(För,.)(0 for tE{tj^„tj), 

(Vg) (tj) = (Vg) {tj-l (Vg) (0) = (F^) (0 + ) , j = 1, 2 , . . . , ^ , 

where dj = (CQJ, c^j,..., c^^^j) e R„^, d = (d^, d2,..,, d^je R„^k and ^; is the 
restriction of g on {tj-i, tj) (j = 1, 2 , . . . , /c). Thus 

\\ud\\, = i\\Ujdjy and iiF îu = i;ii^;dk. 

2. LINEAR INTEGRO-DIFFERENTIAL OPERATORS ON Z) '̂*' 

Throughout the rest of the paper we assume 

2.1. Assumptions. 0 = ÎQ < t^ < ... < tj, = 1 is a. fixed subdivision of the interval 
[0,1] and D^'^ is the corresponding function space defined as in Section 1. Ai(t), 
Cij{t) (i = 0, 1, ,..,n; j = 1, 2 , . . . , k) are m x m-matrix valued functions defined 
a.e. on [0,1] and LMntegrable on [0Д], 1 ^ p < со, Л„ is essentially bounded on 
[0,1], q = PI(P — 1) if P > 1, q = CO if P = 1, K(t, s) is an ш x m-matrix valued 
function measurable in (t, s) on [0,1] x [0,1] and such that K(', s) is measurable 
on [0,1] for a.e. s G [0,1], K{î, •) is L4ntegrable on [0,1] for a.e. Г G [0,1] and the 
function îe [0,1] -^ ||i^(r, z)!!^« is F-integrable on [0,1], i.e. 

(2,1) \\K\ p,q 

n / r i \p/q \l/p 
i \K(t,s)\^ds] at] < 00. 
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Under the assumptions 2.1 the integro-differential expression 

(2,2) (o)(0 = É^XO/"(0 + Z "lc.-.yO)/''(0-i+) + rJ<:0,s)/«>(5)ds 
i = 0 j=l i = 0 J o 

is for every y e Z)̂ '̂  defined a.e. on [0,1]. Moreover, as 

(2,3) KiuenL K{t, s) u{s) ds 

defines a HiUe-Tamarkin operator on L^, К is linear and bounded (cf. [7], Theorems 
11.5 and 11.1). Thus we have 

2.2. Lemma, /y € L^ for any y e Д '̂̂  and the linear operator / : у e D^^ -> 
--> ̂ y e JI^ is bounded. 

Proof. It remains to shov̂ ^ the boundedness of «f. In fact, using the Holder ine
quality we have for any у e D^^ 

Vyh^ = (СЦ^^У'" + Z Ï c , ; / ' > ( 0 - x + ) + [\it,s)y<-'\s)ds\dt\ 
\ J o | r = 0 j=l i = 0 J o I / 

< 

7 = 1 i = 0 

Since for any Г= 0, 1, ..., n — 1 and t e (tj-i, tj), j = 0 ,1 , . . . , /c 

1 

+ 

1 r=o r! 

£.,(£',(-Cr^'"*-)'"-'-)-)''" 
s"f'|/'™(о-+)| + ||/->|и.а 

r = 0 

< 

it follows that 

ML. è {|Л|к« + I (И.-IIL. + l ||С,.,.||,,) + \\KlJ MD 

for all у e D '̂̂ . 
Remark. Under reasonable assumptions the integro-differential expression on the 

left-hand side of (0Д) can be reduced by repeated integration by parts to the form 
(2.2). 
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3. LINEAR INTEGRO-DIFFERENTIAL OPERATORS UNDER LINEAR 
CONSTRAINTS ON D^;^ 

Under the assumptions 2.1 the integro-differential expression (2,2) defines a func
tion from Ü^ for every y e D^'^ (cf. 2.2). 

Let H : DJJ,'̂  -• Rf^ be an arbitrary linear bounded /z-vector valued functional 
on D^;^, i.e. 

(3.1) Ну ="X X M,j/%tj^,^) + f' Ô/"> dt for y e D;:,'̂  , 
»=oi=i J o 

where 

(3.2) Mij (i = 0 , 1 , . . . , n — 1; 7 = 0, 1, . . . , fe — 1) are /i x m-matrices and Q is 
an h X m-matrix valued function LMntegrable on [0,1] 

(cf. 1.3). 

Endowed with the norm of IÇ„, D^'^ becomes a dense subspace of L^ and / may 
be considered a densely defined operator in Ц„. 

ЗЛ. Definition. L is the linear operator with domain D(L) = {y S D^;^ : Ну = 
= 0} in Ц„ and the range R(L) in L^ defined by 

L:yeD{L)c:ü^-.^yeÜ„, 

(Lis the restriction of ^ to D ( L ) = N(H).) 

Since D(L) need not be dense in L^, the adjoint L* to Lis in general a linear 
relation in L̂ ^ x L̂ .̂ To derive its exphcit form we examine the expression 

(3.3) <L3;,2>^p= r 2 * ( 0 ) d ? = 

= i r z * ( ^ , / ^ > ) d r + " E i f r z * C , , d A / ^ > ( 0 - i + ) 
»=o Jo i=oi=i \ Jo / 

I z*{t)(\ K{t,s)y^"\s)ds\dt 

-f 

with z e Ц„ and j e Z)(L). 

3.2. Lemma. Given z e I?^, у e D^'^ anti г = 0, 1, . . . , n - 1, r/ien 

(3,4) i f ' z*^,-/^> dr = i "X ( Z [r~'''{z-A;)] ( f , . , ) / ' X O - i + ) + 
» = 0 J o j = l i = 0 \ r = 0 

. = 0 Jo / 
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where 

(3,5) y'''^^^^^\'X\X'''(t "W^^^)^^-i)--)d^i f' or te{tj_.i,tj) 

and any и E Ц„, r = 1,2,..., 
J%=:u, 

Proof. Py repeated integration by parts we obtain for any z eL^, у e D^'^ and 
Ï = 0, 1, ..•? ^ — 1 successively 

Л-1 r i n-l к rtj 

2 z*A,/'^t = l I z*A,/'>dt = 
i-0 Jo j = 0 j = l J tj-i 

=1^ Ï ( Г *̂̂ ' '̂ )̂ >'"•'('>-1+)+J'' ( г *̂̂ .- 'î ) >'"'*" 'I'= 

= .1 Ï ( £ 2*̂ .- d̂ ) /"(b-i +) + ( £ _ ( £ *̂̂< d̂ a) dt,) /'^1' 0,_i +) + 

= ,Z Ï ( £ *̂̂ i dr) /'\tj^,+) + (£' ^ (̂ J'' z*A, dT,) dr,) y-^'(0-i +) + 

^ i L ill(• • • Œ-... '*'''--)'-"-) • • •)'-') ^'"-''^^^-^y^ 
^ £UIX£ (• 4 t ./*"'̂ -••) ̂ -'-) • • >̂ )̂ ̂ "'̂ =̂ 
J=l i = 0 r=i ï = 0 J 0 

where the notation (3,5) was utilized. Changing the order of summation in the 
expression in the brackets we obtain the relation (3,4). 

3.3. Lemma. Given z E 13^ and и E L^, then 

(3,6) j z*(r) ( Г K{t, s) u{s) d5 j dr = Г M |z*(f)| K{t, s) àt\ u{s) ds . 

Proof. Since for any z e 13^ and UE IF^ 

Г ( Г \z*{t)K(t, s) u(s)\ ds) dt й ( Г \z*{t)\ \\K(t, OIU, df) ||M||^, ^ 

^ IHIU» IF I IP . , II«IU'' < «> 
and the function z^(t)K(t, s)u(s) is certainly measurable on [0,1] x [0,1], the relation 
(3,6) follows by the Tonelli-Hobson Theorem ([12], Corollary of Theorem XII.4.2). 
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By virtue of the formulas (3,4) —(3,6) the relation (3,3) will be reduced to 

(3.7) <Ly, z> .̂ = Ï S ( Г z*C,j dt + t [j'--^'(z*^)] (0_,)) /Ъ-1+) + 
i = 0 J~l \ J o r = 0 / 

+ И I 2*(5) K{s, 0 ds + t [r-'iz'^A,)] y^A at 

for all z e 4 , and у E D^'^. 

The couple (v, z) e Ü^ x 13^ belongs to the graph of the adjoint relation L* 
if and only if 

<Lj, zy^p = {y, V}LP = v*y dt for all у e D{L) . 

Similarly as the relation (3,4) was derived in Lemma 3.2 we may derive tha t 

(3.8) O, z ; \ . ="t' i [J'+^t;*] (f,_0 /«(O-1+) + f' [ Л * ] /"* dt 
i = Oj=l J o 

holds for all у e D^'^ and v e L^ .̂ This together with (3,7) yields that (v, z) e L* if 
and only if 
(3,9) 

i = 0 i = l Uo '• = 0 J 

+ Л z*(s) X(s, t)ds + Y^ [J"-''(z*^,)] - [J"t;*] I ŷ "> dr = 0 
Jo [Jo »-=0 J 

holds for every j e D(L), Now, we can make use of the Linear Dependence Principle 
([8], p. 7): 

Suppose Я, »/̂ 1, i/<29 •••» ̂ 2v is a finite collection of linear functional (possibly 
unbounded) defined on a linear space Z and such that 

il/j{x) = 0 , J = 1, 2,... , iV implies Я(х) = 0 
N 

( П ^('Aj) *̂  ^ W ) - Then on X Я is a linear combinat ion of the functionals фх, xj/i, • •. 
i = i 

...,il/jç (i.e. there are ^ i , ç>2,. . . , ^iv e Ä such tha t 

Я(х) = ф1 ll/^{x) + Ф2 lA2(^) + . . . + (Piv ^N{X) o n Z ) . 

F r o m the definition of D{L) and from the Linear Dependence Principle it is clear 
that (3,9) may occur if and only if there exists cp e Rf, such that the relations 

(3,10) f' z*C,j dt + i [r-^^'{z*Aj] (f,_,) - ir^h*] (0_,) = cp*Mu ,.• 
Jo »-"O 

j = 0,1, .. . ,n - 1; J = 1,2 к 
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and 

(3.11) I ' z*(s)K{s, t)ds+t [^"-'•(z*^)] (0 - [-̂ "1;*] (f) = ç" Q{t) a.e. on [0,1] 
Jo r = 0 

hold. In particular, if we denote 

/+(2, Ф) = - " ï [Г''{Atz)} + rv , 
r = 0 

then <̂о (z, (p) is absolutely continuous on every (^j_i, tj), 7 = 1, 2. ..., /c and 

(3.12) /^(z, (p) = ^*z + I iC*(r, s) z(s) ds - Q*^ a.e. on [0,1] . 

Let us notice that for a given и e Д,, [Jw]' = —м a.e. on [0,1] and 
[Ги'\ = -{Г-Ч'], г = 2 ,3 , . . . on each ( 0 - i , 0 ) ' J = l ,2, . . . , /c . 

Hence 
П - 2 

in{z, <?.)]' = ^:-iZ + i [J"-^-U*z)] - [•̂ "" '̂'] a.e. on [0,1] . 
1 = 0 

Denoting 

^t{z,<p) = -ï[r-'-'{AU)'\ + [J"-^f] , 
» = 0 

we obtain 

(3.13) A*(z, 9,) = -[/o4z, <p)]' + ^*-iZ a.e. on [0,1] , 

with /^'(z, <̂ ) absolutely continuous on every {tj-u O)* ^^ general, we denote for 
Ï = 0 ,1 , . . . , w - 1 

(3.14) A^(z, <p) = --" Y^\r~'~\AU)\ + [J"-i;] . 
I'-O 

Thus every /j^(z, ç?)̂  i = 0 ,1 , . . . , n — 1 is absolutely continuous on each interval 
{tj-u O)' J = 1, 2,. . . , fc. Moreover, 

(3.15) ^t{^.^)^ -[^t-.i{z,cp)\' + At^.z a.e. on [0,1], 

/ = 1,2,..., n - \ 
and 

[ d ( z , (p)]' = Л2;2 + Ü a.e. on [0,1] . 

It means that the relation (3,11) is equivalent to 

V = ~ - [ d ( ^ ф)]' 4- 4 z a.e. on [0,1] . 
In particular, 

(ЗД6) C(z , <p) := - [ C - i ( 2 . -P)]' + ^oz e 4 . . 
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By (ЗД4) we have 

(ЗД7) l^î{z,qy)]{tj~) = 0 for all i = 0 , l , . . . , « ~ 1 ; ; = 1 , 2 , . . . Д . 

Furthermore, 

/ r ( z , < p ) 0 , - . + ) = - " Ï ' [ J " - ' - U * z ) ] 0 , - 0 + [r-'v-]{tj.,). 
r = 0 

By virtue of this identity the relation (3,10) becomes 

(3,18) l^î{^,<p)]{tj~t+) = r C _ i _ , , , z d r ~ Mti-ijcp for all 

Ï = 0 , 1 , . . . , n — 1 and J = 1, 2 , . . . , fe . 

To summarize: 

3.4. Theorem. Let us assume 2.1 and (3,2) and let us denote by D^ the set of all 
couples (z, (p) € Д„ X Rfj such that there exist functions ^^{z, cp), i = 0, 1, ..., n — 1, 
absolutely continuous on every interval {tj-i,tj), j = 1, 2, . . . , /c, and fulfilling 
(3,12), (3,15), (3,17) and (3,18). 

Let /^ (z , ф) fee defined for (z, ф) e D"̂  fey (3,16). Г/геп the graph of the adjoint 
relation L* to L consists of all couples {^„(z, cp), z) with (z, cp) e D^, i.e. 

In particular, the domain /)(L*) of L* is the set of all zeÜ^^ for which there 
exists (p e Rfj such that (z, cp) e D^. 

The "only if" part of Theorem 3.4 also follows from the following "Green's 
formula" which is easy to verify (cf. [ l]) . 

3.5. Proposition. Given y e D^'^ and {z,(p)e D^, then 

(ЗД9) < j , C{z, cp)}^, = </>;, z>^, ~ cp^Hy) . 

Remark . If 1 < j? < oo, then by [7], Theorem 11.6 the operator К given by (2,3) 
is compact. This enables us to show analogously as in [16] V.2 the closedness of the 
range R{L) of the operator L. In fact, according to the variation-of-constants formula 
(1,3), for a couple (/, r)e Ц„ x jR;, there exists у e D^'^ such that fy = f and Ey = r 
if and only if for some d = (c,j)|=o,i,...,/,-i j = i,2....,fe ^ ^«ть 

у =:Ud + V{f - Cd - Ky) and .H{U - VC) d - HVKy = r, 

where С : R„^k -^ Ц„, 

{Cd){t):^i^ZC,j{t)c,j a.c. on [0,1] 
i = i i = o 

for 
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In other words, (/, Г)Е U^ x jR̂ , belongs to the range R(^) of the operator 

(3,20) ^:yeD:;'-^(^^]EÜ^xR, ' 

if and only if (Vf, r) belongs to the range R(T) of the operator 

Since all the operators U — VC, VK, H{U — VC) and HVK dim compact and 
в : (/, г)еЦ„ X R^-^ [Vf, r) G D^'^ X R^ is bounded, the closedness of the range 
R{^) = Ö_,(R(T)) of ^ follows from the following lemma. 

3.7. Lemma. Let X be a Banach space. Let the operators Q : X ^ X, P : X -^ Rf^, 
A : R^-^ X and В : iî^ -> К/, be linear and bounded. Then, provided that Q is 
compact, the operator 

W:(.,ä)eXxR^-.(^l-^^l-Q^yXxR, 

has closed range in X x Rj^. 

Proof, a) If m < h, let us put for J = ( j e JR;,, с e R^ 

Ad :== AceX , Bd:=BceRh 
and for XGX 

where / stands for the identity operator on Rf^ (the identity h x /z-matrix). Clearly, 
W is linear, bounded and compact and consequently the range R(W) = R(I — W) 
(I the identity operator on X x jR̂ ) of both Ж and / ~ ^ i s closed in Z x K,,. 

b) If m > h, we put 

for de R^ and xeX. Then (y, u)e R(W) if and only if (y, v), where г) == ( | e JR^, 

belongs to the range of the operator 

,-0:(..ä).X X K^Ç)-{^^,\%,^p,yx . R.. 

Again W is compact and consequently R{l — W) is closed in X x Ä^. Now it is 
easy to verify that also R{W) is closed in Z x JR;,. 

c) The case m = h is obvious. :, 
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3.8. Corollary. The operator S£ given by (3,20) has closed range in U^ x Rf^. 
Since / 6 L^ belongs to the range of L if and only if (/, O) e Ц„ x Rf^ belongs to 

the range of JSf, the closedness of the range of Lin L^ follows immediately from 3.8. 

3.9. Theorem. Let us assume 2.1 and (3,2) and letl < p < oo. Then the operator L 
(defined in 3.1) has closed range in Ц„. 
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