NOTE ON FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH INITIAL FUNCTIONS OF BOUNDED VARIATION

Milan Tvrdý, Praha

(Received January 10, 1974)

In this note we shall deal with the standard functional-differential equation of retarded type

$$
\begin{gather*}
\dot{x}(t)=\int_{-\boldsymbol{r}}^{0}\left[\mathrm{~d}_{9} P(t, \vartheta)\right] x(t+\vartheta)+f(t) \text { a.e. on }[a, b], \tag{1}\\
x(t)=u(t) \text { on }[a-r, a] \tag{2}
\end{gather*}
$$

where $-\infty<a<b<+\infty$ and the initial functions $u(t)$ are of bounded variation on $[a-r, a]$. We assume that $P(t, \vartheta)$ is a Borel measurable in $(t, \vartheta) \in[a, b] \times$ $\times(-\infty,+\infty) n \times n$-matrix function such that $p(t)=\operatorname{var}_{-r}^{0} P(t, \cdot)<\infty$ for all $t \in[a, b]$ and

$$
\int_{a}^{b} p(t) \mathrm{d} t<\infty
$$

$f(t)$ is an n-vector function Lebesgue integrable on $[a, b]\left(f(t) \in \mathscr{L}_{n}(a, b)\right)$. We shall suppose also $P(t, \vartheta)=P(t,-r)$ for $\vartheta \leqq-r$ and $P(t, \vartheta)=P(t, 0)$ for $\vartheta \geqq 0$. Without any loss of generality we may suppose furthermore that $P(t, \cdot)$ is right continuous on $(-r, 0)$ and $P(t, 0)=0$ for all $t \in[a, b]$.

Let $\mathscr{B} \mathscr{V}_{n}(a-r, a)$ denote the space of (column) n-vector functions with bounded variation on $[a-r, a] . \mathscr{A} \mathscr{C}_{n}(a, b)$ is the space of n-vector functions which are absolutely continuous on $[a, b]$. The introduced spaces are equipped with the usual norms

$$
\begin{aligned}
u \in \mathscr{B} \mathscr{V}_{n}(a-r, a) & \rightarrow\|u\|_{\mathscr{B} \mathscr{V}}=\|u(a)\|+\operatorname{var}_{a-r}^{a} u \\
x \in \mathscr{A} \mathscr{C}_{n}(a, b) & \rightarrow\|x\|_{\mathscr{A} \mathscr{C}}=\|x(a)\|+\operatorname{var}_{a}^{b} x \\
f \in \mathscr{L}_{n}(a, b) & \rightarrow\|f\|_{\mathscr{L}}=\int_{a}^{b}\|f(t)\| \mathrm{d} t
\end{aligned}
$$

Proposition 1. There exists a unique $n \times n$-matrix function $Y(t, s)$ defined on $[a, b] \times[a, b]$ and such that

$$
Y(t, s)=\left\{\begin{array}{lll}
I-\int_{s}^{t} Y(t, \sigma) P(\sigma, s-\sigma) \mathrm{d} \sigma & \text { for } & a \leqq t \leqq b, \tag{3}\\
I \leqq s \leqq t \\
I & \text { for } & a \leqq t \leqq b, \\
t \leqq s \leqq b
\end{array}\right.
$$

where I is the identity $n \times n$-matrix. Given $t \in[a, b], Y(t, \cdot)$ is of bounded variation on $[a, b]$ and given $s \in[a, b], Y(\cdot, s)$ is absolutely continuous on $[a, b]$.
(For the proof of a slightly modified assertion see J. K. Hale [2], Theorem 32,2.)
The following representation of solutions of the system (1), (2) is well known (cf. H. T. Banks [1] or J. K. Hale [2], Theorems 16,1 and 32,2):

Proposition 2. Given $u \in \mathscr{B} \mathscr{V}_{n}(a-r, a)$, there exists a unique n-vector function $x(t)$ defined on $[a-r, b]$ and absolutely continuous on $[a, b]$ and such that (1) and (2) hold. This function $x(t)$ is on $[a, b]$ given by

$$
\begin{equation*}
x=\Phi u+\Psi f \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Phi: u \in \mathscr{B} \mathscr{V}_{n}(a-r, a) \rightarrow Y(t, a) u(a)+\int_{a-r}^{a}\left[\mathrm{~d}_{s} \int_{a}^{t} Y(t, \sigma) P(\sigma, s-\sigma) \mathrm{d} \sigma\right] u(s) \in \\
& \in \mathscr{A} \mathscr{C}_{n}(a, b), \\
& \Psi: f \in \mathscr{L}_{n}(a, b) \rightarrow \int_{a}^{t} Y(t, s) f(s) \mathrm{d} s \in \mathscr{A} \mathscr{C}_{n}(a, b)
\end{aligned}
$$

and $Y(t, s)$ is defined by Proposition 1.
The operators Φ, Ψ in (4) are obviously linear and bounded. The aim of this note is to show that Φ is even completely continuous. By Theorem 3,1 of Št. Schwabik [5] it suffices to show that the function

$$
\begin{equation*}
K(t, s)=\int_{a}^{t} Y(t, \sigma) P(\sigma, s-\sigma) \mathrm{d} \sigma, \quad(t, s) \in[a, b] \times[a-r, a] \tag{5}
\end{equation*}
$$

is of bounded two-dimensional variation (according to Vitali) on $[a, b] \times[a-r, a]$ $(\mathrm{v}(K)<\infty)$ and $\operatorname{var}_{a-r}^{a} K(a, \cdot)+\operatorname{var}_{a}^{b} K(\cdot, a)<\infty$. Such functions are said to be of strongly bounded variation on $[a, b] \times[a-r, a]$. (For the definition and basic properties of functions of bounded two-dimensional variation see T. H. Hildebrandt [4].)

Lemma 1. The fundamental matrix solution $Y(t, s)$ defined by Proposition 1 is of strongly bounded variation on $[a, b] \times[a, b]$.

Proof. Analogously to J. K. Hale in the proof of Theorem 32,2 in [2] we shall introduce the function $W(t, s)$ fulfilling the matrix Volterra integral equation

$$
W(t, s)=\left\{\begin{array}{cc}
-P(t, s-t)-\int_{s}^{t} W(t, \sigma) P(\sigma, s-\sigma) \mathrm{d} \sigma & \text { for } a \leqq t \leqq b, a \leqq s \leqq t, \\
0 & \text { for } a \leqq t \leqq b, t \leqq s \leqq b
\end{array}\right.
$$

The existence of such a function $W(t, s)$ follows from the contraction mapping principle. Moreover, given $t \in[a, b]$, the function $W(t, \cdot)$ is of bounded variation on $[a, b]$. Now, let $s, t \in[a, b], s \leqq t$ and let $\left\{s=s_{0}<s_{1}<\ldots<s_{m}=t\right\}$ be an arbitrary subdivision of the interval $[s, t]$. Then

$$
\begin{gathered}
\sum_{j=1}^{m}\left\|W\left(t, s_{j}\right)-W\left(t, s_{j-1}\right)\right\| \leqq \sum_{j=1}^{m}\left\|P\left(t, s_{j}-t\right)-P\left(t, s_{j-1}-t\right)\right\|+ \\
+\sum_{j=1}^{m}\left\{\int_{s_{j}}^{t}\|W(t, \sigma)\|\left\|P\left(\sigma, s_{j}-\sigma\right)-P\left(\sigma, s_{j-1}-\sigma\right)\right\| \mathrm{d} \sigma+\right. \\
\left.+\int_{s_{j-1}}^{s_{j}}\left\|W(t, \sigma) P\left(\sigma, s_{j-1}-\sigma\right)\right\| \mathrm{d} \sigma\right\} \leqq p(t)+2 \int_{s}^{t}\left(\operatorname{var}_{\sigma}^{t} W(t, \cdot)\right) p(\sigma) \mathrm{d} \sigma,
\end{gathered}
$$

where $p(t)=\operatorname{var}_{-r}^{0} P(t, \cdot)$ for $t \in[a, b]$. Gronwall's inequality yields

$$
\begin{equation*}
\|W(t, s)\| \leqq \operatorname{var}_{s}^{t} W(t, \cdot) \leqq p(t) \exp \left(2 \int_{s}^{t} p(\sigma) \mathrm{d} \sigma\right)<\infty \tag{6}
\end{equation*}
$$

for all $t, s \in[a, b], t \geqq s$. It is easy to verify (cf. [2], proof of Theorem 32,2) that for all $t, s \in[a, b]$

$$
Y(t, s)=I+\int_{s}^{t} W(\tau, s) \mathrm{d} \tau
$$

Furthermore, let $v=\left\{a=t_{0}<t_{1}<\ldots<t_{p}=b ; a=s_{0}<s_{1}<\ldots<s_{q}=b\right\}$ be an arbitrary net type subdivision of $[a, b] \times[a, b]$. Then according to (6)

$$
\begin{gathered}
\sum_{j=1}^{p} \sum_{k=1}^{q} \Delta \Delta_{j, k} Y=\sum_{j=1}^{p} \sum_{k=1}^{q}\left\|Y\left(t_{j}, s_{k}\right)-Y\left(t_{j-1}, s_{k}\right)-Y\left(t_{j}, s_{k-1}\right)+Y\left(t_{j-1}, s_{k-1}\right)\right\| \leqq \\
\leqq \sum_{j=1}^{p} \sum_{k=1}^{q}\left\|\int_{t_{j-1}}^{t_{j}}\left(W\left(\tau, s_{k}\right)-W\left(\tau, s_{k-1}\right)\right) \mathrm{d} \tau\right\| \leqq \int_{a}^{b} \sum_{k=1}^{q}\left\|W\left(\tau, s_{k}\right)-W\left(\tau, s_{k-1}\right)\right\| \mathrm{d} \tau \leqq \\
\leqq \int_{a}^{b} \operatorname{var}_{a}^{\tau} W(\tau, \cdot) \mathrm{d} \tau=\int_{a}^{b} p(\tau) \exp \left(2 \int_{a}^{\tau} p(\sigma) \mathrm{d} \sigma\right) \mathrm{d} \tau=M<\infty .
\end{gathered}
$$

Thus

$$
\mathrm{v}(Y)=\sup \sum_{j=1}^{p} \sum_{k=1}^{q} \Delta \Delta_{j, k} Y \leqq M<\infty
$$

which completes the proof.
Corollary 1. There exists $M<\infty$ such that for all $t, s \in[a, b]$

$$
\|Y(t, s)\|+\operatorname{var}_{a}^{b} Y(t, \cdot)+\operatorname{var}_{a}^{b} Y(\cdot, s)+\mathrm{v}(Y) \leqq M .
$$

Lemma 2. The function $K(t, s)$ defined by (5) is of strongly bounded variation on $[a, b] \times[a-r, a]$.

Proof. a) $K(a, \cdot)=0$ on $[a-r, a]$.
b) Let $\left\{a=t_{0}<t_{1}<\ldots<t_{m}=b\right\}$ be an arbitrary subdivision of $[a, b]$. Then by Corollary 1

$$
\begin{aligned}
& \sum_{j=1}^{m}\left\|K\left(t_{j}, a\right)-K\left(t_{j-1}, a\right)\right\|=\sum_{j=1}^{m} \| \int_{t_{j-1}}^{t_{j}} Y\left(t_{j}, \sigma\right) P(\sigma, a-\sigma) \mathrm{d} \sigma+ \\
+ & \int_{a}^{t_{j-1}}\left(Y\left(t_{j}, \sigma\right)-Y\left(t_{j-1}, \sigma\right)\right) P(\sigma, a-\sigma) \mathrm{d} \sigma \| \leqq M \int_{a}^{b} p(\sigma) \mathrm{d} \sigma<\infty .
\end{aligned}
$$

Hence $\operatorname{var}_{a}^{b} K(\cdot, a)<\infty$.
c) Given a net type subdivision $\left\{a=t_{0}<t_{1}<\ldots<t_{p}=b ; a-r=s_{0}<\right.$ $\left.<s_{1}<\ldots<s_{q}=a\right\}$ of $[a, b] \times[a-r, a]$, we have by Corollary 1

$$
\begin{gathered}
\sum_{j=1}^{p} \sum_{k=1}^{q}\left\|K\left(t_{j}, s_{k}\right)-K\left(t_{j-1}, s_{k}\right)-K\left(t_{j}, s_{k-1}\right)+K\left(t_{j-1}, s_{k-1}\right)\right\|= \\
=\sum_{j=1}^{p} \sum_{k=1}^{q} \| \int_{a}^{t_{j-1}}\left(Y\left(t_{j}, \sigma\right)-Y\left(t_{j-1}, \sigma\right)\right)\left(P\left(\sigma, s_{k}-\sigma\right)-P\left(\sigma, s_{k-1}-\sigma\right)\right) \mathrm{d} \sigma+ \\
\quad+\int_{t_{j-1}}^{t_{j}} Y\left(t_{j}, \sigma\right)\left(P\left(\sigma, s_{k}-\sigma\right)-P\left(\sigma, s_{k-1}-\sigma\right)\right) \mathrm{d} \sigma \| \leqq \\
\leqq \int_{a}^{b}\left(\operatorname{var}_{a}^{b} Y(\cdot, \sigma)+\sup _{\tau \in[a, b]}\|Y(\tau, \sigma)\|\right) \operatorname{var}_{-r}^{0} P(\sigma, \cdot) \mathrm{d} \sigma \leqq M \int_{a}^{b} p(\sigma) \mathrm{d} \sigma<\infty .
\end{gathered}
$$

Consequently, $\mathrm{v}(K)<\infty$ and this completes the proof of Lemma 2.
The following theorem is a direct consequence of Theorem 3,1 from [5] and of Lemma 2.

Theorem. The Cauchy operator Φ in the variation - of - constants formula (4) is completely continuous.

References

[1] Banks H. T., Representation for solutions of Linear Functional Equations, J. Diff. Eq. 5 (1969), 399-409.
[2] Hale J. K., Functional differential equations, Springer-Verlag, New York, 1971.
[3] Henry D., The Adjoint of a Linear Functional-Differential Equation and Boundary Value Problems, J. Diff. Eq. 9 (1971), 55-66.
[4] Hildebrandt T. H., Introduction to the Theory of Integration, Academic Press, New York, London, 1963.
[5] Schwabik Št., On an integral operator in the space of functions with bounded variation, Čas. pěst. mat. 97 (1972), 297-330.

Author's address: 11567 Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV).

