LINEAR BOUNDARY VALUE TYPE PROBLEMS FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS AND THEIR ADJOINTS

Milan Tvrdú, Praha

(Received July 27, 1973, - in revised version January 20, 1974)

0. INTRODUCTION

The paper deals with boundary value type problems for functional-differential equations

$$
\begin{equation*}
\dot{x}(t)=\int_{-r}^{0}\left[\mathrm{~d}_{9} P(t, \vartheta)\right] x(t+\vartheta)+f(t) \text { a.e. on } \quad[a, b] \tag{0,1}
\end{equation*}
$$

or
$(0,2) \dot{x}(t)=A(t) x(t)+B(t) x(t-r)+\int_{a-r}^{b}\left[\mathrm{~d}_{s} G(t, s)\right] x(s)+f(t)$ a.e. on $[a, b]$,
where $-\infty<a<b<\infty$ and the functions $P(t, \vartheta), G(t, s), A(t), B(t)$ and $f(t)$ fulfil some natural assumptions. In particular, we derive their adjoints and in some special cases prove the Fredholm alternative. (The results of A. Halanay [5] or E. A. Lifšic [9] on the existence of periodic solutions to the equation $(0,1)$ and the results of [12] on integral boundary value problems for ordinary integro-differential equations are included.) Our approach is based on the ideas of D. Wexler [14] and Šт. Schwabik [11] and differs from that of A. Halanay [6] or D. Henry [8] (cf. also J. K. Hale [7]). The adjoint problems obtained seem to be more natural than those of D. Henry [8] and follow directly from the principles of functional analysis. (It is shown that after some artificial steps our adjoint reduces to that of D. Henry.) Initial functions are continuous on $[a-r, a]$ or of bounded variation on $[a-r, a]$. In $\S 4$ boundary value type problems for hereditary differential equations considered in the sense of M. C. Delfour, S. K. Mitter [3] (with square integrable initial functions) are treated.

1. PRELIMINARIES

Let $-\infty<\alpha<\beta<+\infty$. The closed interval $\alpha \leqq t \leqq \beta$ is denoted by $[\alpha, \beta]$, its interior $\alpha<t<\beta$ by (α, β) and the corresponding half-open intervals by $[\alpha, \beta)$ and $(\alpha, \beta]$. Given a $p \times q$-matrix $M=\left(m_{i, j}\right)_{i=1, \ldots, p, j=1, \ldots, q}, M^{`}$ denotes its transpose and

$$
\|M\|=\max _{i=1, \ldots, p} \sum_{j=1}^{q}\left|m_{i, j}\right|
$$

\mathscr{R}_{n} is the space of real column n-vectors with the norm $\|x\|=\max _{i=1, \ldots, p}\left|x_{i}\right|$. The space of real row n-vectors is \mathscr{R}_{n}^{*}. (Elements of \mathscr{R}_{n}^{*} are denoted by x^{\prime}, where $x \in \mathscr{R}_{n}$;

$$
\left.\left\|x^{\prime}\right\|=\sum_{i=1}^{n}\left|x_{i}\right| .\right)
$$

$\mathscr{C}_{n}(\alpha, \beta)$ is the Banach space (B-space) of continuous functions $u:[\alpha, \beta] \rightarrow \mathscr{R}_{n}$ with the norm $\|u\|_{\mathscr{C}}=\sup _{t \in[\alpha, \beta]}\|u(t)\| ; \mathscr{B}_{V_{n}}(\alpha, \beta)$ is the B-space of functions $u:[\alpha, \beta] \rightarrow$ $\rightarrow \mathscr{R}_{n}$ of bounded variation on $[\alpha, \beta]$ with the norm $\|u\|_{\mathscr{G} V}=\|u(\beta)\|+\operatorname{var}_{\alpha}^{\beta} u$; $\mathscr{V}_{n}^{0}(\alpha, \beta)$ is the set of functions $u^{\prime}:[\alpha, \beta] \rightarrow \mathscr{R}_{n}^{*}$ of bounded variation on $[\alpha, \beta]$, right continuous on (α, β) and vanishing at β (being equipped with the norm $\left\|u^{\prime}\right\|_{\mathfrak{B} \boldsymbol{r}}$, $\mathscr{V}_{n}^{0}(\alpha, \beta)$ becomes a B -space $)$; $\mathscr{A} \mathscr{C}_{n}(\alpha, \beta)$ is the B -space of absolutely continuous functions $u:[\alpha, \beta] \rightarrow \mathscr{R}_{n}$ with the norm $\|u\|_{\mathscr{A} \mathscr{C}}=\|u\|_{\mathscr{B}} ; \mathscr{L}_{n}(\alpha, \beta)$ is the B-space of Lebesgue integrable (L-integrable) functions $u:[\alpha, \beta] \rightarrow \mathscr{R}_{n}$ with the norm

$$
\|u\|_{\mathscr{L}}=\int_{\alpha}^{\beta}\|u(t)\| \mathrm{d} t
$$

$\mathscr{L}_{n}^{\infty}(\alpha, \beta)$ is the B-space of essentially bounded functions $u^{\prime}:[\alpha, \beta] \rightarrow \mathscr{R}_{n}^{*}$ with the norm $\left\|u^{\prime}\right\|=\sup _{t \in[\alpha, \beta]}$ ess $\left\|u^{\prime}(t)\right\|$.

Given a B-space $\mathscr{X}, \mathscr{X}^{*}$ denotes its dual and the value of a functional $y \in \mathscr{X}^{*}$ on $x \in \mathscr{X}$ is denoted by $\langle x, y\rangle_{x}$. The zero functional on \mathscr{X} is denoted by $o_{\mathscr{X}}$. Hereafter $\mathscr{L}_{n}^{*}(\alpha, \beta)$ and $\mathscr{C}_{n}^{*}(\alpha, \beta)$ are identified with $\mathscr{L}_{n}^{\infty}(\alpha, \beta)$ and $\mathscr{V}_{n}^{c}(\alpha, \beta)$, respectively, while

$$
\left\langle x, y^{\prime}\right\rangle_{\mathscr{L}}=\int_{\alpha}^{\beta} y^{\prime}(t) x(t) \mathrm{d} t \quad \text { and }\left\langle u, v^{\prime}\right\rangle_{\mathscr{C}}=\int_{\alpha}^{\beta}\left[\mathrm{d} v^{\prime}(t)\right] u(t)
$$

for $x \in \mathscr{L}_{n}(\alpha, \beta), y^{\prime} \in \mathscr{L}_{n}^{\infty}(\alpha, \beta), u \in \mathscr{C}_{n}(\alpha, \beta)$ and $v^{`} \in \mathscr{V}_{n}^{0}(\alpha, \beta)$. (There are isometric isomorphisms between $\mathscr{L}_{n}^{*}(\alpha, \beta)$ and $\mathscr{L}_{n}^{\infty}(\alpha, \beta)$ and between $\mathscr{C}_{n}^{*}(\alpha, \beta)$ and $\mathscr{V}_{n}^{0}(\alpha, \beta)$, - cf. e.g. [4].)

Let \mathscr{X}, \mathscr{Y} be B-spaces. Given a linear bounded operator $T: \mathscr{X} \rightarrow \mathscr{Y}$ (defined on the whole \mathscr{X}), T^{*} denotes its adjoint $\left(T^{*}: \mathscr{Y}^{*} \rightarrow \mathscr{X}^{*},\langle T x, y\rangle_{\mathscr{y}}=\left\langle x, T^{*} y\right\rangle_{x}\right.$ for all $x \in \mathscr{X}$ and $\left.y \in \mathscr{Y}^{*}\right), \operatorname{Ker}(T)$ is the set of all $x \in \mathscr{X}$ such that $T x=0=$ zero element of \mathscr{Y} and $\operatorname{Im}(T)$ is the range of T. Given two operators $T_{1}: \mathscr{X}_{1} \rightarrow \mathscr{Y}, T_{2}: \mathscr{X}_{2} \rightarrow \mathscr{Y}$,
the homogeneous equations $T_{1} x=0$ and $T_{2} z=0$ are said to be equivalent if there is a one-to-one correspondence between $\operatorname{Ker}\left(T_{1}\right)$ and $\operatorname{Ker}\left(T_{2}\right)$.

2. GENERAL BOUNDARY VALUE TYPE PROBLEM AND ITS ADJOINT

2,1. Assumptions. We assume $\left.-\infty<a<b<+\infty, r>0^{*}\right) . A(t)$ and $B(t)$ are $n \times n$-matrix functions L-integrable on $[a, b], G(t, s)$ is a Borel measurable in (t, s) on $[a, b] \times[a-r, b] n \times n$-matrix function such that $\operatorname{var}_{a-r}^{b} G(t, \cdot)<\infty$ for any $t \in[a, b]$ and

$$
\int_{a}^{b}\left(\|G(t, b)\|+\operatorname{var}_{a-r}^{b} G(t, \cdot)\right) \mathrm{d} t<\infty
$$

$f(t) \in \mathscr{L}_{n}(a, b) . \Lambda$ is an arbitrary B-space, $l \in \Lambda$ and the operators $M: \mathscr{C}_{n}(a-r, a) \rightarrow$ $\rightarrow \Lambda, N: \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda$ are linear and bounded, while $\operatorname{Im}\left(N^{*}\right) \subset \mathscr{C}_{n}^{*}(a, b)=$ $=\mathscr{V}_{n}^{0}(a, b)$ (i.e., given $\lambda \in \Lambda^{*}$, there is a function $\left(N^{*} \lambda\right)(t) \in \mathscr{V}_{n}^{0}(a, b)$ such that

$$
\left.\langle N x, \lambda\rangle_{A}=\left\langle x, N^{*} \lambda\right\rangle_{\mathscr{A} \mathscr{C}}=\int_{a}^{b}\left[\mathrm{~d}\left(N^{*} \lambda\right)(t)\right] x(t) \text { for all } x \in \mathscr{A} \mathscr{C}_{n}(a, b)\right)
$$

Without any loss of generality we may also assume that, given $t \in[a, b]$, the function $G(t, \cdot)$ is right continuous on $(a-r, b)$, while $G(t, b)=0$. Given $\lambda \in \Lambda^{*}$, let us denote by $\left(M^{*} \lambda\right)(t)$ the row n-vector function such that $\left(M^{*} \lambda\right)(t)-\left(N^{*} \lambda\right)(a) \in$ $\in \mathscr{V}_{n}^{0}(a-r, a)$ and

$$
\langle M u, \lambda\rangle_{A}=\left\langle u, M^{*} \lambda\right\rangle_{\mathscr{C}}=\int_{a-r}^{a}\left[\mathrm{~d}\left\{\left(M^{*} \lambda\right)(t)-\left(N^{*} \lambda\right)(a)\right\}\right] u(t)
$$

for all $u \in \mathscr{C}_{n}(a-r, a)$.
We are interested in the following boundary value type problem:
2,2. Problem (P). Determine $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$ and $u \in \mathscr{C}_{n}(a-r, a)$ such that

$$
\begin{gather*}
\dot{x}(t)=A(t) x(t)+\left\{\begin{array}{l}
B(t) u(t-r), t<a+r \\
B(t) x(t-r), t \geqq a+r
\end{array}\right\}+\int_{a-r}^{a}\left[\mathrm{~d}_{s} G(t, s)\right] u(s)+ \tag{2,1}\\
+\int_{a}^{b}\left[\mathrm{~d}_{s} G(t, s)\right] x(s)+f(t) \text { a.e. on }[a, b] \tag{2,2}
\end{gather*}
$$

where Assumptions 2,1 are fulfilled.

[^0]
2,3. Notation. Let us put

$$
\mathscr{X}=\mathscr{A} \mathscr{C}_{n}(a, b) \times \mathscr{C}_{n}(a-r, a), \quad \mathscr{Y}=\mathscr{L}_{n}(a, b) \times \Lambda \times \mathscr{R}_{n}
$$

and

$$
U:\binom{x}{u} \in \mathscr{X} \rightarrow\left(\begin{array}{c}
D x-A x-B_{1} x-B_{2} u-G_{1} x-G_{2} u \tag{2,4}\\
M u+N x \\
u(a)-x(a)
\end{array}\right) \in \mathscr{Y},
$$

where

$$
\begin{aligned}
& D: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \dot{x}(t) \in \mathscr{L}_{n}(a, b), \\
& A: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow A(t) x(t) \in \mathscr{L}_{n}(a, b), \\
& B_{1}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow\left\{\begin{array}{cc}
0, & t<a+r \\
B(t) x(t-r), & t \geqq a+r
\end{array}\right\} \in \mathscr{L}_{n}(a, b), \\
& B_{2}: u \in \mathscr{C}_{n}(a-r, a) \rightarrow\left\{\begin{array}{cc}
B(t) u(t-r), & t<a+r \\
0, & t \geqq a+r
\end{array}\right\} \in \mathscr{L}_{n}(a, b), \\
& G_{1}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \int_{a}^{b}\left[\mathrm{~d}_{s} G(t, s)\right] x(s) \in \mathscr{L}_{n}(a, b), \\
& G_{2}: u \in \mathscr{C}_{n}(a-r, a) \rightarrow \int_{a-r}^{a}\left[\mathrm{~d}_{s} G(t, s)\right] u(s) \in \mathscr{L}_{n}(a, b) .
\end{aligned}
$$

All these operators are linear and bounded. The given problem (P) can be reformulated as the operator equation

$$
U\binom{x}{u}=\left[\begin{array}{l}
f \\
l \\
0
\end{array}\right]
$$

Clearly, $\mathscr{X}^{*}=\mathscr{A}_{\mathscr{C}_{n}^{*}}^{*}(a, b) \times \mathscr{V}_{n}^{0}(a-r, a), \mathscr{Y}^{*}=\mathscr{L}_{n}^{\infty}(a, b) \times \Lambda^{*} \times \mathscr{R}_{n}^{*}$ and

$$
\begin{aligned}
& \left\langle\binom{ x}{u},\left(g, h^{\prime}\right)\right\rangle_{x}=\langle x, g\rangle_{\mathscr{A} \mathscr{C}}+\int_{a-r}^{a}\left[\mathrm{~d} h^{\prime}(t)\right] u(t), \\
& \left\langle\left[\begin{array}{l}
f \\
l \\
k
\end{array}\right],\left(y^{\prime}, \lambda, \gamma^{\prime}\right)\right\rangle_{\mathscr{y}}=\int_{a}^{b} y^{\prime}(t) f(t) \mathrm{d} s+\langle l, \lambda\rangle_{A}+\gamma^{\prime} k
\end{aligned}
$$

for $x \in \mathscr{A} \mathscr{C}_{n}(a, b), u \in \mathscr{C}_{n}^{*}(a-r, a), g \in \mathscr{A} \mathscr{C}_{n}^{*}(a, b), h^{\prime} \in \mathscr{V}_{n}^{0}(a-r, a), f \in \mathscr{L}_{n}(a, b)$, $l \in \Lambda, k \in \mathscr{R}_{n}, y^{\prime} \in \mathscr{L}_{n}^{\infty}(a, b), \lambda \in \Lambda^{*}$ and $\gamma^{\prime} \in \mathscr{R}_{n}^{*}$. Let $\binom{x}{u} \in \mathscr{X}$ and $\left(y^{\prime}, \lambda, \gamma^{\prime}\right) \in \mathscr{Y} *$, then

$$
\begin{gathered}
\left\langle U\binom{x}{u},\left(y^{\prime}, \lambda, \gamma^{\prime}\right)\right\rangle_{\mathscr{y}}=\left\langle D x-A x-B_{1} x-B_{2} u-G_{1} x-G_{2} u, y^{\prime}\right\rangle_{\mathscr{L}}+ \\
+\langle M u+N x, \lambda\rangle_{A}+\gamma^{\prime}(u(a)-x(a))=
\end{gathered}
$$

$$
\begin{gathered}
=\left\langle x, D^{*} y^{\prime}-A^{*} y^{\prime}-B_{1}^{*} y^{\prime}-G_{1}^{*} y^{\prime}+N^{*} \lambda+K_{1}^{*} \gamma^{\prime}\right\rangle_{. \& \&}+ \\
+\left\langle u,-B_{2}^{*} y^{\prime}-G_{2}^{*} y^{\prime}+M^{*} \lambda+K_{2}^{*} \gamma^{\prime}\right\rangle_{\mathscr{C}},
\end{gathered}
$$

where

$$
K_{1}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow-x(a) \in \mathscr{R}_{n}
$$

and

$$
K_{2}: u \in \mathscr{C}_{n}(a-r, a) \rightarrow u(a) \in \mathscr{R}_{n} .
$$

Consequently

$$
U^{*}:\left(y^{\prime}, \lambda, \gamma^{\prime}\right) \in \mathscr{Y}^{*} \rightarrow\left[\begin{array}{c}
D^{*} y^{\prime}-A^{*} y^{\prime}-B_{1}^{*} y^{\prime}-G_{1}^{*} y^{\prime}+N^{*} \lambda+K_{1}^{*} \gamma^{\prime} \\
-B_{2}^{*} y^{\prime}-G_{2}^{*} y^{\prime}+M^{*} \lambda+K_{2}^{*} \gamma^{\prime}
\end{array}\right] \in \mathscr{X}^{*}
$$

and the adjoint to (P) is the system of equations for $\left(y^{\prime}, \lambda, \gamma^{\prime}\right) \in \mathscr{Y}^{*}$

$$
\begin{align*}
D^{*} y^{\prime}-A^{*} y^{\prime}-B_{1}^{*} y^{\prime}-G_{1}^{*} y^{\prime}+N^{*} \lambda+K_{1}^{*} \gamma^{\prime} & =o_{\mathscr{A} \mathscr{G}}, \tag{2,5}\\
-B_{2}^{*} y^{\prime}-G_{2}^{*} y^{\prime}+M^{*} \lambda+K_{2}^{*} \gamma^{\prime} & =o_{\mathscr{G}} .
\end{align*}
$$

2,4. An analytic form of the adjoint problem. By the definition of an adjoint operator and by the unsymmetric Fubini theorem (2) it holds for all $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$, $u \in \mathscr{C}_{n}(a-r, a), y^{\prime} \in \mathscr{L}_{n}^{\infty}(a, b), \lambda \in \Lambda^{*}$ and $\gamma^{\prime} \in \mathscr{R}_{n}^{*}$

$$
\begin{gathered}
\left\langle\binom{ x}{u}, U^{*}\left(y^{\prime}, \lambda, \gamma^{\prime}\right)\right\rangle_{x}=\left\langle U\binom{x}{u},\left(y^{\prime}, \lambda, \gamma^{\prime}\right)\right\rangle_{y}= \\
=\int_{a}^{b} y^{\prime}(t) \dot{x}(t) \mathrm{d} t-\int_{a}^{b} y^{\prime}(t) A(t) x(t) \mathrm{d} t-\int_{a+r}^{b} y^{\prime}(t) B(t) x(t-r) \mathrm{d} t- \\
-\int_{a}^{a+r} y^{\prime}(t) B(t) u(t-r) \mathrm{d} t-\int_{a}^{b} y^{\prime}(t)\left(\int_{a}^{b}\left[\mathrm{~d}_{s} G(t, s)\right] x(s)\right) \mathrm{d} t- \\
-\int_{a}^{b} y^{\prime}(t)\left(\int_{a-r}^{a}\left[\mathrm{~d}_{s} G(t, s)\right] u(s)\right) \mathrm{d} t+\langle M u+N x, \lambda\rangle_{A}+\gamma^{\prime}(u(a)-x(a))= \\
=\int_{a}^{b} y^{\prime}(t) \dot{x}(t) \mathrm{d} t-\int_{a}^{b}\left[\mathrm{~d} g^{\prime}(t)\right] x(t)-\int_{a-r}^{a}\left[\mathrm{~d} h^{\prime}(t)\right] u(t),
\end{gathered}
$$

where
$(2,6)$

$$
\begin{gathered}
g^{\prime}(t)=-\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s-\left(N^{*} \lambda\right)(t)- \\
-\left\{\begin{array}{c}
\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s, t \leq b-r \\
0 \quad, t>b-r
\end{array}\right\}-\left\{\begin{array}{ll}
\gamma^{\prime}, & t=a \\
0, & t>a
\end{array}\right\} \text { for } t \in[a, b] \\
h^{\prime}(t)=-\int_{t+r}^{a+\boldsymbol{r}} y^{\prime}(s) B(s) \mathrm{d} s+\int_{a}^{b} y^{\prime}(s)(G(s, t)-G(s, a)) \mathrm{d} s+\left\{\begin{array}{l}
\gamma^{\prime}, t<a \\
0, \\
t=a
\end{array}\right\}- \\
-\left(M^{*} \lambda\right)(t)+\left(N^{*} \lambda\right)(a) \text { for } t \in[a-r, a]
\end{gathered}
$$

Now, $\left(y^{\prime}, \lambda, \gamma^{\prime}\right) \in \operatorname{Ker}\left(U^{*}\right)$ iff

$$
\begin{equation*}
0=\int_{a}^{b} y^{\prime}(t) \dot{x}(t) \mathrm{d} t-\int_{a}^{b}\left[\mathrm{~d} g^{\prime}(t)\right] x(t)-\int_{a-r}^{a}\left[\mathrm{~d} h^{\prime}(t)\right] u(t) \tag{2,7}
\end{equation*}
$$

for all $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$ and $u \in \mathscr{C}_{n}(a-r, a)$. In particular, if $x(t)=0$ on $[a, b],(2,7)$ means that

$$
\int_{a-r}^{a}\left[\mathrm{~d} h^{\prime}(t)\right] u(t)=0 \quad \text { for all } \quad u \in \mathscr{C}_{n}(a-r, a)
$$

Since $h^{\top} \in \mathscr{V}_{n}^{0}(a-r, a)$, this is possible iff $h^{\prime}(t)=0$ on $[a-r, a]$. Thus

$$
\begin{align*}
& \int_{t+r}^{a+\boldsymbol{r}} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s)(G(s, t)-G(s, a)) \mathrm{d} s+ \tag{2,8}\\
& +\left(M^{*} \lambda\right)(t)-\left(N^{*} \lambda\right)(a)-\gamma^{\prime}=0 \text { on } \quad[a-r, a) .
\end{align*}
$$

The equality $(2,7)$ now becomes (after integrating by parts)
$(2,9) \int_{a}^{b} y^{\prime}(t) \dot{x}(t) \mathrm{d} t=-g^{\prime}(a) x(a)-\int_{a}^{b} g^{\prime}(t) \dot{x}(t) \mathrm{d} t \quad$ for all $\quad x \in \mathscr{A} \mathscr{C}_{n}(a, b)$.
Since we may choose $x(t)=x(a) \neq 0$ on $[a, b],(2,9)$ implies furthermore $g^{\prime}(a)=0$ or
$(2,10) \quad \gamma^{\prime}=-\int_{a}^{b} y^{\prime}(s) A(s) \mathrm{d} s-\int_{a+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s+\int_{a}^{b} y^{\prime}(s) G(s, a) \mathrm{d} s-\left(N^{*} \lambda\right)(a)$.
Consequently, $(2,9)$ reduces to

$$
\int_{a}^{b} y^{\prime}(t) \dot{x}(t) \mathrm{d} t=-\int_{a}^{b} g^{\prime}(t) \dot{x}(t) \mathrm{d} t \quad \text { for all } \quad x \in \mathscr{A} \mathscr{C}_{n}(a, b)
$$

or

$$
\int_{a}^{b}\left(y^{\prime}(t)+g^{\prime}(t)\right) z(t) \mathrm{d} t=0 \quad \text { for all } \quad z \in \mathscr{L}_{n}(a, b) .
$$

Hence $y^{\prime}(t)=g^{\prime}(t)$ a.e. on $[a, b]$, i.e.

$$
\left.\begin{array}{rl}
y^{\prime}(t) & =\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\left\{\begin{array}{c}
\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s, \\
0
\end{array} \quad, \quad t>b-r-r\right. \tag{2,11}
\end{array}\right\}-
$$

Let $z^{\prime} \in \mathscr{L}_{n}^{\infty}(a, b)$. Then $\left(z^{\prime}, \lambda, \gamma^{\prime}\right) \in \operatorname{Ker}\left(U^{*}\right)$ iff there exists $y^{\prime} \in \mathscr{L}_{n}^{\infty}(a, b)$ fulfilling $(2,8)$ and $(2,10)$ and such that $y(t)=z(t)$ a.e. on $[a, b]$ and $(2,11)$ holds for all $t \in$
$\in(a, b)$. Finally, inserting $(2,10)$ into $(2,8)$ and taking into account that the right hand side of $(2,11)$ is of bounded variation on $[a, b]$ and right continuous on (a, b), we complete the proof of the following

2,5. Theorem. Let $z^{\prime} \in \mathscr{L}_{n}^{\infty}(a, b), \lambda \in \Lambda^{*}$ and $\gamma^{\prime} \in \mathscr{R}_{n}^{*}$. Then $\left(z^{\prime}, \lambda, \gamma^{\prime}\right) \in \operatorname{Ker}\left(U^{*}\right)$ iff there exists $y \in \mathscr{B} \mathscr{V}_{n}(a, b)$ right continuous on $(a, b)($ the values $y(a), y(b)$ may be arbitrary) such that $y(t)=z(t)$ a.e. on $[a, b]$ and

$$
\int_{a}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s+\left(M^{*} \lambda\right)(t)=0
$$ for $t \in[a-r, a)$,

$$
\begin{align*}
y^{\prime}(t) & =\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\left\{\begin{array}{cc}
\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s, & t \leqq b-r \\
0, & t>b-r
\end{array}\right\}- \tag{2,13}\\
& -\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s+\left(N^{*} \lambda\right)(t) \text { for } t \in(a, b),
\end{align*}
$$

while γ^{\prime} is given by $(2,10)$.
2,6. Definition. The problem $\left(\mathrm{P}^{*}\right)$ of finding $y \in \mathscr{B} \mathscr{V}_{n}(a, b)$ right continuous on (a, b) and $\lambda \in \Lambda^{*}$ such that $(2,12)$ and (2.13) hold is called the conjugate problem to (P).
(In virtue of Theorem 2,5 the adjoint problem $(2,5)$ to (P) and the problem (P^{*}) conjugate to (P) are equivalent.)

2,7. Corollary. The problem (P) has a solution only if

$$
\begin{equation*}
\int_{a}^{b} y^{\prime}(s) f(s) \mathrm{d} s+\langle l, \lambda\rangle_{A}=0 \tag{2,14}
\end{equation*}
$$

for all solutions $\left(y^{\prime}, \lambda\right)$ of the conjugate problem $\left(\mathrm{P}^{*}\right)$. If the operator U defined by $(2,4)$ has a closed range $\operatorname{Im}(U)$ in $\mathscr{L}_{n}(a, b) \times \Lambda \times \mathscr{R}_{n}$, then the condition $(2,14)$ is also sufficient for the existence of a solution to the problem (P).
(The proof follows from Theorem 2,5 and from the fundamental "alternative" theorem concerning linear equations in B-spaces ([4], VI § 6).)

2,8. Remark. Let \mathscr{X}, \mathscr{Y} be B-spaces and let $L: \mathscr{X} \rightarrow \mathscr{Y}$ be linear and bounded. A set $\mathscr{Y}^{+} \subset \mathscr{Y}^{*}$ of linear continuous functionals on \mathscr{Y} is said to be total in \mathscr{Y}^{*} if $\langle y, g\rangle_{\mathscr{y}}=0$ for all $g \in \mathscr{Y}^{+}$implies $y=0$. Furthermore, if $L^{+}: \mathscr{Y}^{+} \rightarrow \mathscr{X}^{*}$ is a linear operator such that $\langle L x, g\rangle_{\mathscr{y}}=\left\langle x, L^{+} g\right\rangle_{x}$ for all $x \in \mathscr{X}$ and $g \in \mathscr{Y}^{+}$, we shall say that L^{+}is a conjugate operator to L with respect to \mathscr{Y}^{+}. Clearly, L^{+}is a restriction of the adjoint operator L^{*} to L on \mathscr{Y}^{+}. Hence $\operatorname{Ker}\left(L^{+}\right) \subset \operatorname{Ker}\left(L^{*}\right)$. (For some more details concerning conjugate operators see [11].)

Now, let $\mathscr{V}_{n}(a, b)$ be the space of row n-vector functions of bounded variation on $[a, b]$ and right continuous on (a, b). Then $\mathscr{V}_{n}(a, b)$ is a total subset in $\mathscr{L}_{n}^{\infty}(a, b)$. (In fact, let $f \in \mathscr{L}_{n}(a, b)$ and

$$
0=\int_{a}^{b} y^{\prime}(t) f(t) \mathrm{d} t \quad \text { for all } \quad y^{\prime} \in \mathscr{V}_{n}(a, b)
$$

Then

$$
\begin{equation*}
0=\int_{a}^{b} y^{\prime}(t) \mathrm{d} g(t) \text { for all } y^{\prime} \in \mathscr{V}_{n}(a, b), \tag{2,15}
\end{equation*}
$$

where $g \in \mathscr{A} \mathscr{C}_{n}(a, b)$ is an indefinite integral of f on $[a, b]$. Let $g_{i}\left(t_{1}\right) \neq g_{i}\left(t_{2}\right)$ for a component g_{i} of the vector $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right)^{\prime}$ and for some $t_{1}, t_{2} \in[a, b]$, $t_{1}<t_{2}$. Analogously to the second part of the proof of Lemma 5,1 in [10] we put $y^{\prime}(t)=\left(y_{1}(t), y_{2}(t), \ldots, y_{n}(t)\right)$, where $y_{j}(t)=0$ on $[a, b]$ for $j \neq i, y_{i}(t)=0$ for $t \in\left[a, t_{1}\right), y_{i}(t)=1$ for $t \in\left[t_{1}, t_{2}\right)$ and $y_{i}(t)=0$ for $t \in\left[t_{2}, b\right]$. Then $y^{\prime} \in \mathscr{V}_{n}(a, b)$ and

$$
\int_{a}^{b} y^{\prime}(t) \mathrm{d} g(t)=\sum_{j=1}^{n} \int_{a}^{b} y_{j}(t) \mathrm{d} g_{j}(t)=\int_{a}^{b} y_{i}(t) \mathrm{d} g_{i}(t)=\int_{t_{1}}^{t_{2}} \mathrm{~d} g_{i}(t)=g_{i}\left(t_{2}\right)-g_{i}\left(t_{1}\right) \neq 0
$$

which contradicts $(2,15)$. Hence $g(t)=$ const. on $[a, b]$ and $f(t)=0$ a.e. on $[a, b]$.)
The operator $D: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \dot{x} \in \mathscr{L}_{n}(a, b)$ is linear and bounded. It is easy to verify that its conjugate operator D^{+}with respect to $\mathscr{V}_{n}(a, b)$ is given by

$$
D^{+}: y^{\prime} \in \mathscr{V}_{n}(a, b) \rightarrow\left\{\begin{array}{cl}
0, & t=a \\
-y^{\prime}(t), & t \in(a, b) \\
0, & t=b
\end{array}\right\} \in \mathscr{V}_{n}^{0}(a, b)
$$

Let us put $\mathscr{Y}^{+}=\mathscr{V}_{n}(a, b) \times \Lambda^{*} \times \mathscr{R}_{n}^{*}$. Then \mathscr{Y}^{+}is a total subset in $\mathscr{Y}^{*}=$ $=\mathscr{L}_{n}^{\infty}(a, b) \times \Lambda^{*} \times \mathscr{R}_{n}^{*}$ and the conjugate operator U^{+}to U with respect to \mathscr{Y}^{+} is given by

$$
U^{+}:\left(y^{\prime}, \lambda, \gamma^{\prime}\right) \in \mathscr{Y}^{+} \rightarrow\left(\xi^{\prime}(t), \eta^{\prime}(t)\right) \in \mathscr{V}_{n}^{0}(a, b) \times \mathscr{V}_{n}^{0}(a-r, a),
$$

where

$$
\begin{aligned}
& \xi^{\prime}(t)=\left\{\begin{array}{cc}
0, & t=a \\
-y^{\prime}(t), & t \in(a, b) \\
0, & t=b
\end{array}\right\}+\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\left\{\begin{array}{c}
\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s, t \leqq b-r \\
0 \quad, t>b-r
\end{array}\right\}- \\
&-\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s+\left(N^{*} \lambda\right)(t)+\left\{\begin{array}{l}
\gamma^{\prime}, t=a \\
0, \\
\eta^{\prime}>a
\end{array}\right\} \text { for } t \in[a, b] \\
& \eta^{\prime}(t)=\int_{t+r}^{a+r} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s)(G(s, t)-G(s, a)) \mathrm{d} s+\left(M^{*} \lambda\right)(t)-\left(N^{*} \lambda\right)(a)- \\
&-\left\{\begin{array}{ll}
\gamma^{\prime}, & t<a \\
0, & t=a
\end{array}\right\} \text { for } t \in[a-r, a] .
\end{aligned}
$$

The equation $U^{+}\left(y^{\prime}, \lambda, \gamma^{\prime}\right)=0$ is identical with the system of equations $(2,8),(2,10)$, $(2,13)$ and hence it is equivalent also with the problem $\left(\mathrm{P}^{*}\right)$ introduced in Definition 2,6. In Section 2,4 we proved actually that $\operatorname{Ker}\left(U^{*}\right) \subset \mathscr{Y}^{+}$and hence $\operatorname{Ker}\left(U^{+}\right)=$ $=\operatorname{Ker}\left(U^{*}\right)$.

2,9. Remark. The above procedure can be also applied to the case of initial functions of bounded variation on $[a-r, a]$. This means that instead of $u \in \mathscr{C}_{n}(a-r, a)$ we are looking for $u \in \mathscr{B} \mathscr{V}_{n}(a-r, a)$. The adjoint problem is again equivalent to the system of the form $(2,12),(2,13)$. Only we have to suppose in addition that $\operatorname{Im}\left(M^{*}\right) \subset \mathscr{V}_{n}^{0}(a-r, a)$.

2,10. Remark. Some examples of spaces Λ and operators M, N fulfilling Assumptions 2,1 are given in the following § 3 . Some conditions on the closedness of $\operatorname{Im}(U)$ are given in §5.

2,11. Remark. The couple $\left(y^{\prime}, \lambda\right)$ being a solution to (P^{*}), the values $y^{\prime}(a), y^{\prime}(b)$ may be arbitrary. We can require e.g. $y^{\prime}(a)=y^{\prime}(b)=0$ or $y^{\prime}(a+)=y^{\prime}(a), y^{\prime}(b-)=$ $=y^{\prime}(b)$. In the latter case we add to the system $(2,12),(2,13)$ the conditions

$$
\begin{align*}
& y^{\prime}(a)=-\int_{a}^{b} y^{\prime}(s)(G(s, a+)-G(s, a-)) \mathrm{d} s+\left(N^{*} \lambda\right)(a+)-\left(M^{*} \lambda\right)(a-), \tag{2,16}\\
& y^{\prime}(b)=\int_{a}^{b} y^{\prime}(s) G(s, b-) \mathrm{d} s-\left(N^{*} \lambda\right)(b-) .
\end{align*}
$$

(Indeed, by $(2,12)$

$$
\left.\int_{a}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\int_{a+\boldsymbol{r}}^{b} y^{\prime}(s) B(s) \mathrm{d} s=\int_{a}^{b} y^{\prime}(s) G(s, a-) \mathrm{d} s-\left(M^{*} \lambda\right)(a-) .\right)
$$

2,12. Remark. $\mathscr{A} \mathscr{C}_{n}^{*}(a, b)$ is isometrically isomorphic with $\mathscr{L}_{n}^{\infty}(a, b) x \mathscr{R}_{n}^{*}$. Given $g \in \mathscr{A} \mathscr{C}_{n}^{*}(a, b)$, there exist uniquely determined $\beta^{\prime} \in \mathscr{R}_{n}^{*}$ and $y^{\prime}(t) \in \mathscr{L}_{n}^{\infty}(a, b)$ such that

$$
\langle x, g\rangle_{\mathscr{A} C}=\beta^{\prime} x(a)+\int_{a}^{b} y^{\prime}(t) \dot{x}(t) \mathrm{d} t
$$

for all $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$. (See [4] IV, 13, 29.) By a similar argument as in 2,4 we could derive the analytic form of the adjoint problem also in the case that N is a general linear bounded operator $\mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda$ without supposing $\operatorname{Im}\left(N^{*}\right) \subset \mathscr{V}_{n}^{0}(a, b)$.

If $N^{*}: \lambda \in \Lambda^{*} \rightarrow\left(N^{*} \lambda, \tilde{N}^{*} \lambda\right) \in \mathscr{L}_{n}^{\infty}(a, b) \times \mathscr{R}_{n}^{*}$ and $\left(M^{*} \lambda\right)(t)-\left(\tilde{N}^{*} \lambda\right) \in \mathscr{V}_{n}^{0}(a-r, a)$ for any $\lambda \in \Lambda^{*}$, then the problem of finding $\left(y^{\prime}(t), \lambda\right) \in \mathscr{L}_{n}^{\infty}(a, b) \times \Lambda^{*}$ such that $(2,12)$ holds on $[a-r, a)$ and $(2,13)$ holds a.e. on $[a, b]$ is equivalent to the adjoint of the given problem (P).

Let us mention some special cases of the given problem (P) which arise by a special choice of the boundary operators M, N and of the terminal space Λ.

3,1. The case $\Lambda=\mathscr{L}_{m}(c, d)$. Let $\Lambda=\mathscr{L}_{m}(c, d)(-\infty<c<d<+\infty)$ and

$$
\begin{equation*}
M: u \in \mathscr{C}_{n}(a-r, a) \rightarrow \int_{a-r}^{a}\left[\mathrm{~d}_{s} M(\alpha, s)\right] u(s) \in \Lambda \tag{3,1}
\end{equation*}
$$

$$
\begin{equation*}
N: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \int_{a}^{b}\left[\mathrm{~d}_{s} N(\alpha, s)\right] x(s) \in \Lambda, \tag{3,2}
\end{equation*}
$$

where $M(\alpha, s)$ is a Borel measurable in $(\alpha, s) \in[c, d] \times[a-r, a] m \times n$-matrix function such that $\operatorname{var}_{a-r}^{a} M(\alpha, \cdot)<\infty$ for any $\alpha \in[c, d]$ and

$$
\int_{c}^{d}\left(\|M(\alpha, a)\|+\operatorname{var}_{a-r}^{a} M(\alpha, \cdot)\right) \mathrm{d} \alpha<\infty
$$

and $N(\alpha, s)$ is a Borel measurable in $(\alpha, s) \in[c, d] \times[a, b] m \times n$-matrix function such that $\operatorname{var}_{a}^{b} N(\alpha, \cdot)<\infty$ for any $\alpha \in[c, d]$ and

$$
\int_{c}^{d}\left(\|N(\alpha, b)\|+\operatorname{var}_{a}^{b} N(\alpha, \cdot)\right) \mathrm{d} \alpha<\infty
$$

Without any loss of generality we may assume that for any $\alpha \in[c, d], M(\alpha, \cdot)$ is right continuous on $(a-r, a), N(\alpha, \cdot)$ is right continuous on $(a, b), M(\alpha, a)=N(\alpha, a)$ and $N(\alpha, b)=0$.

Let $x \in A C_{n}(a, b), u \in C_{n}(a-r, a), \lambda^{\prime} \in \mathscr{L}_{m}^{\infty}(c, d)$. Then by the unsymmetric Fubini theorem ([2])

$$
\begin{aligned}
\left\langle M u, \lambda^{\prime}\right\rangle_{\mathscr{L}} & =\int_{c}^{d} \lambda^{\prime}(\alpha)\left(\int_{a-r}^{a}\left[\mathrm{~d}_{s} M(\alpha, s)\right] u(s)\right) \mathrm{d} \alpha= \\
& =\int_{a-r}^{a} \cdot\left[\mathrm{~d}_{s} \int_{c}^{d} \lambda^{\prime}(\alpha)(M(\alpha, s)-M(\alpha, a)) \mathrm{d} \alpha\right] u(s)
\end{aligned}
$$

and

$$
\left\langle N x, \lambda^{\prime}\right\rangle_{\mathscr{L}}=\int_{c}^{d} \lambda^{\prime}(\alpha)\left(\int_{a}^{b}\left[\mathrm{~d}_{s} N(\alpha, s)\right] x(s)\right) \mathrm{d} \alpha=\int_{a}^{b}\left[\mathrm{~d}_{s} \int_{c}^{d} \lambda^{\prime}(\alpha) N(\alpha, s) \mathrm{d} \alpha\right] x(s),
$$

where

$$
\begin{equation*}
\left(N^{*} \lambda^{\prime}\right)(t)=\int_{c}^{d} \lambda^{\prime}(\alpha) N(\alpha, t) \mathrm{d} \alpha \in \mathscr{V}_{n}^{0}(a, b) \tag{3,3}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(M^{*} \lambda^{\prime}\right)(t)-\left(M^{*} \lambda^{\prime}\right)(a)= \tag{3,4}\\
=\int_{c}^{d} \lambda^{\prime}(\alpha)(M(\alpha, t)-M(\alpha, a)) \mathrm{d} \alpha \in \mathscr{V}_{n}^{0}(a-r, a)
\end{gather*}
$$

Hence in this case the adjoint problem is equivalent to the system $(2,12),(2,13)$, where M^{*} and N^{*} have the special form $(3,4)$ and $(3,3)$, respectively.

3,2. The case $\Lambda=\mathscr{C}_{m}(c, d)$. Similarly we can treat the case of $\Lambda=\mathscr{C}_{\boldsymbol{m}}(c, d)$ $(-\infty<c<d<+\infty)$ with the operators M, N given by $(3,1),(3,2)$, where $M(\cdot, s)$ and $N(\cdot, \sigma)$ are continuous on $[c, d]$ for any $s \in[a-r, a]$ and $\sigma \in[a, b]$. (Let us note that in this case any linear bounded operator $M: \mathscr{C}_{n}(a-r, a) \rightarrow \Lambda$ can be expressed in the form $(3,1)$, where $M(\alpha, s)$ fulfils all our assumptions.) Analogously as in 3,1 we obtain

$$
\begin{aligned}
& M^{*}: \lambda^{\prime} \in \mathscr{V}_{m}^{0}(c, d) \rightarrow \int_{c}^{d}\left[\mathrm{~d} \lambda^{\prime}(\alpha)\right] M(\alpha, t) \in \mathscr{V}_{n}(a-r, \dot{a}), \\
& N^{*}: \lambda^{\prime} \in \mathscr{V}_{m}^{0}(c, d) \rightarrow \int_{c}^{d}\left[\mathrm{~d} \lambda^{\prime}(\alpha)\right] N(\alpha, t) \in \mathscr{V}_{n}^{0}(a, b) .
\end{aligned}
$$

3,3. Finite dimensional terminal space. Let $\Lambda=\mathscr{R}_{m}$ and

$$
\begin{aligned}
& M: u \in \mathscr{C}_{n}(a-r, a) \rightarrow \int_{a-r}^{a}[\mathrm{~d} M(s)] u(s) \in \mathscr{R}_{m}, \\
& N: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \quad \rightarrow \int_{a}^{b}[\mathrm{~d} N(s)] x(s) \in \mathscr{R}_{m}
\end{aligned}
$$

where $M(t)$ and $N(t)$ are $m \times n$-matrix functions of bounded variation on $[a-r, a]$ and $[a, b]$, respectively. We may assume also M right continuous on $(a-r, a), N$ right continuous on $(a, b), M(a)=N(a)$ and $N(b)=0$.

Let $x \in \mathscr{A} \mathscr{C}_{n}(a, b), u \in \mathscr{C}_{n}(a-r, a)$ and $\lambda^{\prime} \in \mathscr{R}_{m}^{*}$, then

$$
\left\langle M u, \lambda^{\prime}\right\rangle_{\mathscr{R}}=\lambda^{\prime}(M u)=\int_{a-r}^{a}\left[\mathrm{~d}\left\{\lambda^{\prime}(M(s)-M(a))\right\}\right] u(s)
$$

and

$$
\left\langle N x, \lambda^{\prime}\right\rangle_{\mathscr{R}}=\lambda^{\prime}(N x)=\int_{a}^{b}\left[\mathrm{~d}\left(\lambda^{\prime} N(s)\right)\right] x(s)
$$

where $\left(M^{*} \lambda^{\prime}\right)(t)-\left(M^{*} \lambda^{\prime}\right)(a)=\lambda^{\prime}(M(t)-M(a)) \in \mathscr{V}_{n}^{0}(a-r, a)$ and $\left(N^{*} \lambda^{\prime}\right)(t)=$ $=\lambda^{\prime} N(t) \in \mathscr{V}_{n}^{0}(a, b)$.

The adjoint problem is equivalent to the conjugate problem (P^{*}) given by $(2,12)$, $(2,13)$ with M^{*} and N^{*} defined above. Moreover, we may write it in the form more
similar to the adjoint of the boundary value problem for ordinary integro-differential equation ([12]). Let us put for $t \in[a, b]$

$$
\begin{gathered}
\tilde{M}=N(a+)-M(a-), \quad \tilde{N}=-N(b-), \\
C(t)=G(t, a+)-G(t, a-), \quad D(t)=-G(t, b-), \\
L(s)=\left\{\begin{array}{l}
N(a+) \text { for } s=a, \\
N(s) \text { for } a<s<b, \\
N(b-) \text { for } s=b,
\end{array} \quad G(t, s)=\left\{\begin{array}{l}
G(t, a+) \text { for } s=a, \\
G(t, s) \text { for } a<s<b, \\
G(t, b-) \text { for } s=b .
\end{array}\right.\right.
\end{gathered}
$$

Then, requiring $y^{\prime}(a+)=y^{\prime}(a), y^{\prime}(b-)=y^{\prime}(b)$ (cf. Remark 2,11) we obtain the conjugate problem $\left(\mathrm{P}^{*}\right)$ to (P) in the following form:

$$
\begin{aligned}
& \int_{a}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s) \dot{G}(s, t) \mathrm{d} s+\lambda^{\prime} M(t)=0, \\
& \text { on }[a-r, a) \text {, } \\
& y^{\prime}(t)=y^{\prime}(b)+\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\left\{\begin{array}{cc}
\int_{t+r}^{b} \begin{array}{c}
y^{\prime}(s) B(s) \mathrm{d} s, \\
0
\end{array} \quad, t>b-r-r
\end{array}\right\}- \\
& -\int_{a}^{b} y^{\prime}(s)\left(G_{0}(s, t)-G_{0}(s, b)\right) \mathrm{d} s+\lambda^{\prime}(L(t)-L(b)) \text { on } \quad[a, b], \\
& y^{\prime}(a)=\lambda^{\prime} \tilde{M}-\int_{a}^{b} y^{\prime}(s) C(s) \mathrm{d} s, \quad y^{\prime}(b)=-\lambda^{\prime} \tilde{N}+\int_{a}^{b} y^{\prime}(s) D(s) \mathrm{d} s .
\end{aligned}
$$

3,4. Boundary value type problems for functional-differential equations of retarded type. In this section we shall deal with boundary value problems for standard func-tional-differential equation

$$
\begin{gather*}
\dot{x}(t)=\int_{-r}^{0}\left[\mathrm{~d}_{\vartheta} P(t, \vartheta)\right] x(t+\vartheta)+f(t) \text { a.e. on }[a, b], \tag{3,5}\\
x(t)=u(t) \text { on }[a-r, a] \tag{3,6}\\
M u+N x=l \in \Lambda, \tag{3,7}
\end{gather*}
$$

where the initial functions $u(t)$ are continuous on $[a-r, a]$ and the following assumptions are fulfilled:
$P(t, \vartheta)$ is a Borel measurable in $(t, \vartheta) \in[a, b] \times(-\infty,+\infty) n \times n$-matrix function such that $P(t, \vartheta)=P(t,-r)$ for $\vartheta \leqq-r, P(t, \vartheta)=P(t, 0)$ for $\vartheta \geqq 0$, $\operatorname{var}_{-r}^{0} P(t, \cdot)<\infty$ for all $t \in[a, b]$ and

$$
\int_{a}^{b}\left(\|P(t, 0)\|+\operatorname{var}_{-r}^{0} P(t, \cdot)\right) \mathrm{d} t<\infty .
$$

Λ is a B-space and the operators $M: \mathscr{C}_{n}(a-r, a) \rightarrow \Lambda$ and $N: \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda$ are linear and bounded, while $\operatorname{Im}\left(N^{*}\right) \subset \mathscr{V}_{n}^{0}(a, b)$. Furthermore, $l \in \Lambda$ and $f(t) \in$ $\in \mathscr{L}_{n}(a, b)$. We may also assume that $P(t, \cdot)$ is right continuous on $(-r, 0)$ and $P(t, 0)=0$ for any $t \in[a, b]$.

Let us put for $t \in[a, b]$

$$
B(t)=P(t,-r+)-P(t,-r), \quad G(t, s)= \begin{cases}P(t,-r+) & \text { if } s \leqq t-r \\ P(t, s-t) & \text { if } t-r \leqq s \leqq t \\ P(t, 0)=0 & \text { if } s \geqq t\end{cases}
$$

Then $B(t)$ and $G(t, s)$ fulfil Assuptions 2,1. Moreover, given $t \in[a, b], G(t, \cdot)$ is right continuous on $(a-r, b), G(t, b)=0$ and

$$
\begin{gathered}
\int_{-r}^{0}\left[\mathrm{~d}_{9} P(t, \vartheta)\right] x(t+\vartheta)=\int_{t-r}^{t}\left[\mathrm{~d}_{s} P(t, s-t)\right] x(s)= \\
=B(t) x(t-r)+\int_{a-r}^{b}\left[\mathrm{~d}_{s} G(t, s)\right] x(s)
\end{gathered}
$$

The problem $(3,5)-(3,7)$ is reduced to the problem of the type (P). Furthermore, for $t \in[a-r, a]$

$$
\begin{aligned}
& \int_{t+\boldsymbol{r}}^{b} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s=\int_{t+\boldsymbol{r}}^{b} y^{\prime}(s)(P(s,-r+)-P(s,-r)) \mathrm{d} s- \\
& -\int_{a}^{t+\boldsymbol{r}} y^{\prime}(s) P(s, t-s) \mathrm{d} s-\int_{t+\boldsymbol{r}}^{b} y^{\prime}(s) P(s,-r+) \mathrm{d} s=-\int_{a}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s
\end{aligned}
$$

Analogously for $t \in(a, b-r)$

$$
\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s=-\int_{t}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s
$$

and

$$
-\int_{a}^{b} y^{\prime}(s) G(s, t) \mathrm{d} s=-\int_{t}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s \quad \text { for } \quad t \in[b-r, b]
$$

The following theorem is now a direct consequence of Theorem 2,5.

3,5. Theorem. The problem of finding $y \in \mathscr{B} \mathscr{V}_{n}(a, b)$ right continuous on (a, b) (the values $y(a), y(b)$ may be arbitrary) and $\lambda \in \Lambda^{*}$ such that

$$
\begin{align*}
& -\int_{a}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s+\left(M^{*} \lambda\right)(t)=0 \quad \text { on } \quad[a-r, a) \tag{3,8}\\
& y^{\prime}(t)=-\int_{t}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s+\left(N^{*} \lambda\right)(t) \quad \text { on } \quad(a, b) \tag{3,9}
\end{align*}
$$

is equivalent to the adjoint problem to the problem $(3,5)-(3,7)$.
(The functions $\left(M^{*} \lambda\right)(t)$ and $\left(N^{*} \lambda\right)(t)$ are again such that for any $\lambda \in \Lambda^{*}$ $\left(M^{*} \lambda\right)(t)-\left(N^{*} \lambda\right)(a) \in \mathscr{V}_{n}^{0}(a-r, a),\left(N^{*} \lambda\right)(t) \in \mathscr{V}_{n}^{0}(a, b)$ and

$$
\begin{gathered}
\langle M u, \lambda\rangle_{A}=\int_{a-r}^{a}\left[\mathrm{~d}\left\{\left(M^{*} \lambda\right)(t)-\left(M^{*} \lambda\right)(a)\right\}\right] u(t), \\
\langle N x, \lambda\rangle_{A}=\int_{a}^{b}\left[\mathrm{~d}\left(N^{*} \lambda\right)(t)\right] x(t)
\end{gathered}
$$

for all $u \in \mathscr{C}_{n}(a-r, a), x \in \mathscr{A} \mathscr{C}_{n}(a, b)$ and $\left.\lambda \in \Lambda^{*}.\right)$
3,6. Two-point boundary value type problem. Let us consider the "two-point" boundary value type problem given by the system $(3,5),(3,6)$ and

$$
\begin{equation*}
M u+N_{b} x=l \in \Lambda \tag{3,10}
\end{equation*}
$$

where the functions $P(t, \vartheta), f(t)$ and the operator M satisfy the corresponding assumptions of Section 3,4. Given $\lambda \in \Lambda^{*}$, let $\left(M^{*} \lambda\right)(t)$ denote now a function from $\mathscr{V}_{n}^{0}(a-r, a)$ such that

$$
\langle M u, \lambda\rangle_{A}=\int_{a-r}^{a}\left[\mathrm{~d}\left(M^{*} \lambda\right)(t)\right] u(t)
$$

for all $u \in \mathscr{C}_{n}(a-r, a)$ and $\lambda \in \Lambda^{*}$. The operator $N_{b}=N S_{b}: \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda$ is the composition of a linear bounded operator $N: \mathscr{C}_{n}(b-r, b) \rightarrow \Lambda$ and of a shift operator $S_{b}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow x /[b-r, b] \in \mathscr{C}_{n}(b-r, b)$ (which is also linear and bounded). Let $0<r \leqq b-a$.

Let $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$ and $\lambda \in \Lambda^{*}$. Then

$$
\left\langle N_{b} x, \lambda\right\rangle_{A}=\left\langle S_{b} x, N \lambda\right\rangle_{\mathscr{C}}=\int_{b-r}^{b}\left[\mathrm{~d}\left(N^{*} \lambda\right)(t)\right] x(t)
$$

where $\left(N^{*} \lambda\right)(t) \in \mathscr{V}_{n}^{0}(b-r, b)$, and putting

$$
\left(\tilde{N}^{*} \lambda\right)(t)= \begin{cases}\left(N^{*} \lambda\right)(b-r+) & \text { for } t=b-r, \\ \left(N^{*} \lambda\right)(t) & \text { for } b-r<t \leqq b\end{cases}
$$

and

$$
\left(N_{b}^{*} \lambda\right)(t)=\left\{\begin{array}{ll}
\left(N^{*} \lambda\right)(b-r) & \text { for } \quad a \leqq t<b-r \\
\left(\tilde{N}^{*} \lambda\right)(t) & \text { for } \quad b-r \leqq t \leqq b
\end{array}\right\} \in \mathscr{V}_{n}^{0}(a, b) \text {, }
$$

we get finally

$$
\left\langle N_{b} x, \lambda\right\rangle_{A}=\int_{a}^{b}\left[\mathrm{~d}\left(N_{b}^{*} \lambda\right)(t)\right] x(t)
$$

Since all the assumptions of Section 3,4 are satisfied, the following assertion is an immediate consequence of Theorem 3,5.

3,7. Corollary. The problem of finding $y \in \mathscr{B} \mathscr{V}_{n}(a, b)$ right continuous on (a, b) (the values $y(a), y(b)$ may be arbitrary) and $\lambda \in \Lambda^{*}$ such that

$$
\begin{equation*}
\int_{a}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s-\left(M^{*} \lambda\right)(t)=\left(N^{*} \lambda\right)(b-r) \quad \text { on } \quad[a-r, a), \tag{3,11}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}(t)+\int_{t}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s=\left(N^{*} \lambda\right)(b-r) \quad \text { on } \quad(a, b-r), \tag{3,12}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime}(t)+\int_{t}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s-\left(\tilde{N}^{*} \lambda\right)(t)=0 \quad \text { on } \quad[b-r, b) \tag{3,13}
\end{equation*}
$$

is equivalent to the adjoint problem to the two-point problem $(3,5),(3,6),(3,10)$.
3,8. Relationship with the adjoint of D. Henry. Let us continue the investigation of the two-point boundary value type problem $(3,5),(3,6),(3,10)$. We shall show that the adjoint problem $(3,11)$ derived in 3,6 can be reduced to the form of D. Henry [8]. Let us put for $\vartheta \in[-r, 0] P(t, \vartheta)=P(t+b-a, \vartheta)$ if $t \in[a-r, a)$. Given a function $z(t)$ defined on $[a-r, b]$ and $t \in[a, b]$, we put

$$
z_{t}^{0}(\alpha)= \begin{cases}z(t+\alpha) & \text { if } \quad \alpha \in[-r, 0) \\ 0 & \text { if } \quad \alpha=0\end{cases}
$$

Let $\mathscr{V}_{n}(-r, 0)$ be the space of all row n-vector functions of bounded variation on $[-r, 0]$ and right continuous on $(-r, 0)$. Let $R(\beta, \alpha)$ be the resolvent kernel for the Volterra integral equation

$$
z^{\prime}(\alpha)+\int_{\alpha}^{0} z^{\prime}(\beta) P(b+\beta, \alpha-\beta) \mathrm{d} \beta=0, \quad \alpha \in[-r, 0] .
$$

Gronwall's inequality applied to the „resolvent equation"

$$
R(\beta, \alpha)+\int_{\beta}^{\alpha} R(\beta, \gamma) P(b+\gamma, \alpha-\gamma) \mathrm{d} \gamma=P(b+\beta, \alpha-\beta) ; \alpha, \beta \in[-r, 0]
$$

yields analogously as in the proof of Lemma 1 in [14] that $\operatorname{var}_{-r}^{0} R(\beta, \cdot)<\infty$ for any $\beta \in[-r, 0]$, while the function $r(\beta)=\operatorname{var}_{-r}^{0} R(\beta, \cdot)$ is bounded on $[-r, 0]$. Hence the resolvent operator

$$
R: w^{\prime}(\alpha) \in V_{n}(-r, 0) \rightarrow \int_{\alpha}^{0} w^{\prime}(\beta) R(\beta, \alpha) \mathrm{d} \beta \in \mathscr{V}_{n}(-r, 0)
$$

is linear and bounded and for any $w^{\prime} \in \mathscr{V}_{n}(-r, 0)$, the unique solution $z^{\prime}(\alpha)$ on $[-r, 0]$ to

$$
z^{\prime}(\alpha)+\int_{\alpha}^{0} z^{\prime}(\beta) P(b+\beta, \alpha-\beta) \mathrm{d} \beta=w^{\prime}(\alpha)
$$

is given by

$$
z^{\prime}=w^{\prime}-R w^{\prime}=(I-R) w^{\prime},
$$

where I denotes the identity operator.
Now, let $\left(y^{\prime}, \lambda\right)$ be a solution to $(3,11)-(3,13)$. Let us extend the function $y^{\prime}(t)$ on the interval $[a-r, a]$ in such a way that

$$
\begin{equation*}
y^{\prime}(t)+\int_{t}^{a} y^{\prime}(s) P(s, t-s) \mathrm{d} s=-\left(M^{*} \lambda\right)(t) \text { for } t \in[a-r, a) \tag{3,15}
\end{equation*}
$$

and

$$
\begin{equation*}
y^{\prime}(a)+\int_{a}^{b} y^{\prime}(s) P(s, a-s) \mathrm{d} s=\left(N^{*} \lambda\right)(b-r) . \tag{3,16}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \int_{t}^{a} y^{\prime}(s) P(s, t-s) \mathrm{d} s=\int_{t-a}^{0} y^{\prime}(a+\beta) P(a+\beta, t-a-\beta) \mathrm{d} \beta= \\
& \quad=\int_{\alpha}^{0} y^{\prime}(a+\beta) P(b+\beta, \alpha-\beta) \mathrm{d} \beta, \text { where } \alpha=t-a,
\end{aligned}
$$

$(3,15)$ yields

$$
\begin{equation*}
y_{a}^{\prime 0}=-(I-R)\left(M^{*} \lambda\right) . \tag{3,17}
\end{equation*}
$$

The last equation $(3,13)$ in our conjugate system is obviously equivalent to the condition

$$
\begin{equation*}
y_{b}^{\prime 0}=(I-R)\left(\tilde{N}^{*} \lambda\right) . \tag{3,18}
\end{equation*}
$$

Finally, owing to $(3,15)$ and $(3,16)$ the equations $(3,11)$ and $(3,12)$ can be replaced by the single equation

$$
\begin{equation*}
y^{\prime}(t)+\int_{t}^{b} y^{\prime}(s) P(s, t-s) \mathrm{d} s=\left(N^{*} \lambda\right)(b-r) \text { on } \quad[a-r, b-r) . \tag{3,19}
\end{equation*}
$$

The system $(3,17)-(3,19)$ is just the adjoint problem of D. Henry from [8]. (Only we have the expression depending on λ instead of an arbitrary constant on the right hand side of the Volterra integral equation on $[a-r, b-r)$.)

Obviously the couple $\left(y^{\prime}, \lambda\right)$ being a solution to the system $(3,17)-(3,19)$, it is a solution to $(3,11)-(3,13)$.

3,9. Periodic solutions. Let $a=0, b=T<\infty(r \leqq T)$. Let $P(\cdot, \vartheta)$ be for any $\vartheta \in[-r, 0]$ a T-periodic function on $(-\infty,+\infty)$. Let us consider the periodic problem consisting of the equations $(3,5),(3,6)$ and

$$
\begin{equation*}
u(t)-x(T+t)=0 \quad \text { for } \quad t \in[-r, 0] \tag{3,20}
\end{equation*}
$$

(i.e., in $(3,10)$ we have $\Lambda=\mathscr{C}_{n}(-r, 0), l=0, M=I, N_{T}=N S_{T}, N: z(t) \in$ $\in \mathscr{C}_{n}(T-r, T) \rightarrow-z(T+s) \in \mathscr{C}_{n}(-r, 0)$.)

By Corollary 3,7 the adjoint problem is equivalent to the system of equations for $y^{\prime}(t)$ of bounded variation on $[-r, T]$ and right continuous on $(-r, T-r) \cup$ $\cup(T-r, T)$ and for $\lambda^{\prime}(t) \in \mathscr{V}_{n}^{0}(-r, 0)$,

$$
\begin{gather*}
y^{\prime}(t)+\int_{t}^{T} y^{\prime}(s) P(s, t-s) \mathrm{d} s=-\lambda^{\prime}(-r) \quad \text { on } \quad[-r, T-r], \tag{3,21}\\
y^{\prime}(t)+\int_{t}^{0} y^{\prime}(s) P(s, t-s) \mathrm{d} s=-\lambda^{\prime}(t) \quad \text { on } \quad[-r, 0), \tag{3,22}\\
y^{\prime}(t)+\int_{t}^{T} y^{\prime}(s) P(s, t-s) \mathrm{d} s=-\lambda^{\prime}(t-T) \quad \text { on } \quad[T-r, T) . \tag{3,23}
\end{gather*}
$$

Indeed, since actually we are looking for $y^{\prime}(t)$ in the space $\mathscr{L}_{n}^{\infty}(-r, T)$, we may change the values of y^{\prime} on a set of measure zero in $[-r, T]$. Hence we may put

$$
y^{\prime}(0)+\int_{0}^{T} y^{\prime}(s) P(s,-s) \mathrm{d} s=-\lambda^{\prime}(-r)
$$

and

$$
\begin{gathered}
y^{\prime}(T-r)+\int_{T-r}^{T} y^{\prime}(s) P(s, T-r-s) \mathrm{d} s=-\lambda^{\prime}(-r) \\
\left(P(s,-s+)=P(s,-s) \text { for any } s \neq r \text { and thus } y^{\prime}(0+)=y^{\prime}(0) .\right)
\end{gathered}
$$

Furthermore, since by the periodicity assumption on $P(\cdot, \vartheta)$

$$
\int_{t}^{T} y^{\prime}(s) P(s, t-s) \mathrm{d} s=\int_{t-T}^{0} y^{\prime}(T+\beta) P(\beta, t-T-\beta) \mathrm{d} \beta \text { for } t \in[T-r, T],
$$

the system $(3,22),(3,23)$ is equivalent to the condition

$$
\begin{equation*}
y^{\prime}(t)=y^{\prime}(T+t) \text { for } t \in[-r, 0) . \tag{3,24}
\end{equation*}
$$

3,10. Corollary. The adjoint to the periodic problem $(3,5),(3,6),(3,20)$ is equivalent to the problem of finding $y(t) \in \mathscr{B} \mathscr{V}_{n}(-r, T)$ right continuous on $(-r, T-r) \cup$ $\cup(T-r, T)$ which satisfies $(3,21)$ and $(3,24)$, where $\lambda^{\prime}(-r)$ stands for an arbitrary constant n-vector.
(In other words, the problem of finding T-periodic solutions to the equation

$$
y^{\prime}(t)+\int_{t}^{T} y^{\prime}(s) P(s, t-s) \mathrm{d} s=\mathrm{const}
$$

is a well posed adjoint problem to the problem of finding T-periodic solutions to the equation $(3,5)$).

4. BOUNDARY VALUE TYPE PROBLEMS FOR HEREDITARY DIFFERENTIAL EQUATIONS OF THE DELFOUR-MITTER TYPE

4,1. Notation. Let $-\infty<\alpha<\beta<+\infty . \mathscr{L}_{n}^{2}(\alpha, \beta)$ is the Hilbert space of square integrable (column) n-vector functions on $[\alpha, \beta]$ with the inner product

$$
u, v \in \mathscr{L}_{n}^{2}(\alpha, \beta) \rightarrow(u, v)_{\mathscr{L}}=\int_{\alpha}^{\beta} u^{\prime}(s) v(s) \mathrm{d} s=\int_{\alpha}^{\beta} v^{\prime}(s) u(s) \mathrm{d} s .
$$

(The corresponding norm on $\mathscr{L}_{n}^{2}(\alpha, \beta)$ is given by

$$
u \in \mathscr{L}_{n}^{2}(\alpha, \beta) \rightarrow\|u\|_{\mathscr{L}^{2}}=\left(\int_{\alpha}^{\beta}\|u(s)\|^{2} \mathrm{~d} s\right)^{1 / 2}
$$

$\mathscr{W}_{n}^{1,2}(\alpha, \beta)$ is the Hilbert space of functions $x:[\alpha, \beta] \rightarrow \mathscr{R}_{n}$ which are absolutely continuous on $[\alpha, \beta]$ and whose derivatives $D x$ are square integrable on $[\alpha, \beta]$. The inner product and the corresponding norm are on $\mathscr{W}_{n}^{1,2}(\alpha, \beta)$ given by

$$
x, y \in \mathscr{W}_{n}^{1,2}(\alpha, \beta) \rightarrow(x, y)_{\mathscr{W}}=(D x, D y)_{\mathscr{L}}+(x, y)_{\mathscr{L}}
$$

and

$$
x \in \mathscr{W}_{n}^{1,2}(\alpha, \beta) \rightarrow\|x\|_{\mathscr{W}}=\left(\|D x\|_{\mathscr{L}^{2}}^{2}+\|x\|_{\mathscr{L}^{2}}^{2}\right)^{1 / 2}
$$

The corresponding spaces of row vector functions will be denoted also by $\mathscr{L}_{n}^{2}(\alpha, \beta)$ and $\mathscr{W}_{n}^{1,2}(\alpha, \beta)$. No misunderstanding may arise.

4,2. Assumptions. Let $-\infty<a<b<+\infty$ and $r>0$. Let $A(t)$ and $B(t)$ be $n \times n$-matrix functions essentially bounded on $[a, b]$ and $f(t) \in \mathscr{L}_{n}^{2}(a, b)$, let M and N be constant $m \times n$-matrices and $l \in R_{m}$. Let Λ be an arbitrary B-space, $w \in \Lambda$ and let $P: \mathscr{L}_{n}^{2}(a-r, a) \rightarrow \Lambda$ and $Q: \mathscr{W}_{n}^{1,2}(a, b) \rightarrow \Lambda$ be linear and bounded operators.

4,3. Problem (π). The subject of this paragraph is the following boundary value type problem (π)

Determine $x \in \mathscr{W}_{n}^{1,2}(a, b), \xi \in \mathscr{R}_{n}$ and $u \in \mathscr{L}_{n}^{2}(a-r, a)$ in such a way that

$$
\dot{x}(t)-A(t) x(t)-\left\{\begin{array}{l}
B(t) u(t-r), t<a+r \tag{4,1}\\
B(t) x(t-r), t \geqq a+r
\end{array}\right\}=f(t) \quad \text { a.e. on } \quad[a, b],
$$

$$
\begin{gather*}
P u+Q x=w \tag{4,2}\\
M \xi+N x(b)=l \tag{4,3}\\
x(a)-\xi=0 \tag{4,4}
\end{gather*}
$$

Let $\mathscr{W}=\mathscr{W}_{n}^{1,2}(a, b) \times \mathscr{R}_{n} \times \mathscr{L}_{n}^{2}(a-r, a), \mathscr{Z}=\mathscr{L}_{n}^{2}(a, b) \times \Lambda \times \mathscr{R}_{m} \times \mathscr{R}_{n}$ and
let the operators $D, A, B_{1}: \mathscr{W}_{n}^{1,2}(a, b) \rightarrow \mathscr{L}_{n}^{2}(a, b)$ and $B_{2}: \mathscr{L}_{n}^{2}(a-r, a) \rightarrow$ $\rightarrow \mathscr{L}_{n}^{2}(a, b)$ be defined analogously as in 2,3 and

$$
U\left[\begin{array}{l}
x \\
\xi \\
u
\end{array}\right] \in \mathscr{W} \rightarrow\left[\begin{array}{c}
D x-A x-B_{1} x-B_{2} u \\
P u+Q x \\
M \xi+N x(b) \\
x(a)-\xi
\end{array}\right] \in \mathscr{Z} .
$$

The operator U is clearly linear and bounded and the given problem (π) is equivalent to the operator equation

$$
U\left[\begin{array}{l}
x \\
\xi \\
u
\end{array}\right]=\left[\begin{array}{l}
f \\
w \\
l \\
0
\end{array}\right]
$$

4,4. Remark. The corresponding initial value problem $(4,1)$ and $(4,4)$ (with $u \in$ $\in \mathscr{L}_{n}^{2}(a-r, a)$ and $\xi \in \mathscr{R}_{n}$ fixed) was studied in [3].

4,5. Theorem. Let $\eta^{\prime} \in \mathscr{L}_{n}^{2}(a, b), \lambda \in \Lambda^{*}, \gamma^{\prime} \in \mathscr{R}_{m}^{*}$ and $\delta^{\prime} \in \mathscr{R}_{n}^{*}$. Then $\left(\eta^{\prime}, \lambda, \gamma^{\prime}, \delta^{\prime}\right) \in$ $\in \operatorname{Ker}\left(U^{*}\right)$ iff there exists $y^{\prime} \in \mathscr{L}_{n}^{2}(a, b)$ such that $y^{\prime}+(\mathrm{d} / \mathrm{d} t)\left(Q^{*} \lambda\right) \in \mathscr{A} \mathscr{C}_{n}(a, b)$, $y(t)=\eta(t)$ a.e. on $[a, b]$ and

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\left[y^{\prime}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)\right](t)=-y^{\prime}(t) A(t)-\left\{\begin{array}{cc}
y^{\prime}(t+r) B(t+r), & t<b-r \\
0, & t>b-r
\end{array}\right\}+ \\
+\left(Q^{*} \lambda\right)(t) \text { a.e. on }[a, b], \\
{\left[y^{\prime}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)\right](a)=\gamma^{\prime} M,\left[y^{\prime}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)\right](b)=-\gamma^{\prime} N,} \\
y^{\prime}(t+r) B(t+r)-\left(P^{*} \lambda\right)(t)=0 \text { a.e. on }[a-r, a]
\end{gathered}
$$

while $\delta^{\prime}=\gamma^{\prime} M\left(P^{*}: \Lambda^{*} \rightarrow \mathscr{L}_{n}^{2}(a-r, a)\right.$ and $Q^{*}: \Lambda^{*} \rightarrow \mathscr{W}_{n}^{1,2}(a, b)$ are the adjoints to P and Q).

Proof. Let $\eta^{\prime} \in \mathscr{L}_{n}^{2}(a, b), \lambda \in \Lambda^{*}, \gamma^{\prime} \in \mathscr{R}_{m}^{*}$ and $\delta^{\prime} \in \mathscr{R}_{n}^{*}$. Then $\left(\eta^{\prime}, \lambda, \gamma^{\prime}, \delta^{\prime}\right) \in$ $\in \operatorname{Ker}\left(U^{*}\right)$ iff for any $(x, \xi, u) \in \mathscr{W}$

$$
\begin{gathered}
0=\left(\left[\begin{array}{l}
x \\
\xi \\
u
\end{array}\right], U^{*}\left(\eta^{\prime}, \lambda, \gamma^{\prime}, \delta^{\prime}\right)\right)_{\mathscr{F}}=\left(U\left[\begin{array}{l}
x \\
\xi \\
u
\end{array}\right],\left(\eta^{\prime}, \lambda, \gamma^{\prime}, \delta^{\prime}\right)\right)_{\mathscr{L}}= \\
=\int_{a}^{b} \eta^{\prime}(t) \dot{x}(t) \mathrm{d} t-\int_{a}^{b} \eta^{\prime}(t) A(t) x(t) \mathrm{d} t-\int_{a}^{b-r} \eta^{\prime}(t+r) B(t+r) x(t) \mathrm{d} t- \\
-\int_{a-r}^{a} \eta^{\prime}(t+r) B(t+r) u(t) \mathrm{d} t+\gamma^{\prime}(M \xi+N x(b))+\delta^{\prime}(x(a)-\xi)+
\end{gathered}
$$

$$
\begin{gathered}
+\left(u, P^{*} \lambda\right)_{\mathscr{L}}+\left(x, Q^{*} \lambda\right)_{\mathscr{W}}= \\
=\int_{a}^{b} \eta^{\prime}(t) \dot{x}(t) \mathrm{d} t+\int_{a}^{b}\left[\frac{\mathrm{~d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)(t)\right] \dot{x}(t) \mathrm{d} t-\int_{a}^{b} p^{\prime}(t) x(t) \mathrm{d} t+ \\
+\gamma^{\prime} N x(b)+\delta^{\prime} x(a)-\int_{a-r}^{a} q^{\prime}(t) u(t) \mathrm{d} t+\left(\gamma^{\prime} M-\delta^{\prime}\right) \xi
\end{gathered}
$$

where

$$
p^{\prime}(t)=\eta^{\prime}(t) A(t)+\left\{\begin{array}{cl}
\eta^{\prime}(t+r) B(t+r), & t<b-r \\
0, & t \geqq b-r
\end{array}\right\}-\left(Q^{*} \lambda\right)(t) \quad \text { on } \quad[a, b]
$$

and

$$
q^{\prime}(t)=\eta^{\prime}(t+r) B(t+r)-\left(P^{*} \lambda\right)(t) \quad \text { on } \quad[a-r, a]
$$

In particular, putting $\xi=0$ and $x(t)=0$ on $[a, b]$, we get

$$
\begin{equation*}
\eta^{\prime}(t+r) B(t+r)-\left(P^{*} \lambda\right)(t)=0 \quad \text { a.e. on } \quad[a-r, a] . \tag{4,5}
\end{equation*}
$$

Furthermore, putting $x(t)=0$ on $[a, b]$ and $u(t)=0$ on $[a-r, a]$, we get

$$
\begin{equation*}
\gamma^{\prime} M-\delta^{\prime}=0 \tag{4,6}
\end{equation*}
$$

Let us put

$$
g^{\prime}(t)=\left\{\begin{array}{cc}
\int_{t}^{b} p^{\prime}(s) \mathrm{d} s-\gamma^{\prime} N-\delta^{\prime}, t=a \\
\int_{t}^{b} p^{\prime}(s) \mathrm{d} s-\gamma^{\prime} N & , a<t<b \\
0 & , t=b
\end{array}\right\} \in \mathscr{V}_{n}^{0}(a, b)
$$

Then, in virtue of the integration-by-parts formula,

$$
\begin{aligned}
0 & =\int_{a}^{b}\left\{\eta^{\prime}(t)+\left[\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)(t)\right]\right\} \dot{x}(t) \mathrm{d} t+\int_{a}^{b}\left[\mathrm{~d} g^{\prime}(t)\right] x(t)= \\
& =\int_{a}^{b}\left\{\eta^{\prime}(t)+\left[\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)(t)\right]-g^{\prime}(t)\right\} \dot{x}(t) \mathrm{d} t-g^{\prime}(a) x(a)
\end{aligned}
$$

for all $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$. Again, we deduce that
$(4,7) g^{\prime}(a)=\int_{a}^{b} y^{\prime}(s) A(s) \mathrm{d} s+\int_{a+\boldsymbol{r}}^{b} y^{\prime}(s) B(s) \mathrm{d} s-\int_{a}^{b}\left(Q^{*} \lambda\right)(s) \mathrm{d} s-\gamma^{\prime} N-\delta^{\prime}=0$ and
$(4,8) \quad y^{\prime}(t)+\left[\frac{\mathrm{d}}{\mathrm{d} t}\left(Q^{*} \lambda\right)(t)\right]=\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s-\int_{t}^{b}\left(Q^{*} \lambda\right)(s) \mathrm{d} s-\gamma^{\prime} N+$

$$
+\left\{\begin{array}{cc}
\int_{t+r}^{b} y^{\prime}(s) B(s) \mathrm{d} s, & t<b-r \\
0, & t \geqq b-r
\end{array}\right\} \quad \text { on } \quad(a, b)
$$

for some $y^{\prime} \in \mathscr{L}_{n}^{2}(a, b), y^{\prime}(t)=\eta^{\prime}(t)$ a.e. on $[a, b]$.
By $(4,8),\left[y^{\prime}+(\mathrm{d} / \mathrm{d} t)\left(Q^{*} \lambda\right)\right](a+)$ and $\left[y^{\prime}+(\mathrm{d} / \mathrm{d} t)\left(Q^{*} \lambda\right)\right](b-)$ exist,

$$
\left[y^{\prime}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)\right](b-)=-\gamma^{\prime} N
$$

and according to $(4,6)$ and $(4,7)$

$$
\left[y^{\prime}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(Q^{*} \lambda\right)\right](a+)=\delta^{\prime}=\gamma^{\prime} M .
$$

The theorem easily follows.
4,6. Corollary. Let the operator Q in $(4,2)$ be a linear and bounded mapping of $\mathscr{L}_{n}^{2}(a, b)$ into Λ. Then $\left(\eta^{\prime}, \lambda, \gamma^{\prime}, \delta^{\prime}\right) \in \operatorname{Ker}\left(U^{*}\right)$ iff there is $y^{\prime} \in \mathscr{A} \mathscr{C}_{n}(a, b)$ such that $y^{\prime}(t)=\eta^{\prime}(t)$ a.e. on $[a, b]$ and

$$
\begin{gathered}
\dot{y}^{\prime}(t)=-y^{\prime}(t) A(t)-\left\{\begin{array}{cc}
y^{\prime}(t+r) B(t+r), & t<b-r \\
0 \quad, & t>b-r
\end{array}\right\}+\left(Q^{*} \lambda\right)(t) \text { a.e. on }[a, b], \\
y^{\prime}(a)=\gamma^{\prime} M, \quad y^{\prime}(b)=-\gamma^{\prime} N, \\
-y^{\prime}(t+r) B(t+r)+\left(P^{*} \lambda\right)(t)=0 \quad \text { a.e. on } \quad[a-r, a]
\end{gathered}
$$

$\left(P^{*}: \Lambda^{*} \rightarrow \mathscr{L}_{n}^{2}(a-r, a)\right.$ and $Q^{*}: \Lambda^{*} \rightarrow \mathscr{L}_{n}^{2}(a, b)$ are adjoints of P and $\left.Q\right)$.
Proof. Since for all $x \in \mathscr{L}_{n}^{2}(a, b)$ and $\lambda \in \Lambda^{*}$

$$
\langle Q x, \lambda\rangle_{A}=\left(x, Q^{*} \lambda\right)_{\mathscr{L}}=\int_{a}^{b}\left(Q^{*} \lambda\right)(t) x(t) \mathrm{d} t
$$

the term $\left[(\mathrm{d} / \mathrm{d} t)\left(Q^{*} \lambda\right)\right]$ does not appear in the formula $(4,8)$.
4,7. Remark. Let $Q: \mathscr{L}_{n}^{2}(a, b) \rightarrow \Lambda$ be linear and bounded. Then Q is also bounded as an operator $\mathscr{W}_{n}^{1,2}(a, b) \rightarrow \Lambda$ and apparently we have two possible adjoint problems, defined in Theorem 4,5 and Corollary 4,6, respectively. We must take into account that in this case we should write \widetilde{Q}^{*} instead of Q^{*} in the former adjoint, where $\widetilde{Q}=Q E$ and $E: x \in \mathscr{W}_{n}^{1,2}(a, b) \rightarrow x \in \mathscr{L}_{n}^{2}(a, b)$ is a continuous imbedding of $\mathscr{W}_{n}^{1,2}(a, b)$ into $\mathscr{L}_{n}^{2}(a, b)$. (Given $\lambda \in \Lambda^{*}$ and $x \in \mathscr{W}_{n}^{1,2}(a, b)$),

$$
\int_{a}^{b}\left(Q^{*} \lambda\right)(t) x(t) \mathrm{d} t=\int_{a}^{b}\left\{\left[\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\tilde{Q}^{*} \lambda\right)(t)\right] \dot{x}(t)+\left(\tilde{Q}^{*} \lambda\right)(t) x(t)\right\} \mathrm{d} t .
$$

All the boundary value type problems which occur in paragraphs 2 and 3 of this paper may be formulated as operator equations of the type

$$
U \xi=\eta
$$

where U is a linear bounded mapping of either $\mathscr{X}_{c}=\mathscr{A}_{\mathscr{C}_{n}}(a, b) \times \mathscr{C}_{n}(a-r, a)$ or $\mathscr{X}_{v}=\mathscr{A} \mathscr{C}_{n}(a, b) \times \mathscr{B} \mathscr{V}_{n}(a-r, a)$ into $\mathscr{Y}=\mathscr{L}_{n}(a, b) \times \Lambda \times \mathscr{R}_{n}$ and Λ is a B-space. The aim of this paragraph is to characterize in some special cases the range $\operatorname{Im}(U)$ of the operator U and, in particular, to find some conditions guaranteeing the closedness of $\operatorname{Im}(U)$.

Let $(\mathscr{C}+\mathscr{B} \mathscr{V})_{n}(a-r, a)$ denote the set of all functions $w:[a-r, a] \rightarrow \mathscr{R}_{n}$ for which there exist functions $u \in \mathscr{C}_{n}(a-r, a)$ and $v \in \mathscr{B} \mathscr{V}_{n}(a-r, a)$ such that $w(t)=u(t)+v(t)$ on $[a-r, a]$.

In what follows we make use of the following lemma which is a slight modification of the variation-of-constants formula due to H. T. Banks [1].

5,1. Lemma. Let the $n \times$ n-matrix function $P(t, \vartheta)$ fulfil the corresponding assumptions from Sec. 3,4. Given $f \in \mathscr{L}_{n}(a, b)$ and $u \in(\mathscr{C}+\mathscr{B} \mathscr{V})_{n}(a-r, a)$, there is just one solution to the initial value problem $((3,5),(3,6))$

$$
\begin{gathered}
\dot{x}(t)=\int_{-r}^{0}\left[\mathrm{~d}_{9} P(t, \vartheta)\right] x(t+\vartheta)+f(t) \text { a.e. on }[a, b], \\
x(t)=u(t) \text { on }[a-r, a] .
\end{gathered}
$$

There exist a linear operator $\Phi:(\mathscr{C}+\mathscr{B} \mathscr{V})_{n}(a-r, a) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ and a linear bounded operator $\Psi: \mathscr{L}_{n}(a, b) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ such that this solution is given by

$$
\begin{equation*}
x=\Phi u+\Psi f \tag{5,1}
\end{equation*}
$$

The operator Φ as a mapping $\mathscr{B}_{\mathscr{V}}(a-r, a) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ is completely continuous and as a mapping $\mathscr{C}_{n}(a-r, a) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ bounded. Moreover, if $b-r \geqq a$ and if $S_{b}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow x /[b-r, b] \in \mathscr{C}_{n}(b-r, b)$, then the operator $T=$ $=S_{b} \Phi: \mathscr{C}_{n}(a-r, a) \rightarrow \mathscr{C}_{n}(b-r . b)$ is completely continuous.
(The compactness of $\Phi: \mathscr{B} \mathscr{V}_{n}(a-r, a) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ was shown in [13] and the proof of the compactness of T can be find in [7], Remark 8,9.)

5,2. Remark. It follows from the special form of the operator Φ (cf. [1]) that for any $u \in(\mathscr{C}+\mathscr{B} \mathscr{V})_{n}(a-r, a)$

$$
\begin{equation*}
\Phi u=\Phi^{0} u(a)+\Phi^{1} u \tag{5,2}
\end{equation*}
$$

where $\Phi^{0}: \mathscr{R}_{n} \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ is linear and bounded and $\Phi^{1}:(\mathscr{C}+\mathscr{B} \mathscr{V})_{n}(a-r, a) \rightarrow$ $\rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ is linear and completely continuous as an operator $\mathscr{B} \mathscr{V}_{n}(a-r, a) \rightarrow$
$\rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ and bounded as an operator $\mathscr{C}_{n}(a-r, a) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$. Moreover, if v is a simple jump function $v(t)=0$ on $[a-r, a)$ and $v(a)=d$, then $\Phi^{1} v=0$.

5,3. Problem $(3,5)-(3,7)$. Let us turn back to the problem $(3,5)-(3,7)$ whose adjoint was derived in Sec. 3,4. Let Λ be an arbitrary B-space and let the operators $M: \mathscr{C}_{n}(a-r, a) \rightarrow \Lambda$ and $N: \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda$ and the $n \times n$-matrix function $P(t, \vartheta)$ fulfil the assumptions of Sec. 3,4. Let $f \in \mathscr{L}_{n}(a, b)$ and $l \in \Lambda$. Let us put $\mathscr{X}_{c}=\mathscr{A} \mathscr{C}_{n}(a, b) \times \mathscr{C}_{n}(a-r, a), \mathscr{Y}=\mathscr{L}_{n}(a, b) \times \Lambda \times \mathscr{R}_{n}$,

$$
\begin{gathered}
P_{1}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \int_{\max (-r, a-t)}^{0}\left[\mathrm{~d}_{9} P(t, \vartheta)\right] x(t+\vartheta) \in \mathscr{L}_{n}(a, b), \\
P_{2}: u \in C_{n}(a-r, a) \rightarrow \int_{-r}^{\max (-r, a-t)}\left[\mathrm{d}_{9} P(t, \vartheta)\right] u(t+\vartheta), \in \mathscr{L}_{n}(a, b),
\end{gathered}
$$

and

$$
U:\binom{x}{u} \in \mathscr{X}_{c} \rightarrow\left[\begin{array}{c}
D x-P_{1} x-P_{2} u \tag{5,3}\\
M u+N x \\
u(a)-x(a)
\end{array}\right] \in \mathscr{Y}
$$

(where again $D: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \dot{x} \in \mathscr{L}_{n}(a, b)$). The system $(3,5)-(3,7)$ is equivalent to the operator equation

$$
U\binom{x}{u}=\left[\begin{array}{l}
f \tag{5,4}\\
l \\
0
\end{array}\right]
$$

5,3,1. Theorem. Let $\operatorname{Im}(M+N \Phi)$ be closed in Λ, then the operator U defined by $(5,3)$ has closed range $\operatorname{Im}(U)$ in \mathscr{Y}.

Proof. Let $(f, l, d) \in \mathscr{Y}$. According to the variation-of-constants formula $(5,1)$ a couple $\binom{x}{u} \in \mathscr{X}_{c}$ is a solution to the equation

$$
U\binom{x}{u}=\left[\begin{array}{l}
f \\
l \\
d
\end{array}\right]
$$

iff

$$
x=\Phi \tilde{u}+\Psi f=\Phi^{0}(u(a)+d)+\Phi^{1} u+\Psi f=\Phi^{0} d+\Phi u+\Psi f,
$$

where $\tilde{u}=u+u_{d}, u_{d}(t)=0$ on $[a-r, a), u_{d}(a)=d\left(\Phi^{1} u_{d}=0\right.$, cf. Remark 5,2) and $u \in \mathscr{C}_{n}(a-r, a)$ is a solution to the operator equation

$$
[M+N \Phi] u=-N \Psi f+l-N \Phi^{0} d
$$

Let us denote

$$
S:\left[\begin{array}{l}
f \\
l \\
d
\end{array}\right] \in \mathscr{Y} \rightarrow-N \Psi f+l-N \Phi^{0} d \in \Lambda
$$

Then $S(\operatorname{Im}(U))=\operatorname{Im}(M+N \Phi)$ and since the operator S is linear and bounded, our assertion readily follows.
$\mathbf{5 , 3 , 2}$. Corollary. If $\Lambda=\mathscr{R}_{\boldsymbol{m}}$, then $\operatorname{Im}(U)$ is closed in \mathscr{Y}.
(In this case $\operatorname{Im}(M+N \Phi)$ is a k-dimencional $(0 \leqq k \leqq m)$ linear subspace of \mathscr{R}_{m}.)
5,3,3. Corollary. Let $0 \leqq r \leqq b-a, \quad S_{b}: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow x \mid[b-r, b] \in$ $\in \mathscr{C}_{n}(b-r, b)$ and let $\tilde{N}: \mathscr{C}_{n}(b-r, b) \rightarrow \Lambda$ be linear and bounded. Let the operator U be given by $(5,3)$, where N is replaced by $N_{b}=\tilde{N} S_{b}$. Then, if the operator M posseses a bounded inverse $M^{-1}: \Lambda \rightarrow \mathscr{C}_{n}(a-r, a)$, the range $\operatorname{Im}(U)$ of U is closed in \mathscr{Y}.

Proof. By Theorem 5,3,1 $\operatorname{Im}(U)$ is closed in \mathscr{Y} if the range of the operator

$$
M+\tilde{N} S_{b} \Phi=M+\tilde{N} T: \mathscr{C}_{n}(a-r, a) \rightarrow \Lambda
$$

is closed. Since by Lemma 5,1 the operator $T=S_{b} \Phi: \mathscr{C}_{n}(a-r, a) \rightarrow \mathscr{C}_{n}(b-r, b)$ is completely continuous, the existence of a bounded M^{-1} implies the closedness of $\operatorname{Im}(M+\tilde{N} T)$ and hence also of $\operatorname{Im}(U)$.

5,3,4. Remark. Our restriction to two-point boundary value type problems in Corollary $5,3,3$ does not mean an essential loss of generality (cf. [8]).

5,3,5. Corollary. The T-periodic problem (3,5), $(3,6),(3,20)$ (cf. Sec. 3,9) has a solution iff

$$
\int_{0}^{T} y^{\prime}(s) f(s) \mathrm{d} s=0
$$

for all T-periodic solutions $y^{\prime}(t)$ (i.e., $y^{\prime}(t)=y^{\prime}(T+t)$ on $[-r, 0)$) of the equation

$$
y^{\prime}(t)+\int_{t}^{b} y^{\prime}(s) \dot{P}(s, t-s) \mathrm{d} s=\text { const. on } \quad[-r, T-r] .
$$

(Proof follows from Corollaries 3,10 and 5,3,3.)
5,3,6. Remark. Let Λ_{1} be a B-space and let the operators $M_{1}: \mathscr{C}_{n}(a-r, a) \rightarrow \Lambda_{1}$ and $N_{1}: \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda_{1}$ be linear and bounded. If $\Lambda=\mathscr{C}_{n}(a-r, a) \times \Lambda_{1}$ and

$$
M: u \in \mathscr{C}_{n}(a-r, a) \rightarrow\left[\begin{array}{c}
u \\
M_{1} u
\end{array}\right] \in \Lambda, \quad N: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow\left[\begin{array}{c}
0 \\
N_{1} x
\end{array}\right] \in \Lambda,
$$

then the operator U given by $(5,3)$ has closed range $\operatorname{Im}(U)$ in $\mathscr{Y}=\mathscr{L}_{n}(a, b) \times$ $\times \mathscr{C}_{n}(a-r, a) \times \Lambda_{1} \times \mathscr{R}_{n}$. (Indeed, according to Lemma 5,1 an element (f, h, l, d) of \mathscr{Y} belongs to $\operatorname{Im}(U)$ iff

$$
F(f, h, l, d)=N_{1} \Psi f+\left(M_{1}+N_{1} \Phi\right) h-l+N_{1} \Phi^{0} d=0 .
$$

It is easy to see that the operator $F: \mathscr{Y} \rightarrow \Lambda_{1}$ is linear and bounded. Consequently, the set $\operatorname{Im}(U)=\operatorname{Ker}(F)$ is closed in \mathscr{Y}.)

5,3,7. Remark. All the assertions of this section will remain true if we replace the initial space $\mathscr{C}_{n}(a-r, a)$ by $\mathscr{B} \mathscr{V}_{n}(a-r, a)$. Moreover, Corollary $5,3,3$ could be now formulated directly for a general linear bounded operator $N: \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \Lambda$. (N need not be of the two-point character $N=\tilde{N} S_{b}$.) This is possible in virtue of the compactness of the operator $\Phi: \mathscr{B}_{\mathscr{V}}(a-r, a) \rightarrow \mathscr{A}_{\mathscr{C}_{n}}(a, b)$ in the variation-ofconstants formula (5,1) (cf. Lemma 5,1).

5,4. Problem $(2,1)-(2,3)$. The subject of this section is the general problem of finding $x \in \mathscr{A} \mathscr{C}_{n}(a, b)$ and $u \in \mathscr{B}_{\mathscr{V}}^{n}(a-r, a)$ which satisfy $(2,1)-(2,3)$. Let Assumptions 2,1 be fulfilled. We make use of the notation introduced in Sec. 2,3. (Only $\mathscr{C}_{n}(a-r, a)$ should be replaced everywhere by $\mathscr{B}_{\mathscr{F}} \mathscr{V}_{n}(a-r, a)$.)

5,4,1. Lemma. Let $-\infty<c<d<+\infty$ and let $K(t, s)$ be an $n \times n$-matrix function defined and Borel measurable in (t, s) on $[a, b] \times[c, d]$ and such that $\operatorname{var}_{c}^{d} K(t, \cdot)<\infty$ for any $t \in[a, b]$, while

$$
\int_{a}^{b}\left(\operatorname{var}_{c}^{d} K(t, \cdot)+\|K(t, d)\|\right) \mathrm{d} t<\infty .
$$

Then the operator

$$
K: u \in \mathscr{B} \mathscr{V}_{n}(c, d) \rightarrow \int_{c}^{d}\left[\mathrm{~d}_{s} K(t, s)\right] u(s) \in \mathscr{L}_{n}(a, b)
$$

is completely continuous.
Proof. The operator K is surely linear and bounded.
Let $\left\{u^{j}\right\}_{j=1}^{\infty} \subset \mathscr{B}^{\mathscr{V}}{ }_{n}(c, d)$ and $\left\|u^{j}\right\|_{\mathscr{B} \boldsymbol{\mathscr { }}}<1(j=1,2, \ldots)$. Then by Helly's Choice Theorem there exists a subsequence $\left\{u^{j^{j}}\right\} \subset\left\{u^{j}\right\}$ and $u^{0} \in \mathscr{B} \mathscr{V}_{n}(c, d)$ such that

$$
\lim _{l \rightarrow \infty} u^{j}(s)=u^{0}(s) \text { for all } s \in[c, d] .
$$

Let us put for $s \in[c, d]$ and $l=1,2, \ldots$

$$
v^{l}(s)=\left\|u^{j_{1}}(s)-u^{0}(s)\right\|
$$

and for $t, s \in[a, b] \times[c, d]$

$$
k(t, s)=\operatorname{var}_{c}^{s} K(t, \cdot)
$$

Then $\left\|v^{l}(s)\right\| \leqq\left\|u^{0}\right\|_{\mathscr{B} \vartheta}+1$ on $[c, d]$ for any $l=1,2, \ldots, \operatorname{var}_{c}^{d} k(t, \cdot)=\operatorname{var}_{c}^{d} K(t, \cdot)$ for any $t \in[a, b]$ and by the unsymmetric Fubini theorem

$$
\begin{gathered}
\int_{a}^{b}\left\|\int_{c}^{d}\left[\mathrm{~d}_{s} K(t, s)\right]\left(u^{j_{1}}(s)-u^{0}(s)\right)\right\| \mathrm{d} t \leqq \int_{a}^{b}\left(\int_{c}^{d}\left[\mathrm{~d}_{s} k(t, s)\right] v^{l}(s)\right) \mathrm{d} t= \\
=\int_{c}^{d}\left[\mathrm{~d}_{s} \int_{a}^{b} k(t, s) \mathrm{d} t\right] v^{l}(s)
\end{gathered}
$$

Given a subdivision $\left\{c=s_{0}<s_{1} \ldots<s_{m}=d\right\}$ of $[c, d]$,

$$
\begin{gathered}
\sum_{i=1}^{m} \| \int_{a}^{b}\left(k\left(t, s_{i}\right)-k\left(t, s_{i-1}\right) \mathrm{d} t \| \leqq \int_{a}^{b}\left(\sum_{i=1}^{m}\left\|k\left(t, s_{i}\right)-k\left(t, s_{i-1}\right)\right\|\right) \mathrm{d} t \leqq\right. \\
\leqq \int_{a}^{b}\left(\operatorname{var}_{c}^{d} k(t, \cdot)\right) \mathrm{d} t<\infty .
\end{gathered}
$$

Thus

$$
\operatorname{var}_{c}^{d}\left(\int_{a}^{b} k(t, \cdot) \mathrm{d} t\right)<\infty
$$

and according to the dominated convergence theorem for Perron-Stieltjes integrals

$$
\lim _{l \rightarrow \infty} \int_{c}^{d}\left[\mathrm{~d}_{s} \int_{a}^{b} k(t, s) \mathrm{d} t\right] v^{l}(s)=0
$$

or

$$
\lim _{l \rightarrow \infty}\left\|K u^{j_{l}}-K u^{0}\right\|_{\mathscr{L}}=\lim _{t \rightarrow \infty} \int_{a}^{b}\left\|\int_{c}^{d}\left[\mathrm{~d}_{s} K(t, s)\right]\left(u^{j_{1}}(s)-u^{0}(s)\right)\right\| \mathrm{d} t=0
$$

which completes the proof.
5,4,2. Remark. The operator

$$
u \in \mathscr{C}_{n}(c, d) \rightarrow \int_{c}^{d}\left[\mathrm{~d}_{s} K(t, s)\right] u(s) \in \mathscr{L}_{n}(a, b)
$$

(with $K(t, s)$ fulfilling the assumptions of Lemma $5,4,1$) need not be generally completely continuous.

5,4,3. Theorem. If the operator $M: \mathscr{B} \mathscr{V}_{n}(a-r, a) \rightarrow \Lambda$ has a bounded inverse M^{-1}, then the operator U given by $(2,4)\left(\right.$ with $\mathscr{C}_{n}(a-r, a)$ replaced by $\left.\mathscr{B} \mathscr{V}_{n}(a-r, a)\right)$ has closed range in \mathscr{Y}.

Proof. By Lemma 5,1 applied to initial value problems of the type

$$
\begin{gathered}
\dot{x}(t)=A(t) x(t)+B(t) x(t-r)+g(t) \text { a.e. on }[a, b], \\
x(t)=u(t) \text { on }[a-r, a]
\end{gathered}
$$

the triple $(f, l, d) \in \mathscr{Y}$ belongs to $\operatorname{Im}(U)$ iff there is a solution $\binom{x}{u} \in \mathscr{X}_{v}=\mathscr{A} \mathscr{C}_{n}(a, b) \times$ $\times \mathscr{B} \mathscr{V}_{n}(a-r, a)$ to the system of operator equations

$$
\begin{gather*}
x-\Psi G_{1} x-\Phi u-\Psi G_{2} u=\Psi f+\Phi^{0} d, \tag{5,5}\\
M u+N x=l,
\end{gather*}
$$

where the operator $\Phi: \mathscr{B} \mathscr{V}_{n}(a-r, a) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ is linear and completely continuous and the operators $\Phi^{0}: \mathscr{R}_{n} \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ and $\Psi: \mathscr{L}_{n}(a, b) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ are linear and bounded. Since there exists a bounded inverse M^{-1} of M, the latter equation in $(5,5)$ yields $u=M^{-1} l-M^{-1} N x$, while the former becomes

$$
x-\left\{\Phi M^{-1} N+\Psi G_{1}+\Psi G_{2} M^{-1} N\right\} u=\Psi f+\left(\Phi+\Psi G_{2}\right) M^{-1} l+\Phi^{0} d
$$

Let us put $K=\Phi M^{-1} N+\Psi G_{1}+\Psi G_{2} M^{-1} N, \quad S(f, l, d)=\Psi f+\left(\Phi+\Psi G_{2}\right)$. . $M^{-1} l+\Phi^{0} d$ and let I denote the identity operator on $\mathscr{A} \mathscr{C}_{n}(a, b)$. Then $S(\operatorname{Im}(U))=$ $=\operatorname{Im}(I-K)$ and since $S: \mathscr{Y} \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ is linear and bounded, $\operatorname{Im}(U)$ is closed if $\operatorname{Im}(I-K)$ is closed. The operators G_{1}, G_{2} are completely continuous by Lemma $5,4,1$ and since the operators M^{-1}, N and Ψ are bounded the operator K is also completely continuous and $\operatorname{Im}(I-K)$ is closed.
$\mathbf{5 , 4 , 4}$. Remark. As an easy consequence of Theorem $5,4,3$ we obtain that in the case of the T-periodic problem (i.e. $a=0, b=T, r<T, \Lambda=\mathscr{A} \mathscr{C}_{n}(-r, 0), M=I$, $N: x \in \mathscr{A} \mathscr{C}_{n}(0, T) \rightarrow x_{T}(s)=x(T+s) \in \mathscr{A} \mathscr{C}_{n}(-r, 0)$ and $\left.l=0\right)$ the range $\operatorname{Im}(U)$ of U is closed in \mathscr{Y}.

5,5. Boundary value problems for ordinary integrodifferential equations. If $r=0$ and $\Lambda=\mathscr{R}_{m}$, then the given problem $(2,1)-(2,3)$ reduces to the boundary value problem for an ordinary integrodifferential equation of the form

$$
\begin{gather*}
\dot{x}(t)=A(t) x(t)+\int_{a}^{b}\left[\mathrm{~d}_{s} G(t, s)\right] x(s)+f(t) \text { a.e. on }[a, b], \tag{5,6}\\
N x=l, \tag{5,7}
\end{gather*}
$$

where the $n \times n$-matrix function $A(t)$ is \mathscr{L}-integrable on $[a, b], \operatorname{var}_{a}^{b} G(t, \cdot)<\infty$ for any $t \in[a, b]$,

$$
\int_{a}^{b}\left(\operatorname{var}_{a}^{b} G(t, \cdot)+\|G(t, b)\|\right) \mathrm{d} t<\infty
$$

$f \in \mathscr{L}_{n}(a, b), l \in \mathscr{R}_{m}$ and the operator $N: \mathscr{A}_{\mathscr{C}_{n}}(a, b) \rightarrow \mathscr{R}_{m}$ is linear and bounded. (The initial space reduces to \mathscr{R}_{n}.)

Let us reformulate the problem $(5,6),(5,7)$ as the operator equation

$$
U x=\binom{f}{l}
$$

where

$$
\begin{equation*}
U: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow\binom{D x-A x-G x}{N x} \in \mathscr{L}_{n}(a, b) \times \mathscr{R}_{m} \tag{5,8}
\end{equation*}
$$

and the symbols D, A, G have the obvious menaning.

5,5,1. Theorem. The operator U defined by $(5,8)$ has closed range in $\mathscr{L}_{n}(a, b) \times$ $\times \mathscr{R}_{m}$.

Proof. There exist linear and bounded operators $\Phi^{0}: \mathscr{R}_{n} \rightarrow \mathscr{A}_{n}(a, b)$ and Ψ : $: \mathscr{L}_{n}(a, b) \rightarrow \mathscr{A} \mathscr{C}_{n}(a, b)$ such that an n-vector function $x(t)$ is a solution to the given problem iff

$$
x=\Phi^{0} c+\Psi h+\Psi f
$$

where the couple $(h, c) \in \mathscr{L}_{n}(a, b) \times \mathscr{R}_{n}(h=G x)$ is a solution to the system

$$
\begin{align*}
h-\left(G \Phi^{0}\right) c-(G \Psi) h & =(G \Psi) f \tag{5,9}\\
\left(N \Phi^{0}\right) c+(N \Psi) h & =l-(N \Psi) f
\end{align*}
$$

($N \Phi^{0}$) is a constant $m \times n$-matrix. Let e.g. $m<n$. Putting

$$
\begin{gathered}
Q=I_{n}-\left[\begin{array}{c}
N \Phi^{0} \\
0_{n-m, n}
\end{array}\right], \quad \tilde{l}=\left[\begin{array}{c}
l \\
0_{n-m, 1}
\end{array}\right] \in \mathscr{R}_{n} \\
R: h \in \mathscr{L}_{n}(a, b) \rightarrow\left[\begin{array}{c}
(N \Psi) h \\
0_{n-m, 1}
\end{array}\right] \in \mathscr{R}_{n}
\end{gathered}
$$

($0_{p, q}$ denotes the zero $p \times q$-matrix and I_{n} is the identity $n \times n$-matrix $)$,

$$
K:\binom{h}{c} \in \mathscr{L}_{n}(a, b) \times \mathscr{R}_{n} \rightarrow\left[\begin{array}{c}
\left(G \Phi^{0}\right) c+(G \Psi) h \\
Q c-R h
\end{array}\right] \in \mathscr{L}_{n}(a, b) \times \mathscr{R}_{n}
$$

and

$$
S:\binom{f}{l} \in \mathscr{L}_{n}(a, b) \times \mathscr{R}_{m} \rightarrow\left[\begin{array}{l}
(G \Psi) f \\
\tilde{l}-R f
\end{array}\right] \in \mathscr{L}_{n}(a, b) \times \mathscr{R}_{n},
$$

the system $(5,9)$ becomes

$$
(I-K)\binom{h}{c}=S\binom{f}{l}
$$

and $S(\operatorname{Im}(U))=\operatorname{Im}(I-K)$. Since by Lemma $5,4,1$ the operator G is completely continuous, it is easy to verify that the operator K is completely continuous. It means that $\operatorname{Im}(I-K)$ is closed and taking into account that the operator S is linear and bounded we complete the proof. The case $m>n$ can be treated analogously.

Let $N(t)$ be an $m \times n$-matrix function of bounded variation on $[a, b]$ and let the operator N be given by

$$
\begin{equation*}
N: x \in \mathscr{A} \mathscr{C}_{n}(a, b) \rightarrow \int_{a}^{b}[\mathrm{~d} N(s)] x(s) \in \mathscr{R}_{\boldsymbol{m}} . \tag{5,10}
\end{equation*}
$$

Without any loss of generality we may assume that for any $t \in[a, b]$ the functions $G(t, \cdot)$ and N are right-continuous on (a, b). Let us put for $t \in[a, b]$

$$
\begin{gathered}
C(t)=G(t, a+)-G(t, a), \quad D(t)=G(t, b)-G(t, b-), \\
G_{0}(t, s)=\left\{\begin{array}{l}
G(t, a+) \text { for } s=a, \\
G(t, s) \text { for } a<s<b, \\
G(t, b-) \text { for } s=b,
\end{array} \quad L(s)=\left\{\begin{array}{l}
N(a+) \text { for } s=a, \\
N(s) \text { for } a<s<b, \\
N(b-) \text { for } s=b,
\end{array}\right.\right. \\
\\
\quad M=N(a+)-N(a), \quad N=N(b)-N(b-) .
\end{gathered}
$$

Then similarly as in Sec. 3,3 we obtain that the adjoint problem to $(5,6),(5,7)$ is equivalent to the problem of finding $y \in \mathscr{B} \mathscr{V}_{n}(a, b)$, right-continuous on $[a, b)$ and left-continuous at b and $\lambda \in \mathscr{R}_{n}$ such that

$$
\begin{gather*}
y^{\prime}(t)=y^{\prime}(b)+\int_{t}^{b} y^{\prime}(s) A(s) \mathrm{d} s-\int_{a}^{b} y^{\prime}(s)\left(G_{0}(s, t)-G_{0}(s, b)\right) \mathrm{d} s+ \tag{5,11}\\
+\lambda^{\prime}(L(t)-L(b)) \text { on }[a, b],
\end{gather*}
$$

$(5,12) \quad y^{\prime}(a)=\lambda^{\prime} M-\int_{a}^{b} y^{\prime}(s) C(s) \mathrm{d} s, \quad y^{\prime}(b)=-\lambda^{\prime} N+\int_{a}^{b} y^{\prime}(s) D(s) \mathrm{d} s$.
The following theorem is then a direct corollary of Theorem 5,5,1.
5,5,2. Theorem. The problem $(5,6),(5,7)$ possesses a solution iff

$$
\int_{a}^{b} y^{\prime}(s) f(s) \mathrm{d} s+\lambda^{\prime} l=0
$$

for any solution $\left(y^{\prime}(t), \lambda^{\prime}\right)$ of the adjoint problem $(5,11),(5,12)$.
Theorem 5,5,2 generalizes Theorem 3,1 from [12].
Acknowledgement. The author wishes to express his appreciation to Professor A. Halanay for stimulating discussions which aided the clarity of exposition of Sec. 2,4 and have given rise to $\S 4$ of this paper.

References

[1] Banks H. T.: Representations for Solutions fo Linear Functional Differential Equations, Journ. Diff. Eq. 5 (1969), 399-409.
[2] Cameron R. H. and Martin W. T., An unsymmetric Fubini theorem, Bull. A.M.S. 47 (1941), 121-125.
[3] Delfour M. C. and Mitter S. K., Hereditary Differential Systems with Constant Delays. II - A class of affine systems and the adjoint problem, to appear in Journ. Diff. Eq.
[4] Dunford N. and Schwartz T., Linear operators, part I, Interscience Publishers, New YorkLondon, 1958.
[5] Halanay A., Periodic solutions of linear systems with time lag (in Russian), Rev. Math. pures appl. (Acad. R.P.R.) 6 (1961), 141-158.
[6] Halanay A., On a Boundary Value Problem for Linear Systems with Time Lag, Journ. Diff. Eq. 2 (1966), 47-56.
[7] Hale J. K., Functional Differential Equations, Applied Mathematical Sciences, vol. 3, Springer-Verlag, New York, 1971.
[8] Henry D., The Adjoint of a Linear Functional Differential Equation and Boundary Value Problems, Journ. Diff. Eq. 9 (1971), 55-66.
[9] Lifšic E. A., Fredholm alternative for the problem of periodic solutions to differential equations with retarded argument (in Russian), Probl. mat. analiza složnych sistem 1 (1967), 53-57.
[10] Schwabik Št., On an integral operator in the space of functions with bounded variation, Čas. pěst. mat. 97 (1972), 297-330.
[11] Schwabik Št., Remark on linear equations in Banach space, Čas. pěst. mat., 99 (1974), 115-122.
[12] Tvrdý M. and Vejvoda O., General boundary value problem for an integro-differential system and its adjoint, Čas. pěst. mat. 97 (1972), 399-419 and 98 (1973), 26-42.
[13] Tvrdý M., Note on functional-differential equations with initial functions of bounded variation, Czech. Math. J. 25 (100) (1975), 67-70.
[14] Wexler D., On boundary value problems for an ordinary linear differential system, Ann. Mat. pura appl. 80 (1968), 123-134.

Remark 2,12 was added in the proofs. Its assertion was proved in [15] (Theorem 4,4). The results of sec. 5,5 were shown in another way also in [16].
[15] Tvrdý M., Linear functional-differential operators: normal solvability and adjoints, to appear in the Proceedings of the Colloquium on Differential Equations (Keszthely, Hungary September 1974),
[16] Maksimov V. P., General boundary value problem for linear functional-differential equation is noetherian (in Russian), Diff. urav. 10 (1974), 2288-2291.

Author's address: 11567 Praha 1, Žitná 25, ČSSR (Matematický ústav ČSAV).

[^0]: *) If $r=0$, the equation (2,1) reduces to an ordinary integro-differential equation with initial data in R_{n}. The case of $r=0$ will be treated separately later on (cf. Sec. 5,5).

