THE AVERAGING INTEGRAL OPERATOR BETWEEN WEIGHTED LEBESGUE SPACES AND REVERSE HÖLDER INEQUALITIES

BOHUMÍR OPIC

Dedicated to Professor Gerard Bourdaud on the occasion of his 60th birthday

Abstract. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ satisfying: $v(x) x^{\rho}$ is equivalent to a non-decreasing function on $(0,+\infty)$ for some $\rho \geq 0$;

$$
[w(x) x]^{1 / q} \approx[v(x) x]^{1 / p} \quad \text { for all } x \in(0,+\infty)
$$

Let A be the averaging operator given by $(A f)(x):=\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t, x \in(0,+\infty)$. First, we prove that the operator

$$
A: L^{p}((0,+\infty) ; v) \rightarrow L^{p}((0,+\infty) ; v) \text { is bounded }
$$

if and only if the operator

$$
A: L^{p}((0,+\infty) ; v) \rightarrow L^{q}((0,+\infty) ; w) \text { is bounded. }
$$

Second, we show that the boundedness of the averaging operator A on the space $L^{p}((0,+\infty) ; v)$ implies that, for all $r>0$, the weight $v^{1-p^{\prime}}$ satisfies the reverse Hölder inequality over the interval $(0, r)$ with respect to the measure $\mathrm{d} t$, while the weight v satisfies the reverse Hölder inequality over the interval $(r,+\infty)$ with respect to the measure $t^{-p} \mathrm{~d} t$. As a corollary, we obtain that the boundedness of the averaging operator A on the space $L^{p}((0,+\infty) ; v)$ is equivalent to the boundedness of the averaging operator A on the space $L^{p}\left((0,+\infty) ; v^{1+\delta}\right)$ for some $\delta>0$.

1. Introduction

Let $1<p<+\infty$ and let v be a weight on $(0,+\infty)$, i.e., a measurable function which is positive a.e. on $(0,+\infty)$. By $L^{p}(v) \equiv L^{p}((0,+\infty) ; v)$ we denote the weighted Lebesgue space of all measurable functions f on $(0,+\infty)$ for which the norm

$$
\|f\|_{p, v}=\left(\int_{0}^{+\infty}|f(x)|^{p} v(x) \mathrm{d} x\right)^{1 / p}
$$

is finite.
We shall consider one of the basic operators in the mathematical analysis, the averaging operator A defined by

$$
(A f)(x):=\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t, \quad x \in(0,+\infty)
$$

It is well known (see [B] or [OK]) that if $1<p<+\infty$ and w, v are weights on $(0,+\infty)$, then the averaging operator $A: L^{p}(v) \rightarrow L^{q}(w)$ is bounded, that is, there

[^0]exists a constant $c>0$ such that
\[

$$
\begin{equation*}
\|A f\|_{q, w} \leq c\|f\|_{p, v} \quad \text { for all } f \in L^{p}(v) \tag{1}
\end{equation*}
$$

\]

if and only if

$$
\begin{equation*}
B:=\sup _{r>0}\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / q}\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}}<+\infty \tag{2}
\end{equation*}
$$

where $p^{\prime}=p /(p-1)$.
Throughout the paper we use the following convention: For two non-negative expressions (i.e. functions or functionals) F and G the symbol $F \lesssim G$ (or $F \gtrsim G$) means that $F \leq c G$ (or $c F \geq G$), where c is a positive constant independent of appropriate quantities involved in F and G. We shall write $F \approx G$ (and say that F and G are equivalent) if both relations $F \lesssim G$ and $F \gtrsim G$ hold.

Our aim is to prove the following assertions.
Theorem 1. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that: (3) $v(x) x^{\rho}$ is equivalent to a non-decreasing function on $(0,+\infty)$ for some $\rho \geq 0$;

$$
\begin{equation*}
[w(x) x]^{1 / q} \approx[v(x) x]^{1 / p} \quad \text { for all } x \in(0,+\infty) \tag{4}
\end{equation*}
$$

Then the averaging operator

$$
\begin{equation*}
A: L^{p}(v) \rightarrow L^{p}(v) \quad \text { is bounded } \tag{5}
\end{equation*}
$$

if and only if the operator

$$
\begin{equation*}
A: L^{p}(v) \rightarrow L^{q}(w) \quad \text { is bounded. } \tag{6}
\end{equation*}
$$

Assumptions of Theorem 1 and (5) ensure that

$$
\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / q}\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}} \approx 1 \quad \text { for all } r>0
$$

which means that (w, v) is the optimal couple of weights for which (1) holds. Note also that assumption (4) is satisfied when $w=v$ and $q=p$.

In the particular case when $\rho=0$ in (3) the statement of Theorem 1 has been communicated to us by a referee of another our paper.

It is known that the weight v satisfying both (3) with $\rho=0$ and (5) belongs to the A_{p}-class of B. Muckenhoupt. Since $v \in A_{p}$ implies that $v^{1-p^{\prime}} \in A_{p^{\prime}}$, the following two reverse Hölder inequalities hold for such a weight:

$$
\begin{aligned}
\left(\frac{1}{r} \int_{0}^{r}\left[v(t)^{1-p^{\prime}}\right]^{1+\delta} \mathrm{d} t\right)^{1 /(1+\delta)} & \lesssim \frac{1}{r} \int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \\
\left(\frac{1}{r} \int_{0}^{r} v(t)^{1+\delta} \mathrm{d} t\right)^{1 /(1+\delta)} & \lesssim \frac{1}{r} \int_{0}^{r} v(t) \mathrm{d} t
\end{aligned}
$$

for all $r>0$ and some $\delta>0$.
The next theorem shows that the former inequality remains true even when $\rho \geq 0$ in (3) while the latter inequality is then replaced by the reverse Hölder inequality for the weight v, the interval $(r,+\infty)$ and the measure $t^{-p} \mathrm{~d} t$.

Theorem 2. Let $1<p<+\infty$ and let v be a weight on $(0,+\infty)$ such that (3) holds. Assume that the averaging operator

$$
\begin{equation*}
A: L^{p}(v) \rightarrow L^{p}(v) \quad \text { is bounded. } \tag{7}
\end{equation*}
$$

Then there is $\delta_{0}>0$ such that

$$
\begin{equation*}
\left(\frac{1}{r} \int_{0}^{r}\left[v(t)^{1-p^{\prime}}\right]^{1+\delta} \mathrm{d} t\right)^{1 /(1+\delta)} \lesssim \frac{1}{r} \int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{r^{1-p}} \int_{r}^{+\infty} v(t)^{1+\delta} t^{-p} \mathrm{~d} t\right)^{1 /(1+\delta)} \lesssim \frac{1}{r^{1-p}} \int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t \tag{9}
\end{equation*}
$$

for all $r>0$ and $\delta \in\left[0, \delta_{0}\right)$.
Corollary 1. Let $1<p<+\infty$ and let v be a weight on $(0,+\infty)$ such that (3) holds. Then the averaging operator

$$
\begin{equation*}
A: L^{p}(v) \rightarrow L^{p}(v) \quad \text { is bounded } \tag{10}
\end{equation*}
$$

if and only if there is $\delta>0$ such that the operator

$$
\begin{equation*}
A: L^{p}\left(v^{1+\delta}\right) \rightarrow L^{p}\left(v^{1+\delta}\right) \quad \text { is bounded. } \tag{11}
\end{equation*}
$$

Corollary 1 is a particular case of the following assertion.
Corollary 2. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that (3) and (4) hold. Then (10) is satisfied if and only if there is $\delta>0$ such that the operator

$$
A: L^{p}\left(v(x)^{1+\delta}\right) \rightarrow L^{q}\left(w(x)^{1+\delta} x^{\delta(1-q / p)}\right) \quad \text { is bounded. }
$$

We refer to $[\mathrm{OR}]$ for further related results.
Remark 1. It has been said that the weight v satisfying both (3) with $\rho=0$ and (5) belongs to the A_{p}-class of B. Muckenhoupt. On the other hand, there are weights which satisfy (3) and (5) but which do not belong to the A_{p}-class. A simple example is $v(t)=t^{\beta}, t>0$, with $\beta \leq-1$.

The paper is organized as follows. In Section 2 we prove Theorem 1 while the proof of Theorem 2 is given in Section 3. Section 4 is devoted to proofs of Corollaries 1 and 2.

2. Proof of Theorem 1

To prove Theorem 1, we shall use the following assertion. (Note that its proof is based on [N , Lemma 2] and a dual version of Nakai's result.)

Lemma 1 (see [OR, Lemma B]). Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that (3) and (4) hold. Assume that the averaging operator $A: L^{p}(v) \rightarrow L^{q}(w)$ is bounded. Then there exists a positive constant α_{0} such that

$$
\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t \approx\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}}
$$

and

$$
\int_{r}^{+\infty} w(t) t^{\alpha-q} \mathrm{~d} t \approx w(r) r^{\alpha+1-q}
$$

for all $r>0$ and $\alpha \in\left[0, \alpha_{0}\right)$.
Proof of Theorem 1. (i) Assume that (6) holds. Then, by Lemma 1, there exists $\alpha_{0}>0$ such that

$$
\begin{equation*}
\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t \approx\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}} \quad \text { for all } r>0 \text { and } \alpha \in\left[0, \alpha_{0}\right) \tag{12}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \approx v(r)^{1-p^{\prime}} r \quad \text { for all } r>0 \tag{13}
\end{equation*}
$$

Moreover, using (12) with a fixed $\alpha \in\left(0, \alpha_{0}\right)$, we get

$$
\begin{equation*}
v(r) \approx r^{p-1-\alpha}\left(\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t\right)^{1 /\left(1-p^{\prime}\right)} \quad \text { for all } r>0 \tag{14}
\end{equation*}
$$

Thus, applying also the monotonicity of the function

$$
\begin{equation*}
t \mapsto\left(\int_{0}^{t}\left[v(\tau) \tau^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} \tau\right)^{1 /\left(1-p^{\prime}\right)}, \quad t>0 \tag{15}
\end{equation*}
$$

and (12), we arrive at

$$
\begin{aligned}
\int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t & \approx \int_{r}^{+\infty} t^{p-1-\alpha}\left(\int_{0}^{t}\left[v(\tau) \tau^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} \tau\right)^{1 /\left(1-p^{\prime}\right)} t^{-p} \mathrm{~d} t \\
& \leq\left(\int_{0}^{r}\left[v(\tau) \tau^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} \tau\right)^{1 /\left(1-p^{\prime}\right)} \int_{r}^{+\infty} t^{-1-\alpha} \mathrm{d} t \\
& \approx v(r) r^{1-p} \text { for all } r>0
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(\int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t\right)^{1 / p} \lesssim v(r)^{1 / p} r^{-1 / p^{\prime}} \quad \text { for all } r>0 \tag{16}
\end{equation*}
$$

On the other hand, by (13),

$$
\begin{equation*}
\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}} \approx v(r)^{-1 / p} r^{1 / p^{\prime}} \quad \text { for all } r>0 \tag{17}
\end{equation*}
$$

Estimates (16) and (17) used in (2) yield (5).
(ii) Assume now that (5) holds. By Lemma 1 (with $p=q$ and $w=v$), (12) is satisfied. (Note that (4) holds when $p=q$ and $w=v$.) Consequently, (13), (14) and (17) remain true. Thus, using also the monotonicity of the function (15), we arrive at

$$
\begin{aligned}
& \int_{r}^{+\infty} v(t)^{q / p} t^{q / p-1} t^{-q} \mathrm{~d} t \\
& \approx \int_{r}^{+\infty}\left(t^{p-1-\alpha}\left(\int_{0}^{t}\left[v(\tau) \tau^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} \tau\right)^{1 /\left(1-p^{\prime}\right)}\right)^{q / p} t^{q / p-1-q} \mathrm{~d} t \\
& \leq\left(\int_{0}^{r}\left[v(\tau) \tau^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} \tau\right)^{q /\left[p\left(1-p^{\prime}\right)\right]} \int_{r}^{+\infty} t^{-\alpha q / p-1} \mathrm{~d} t \\
& \approx v(r)^{q / p} r^{q / p-q} \quad \text { for all } r>0 .
\end{aligned}
$$

Since, by $(4), w(t) \approx v(t)^{q / p} t^{q / p-1}$ for all $t>0$, the last estimate implies that

$$
\begin{equation*}
\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / q} \lesssim v(r)^{1 / p} r^{-1 / p^{\prime}} \quad \text { for all } r>0 \tag{18}
\end{equation*}
$$

Estimates (17) and (18) used in (2) yield (6).

3. Proof of Theorem 2

Assume that (7) holds. Then, by Lemma 1 (with $q=p$ and $w=v$), there is $\alpha_{0}>0$ such that

$$
\begin{equation*}
\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t \approx\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r}^{+\infty} v(t) t^{\alpha-p} \mathrm{~d} t \approx v(r) r^{\alpha+1-p} \tag{20}
\end{equation*}
$$

for all $r>0$ and $\alpha \in\left[0, \alpha_{0}\right)$. Consequently, for all $r>0$,

$$
\begin{equation*}
v(r)^{1-p^{\prime}} \approx r^{-1} \int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
v(r) \approx r^{p-1} \int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t \tag{22}
\end{equation*}
$$

Take $\delta \in\left(0, \delta_{1}\right)$, where $\delta_{1}:=\alpha_{0}\left(p^{\prime}-1\right)$ and put $\alpha:=\delta /\left(p^{\prime}-1\right)$. Using (21), the monotonicity of the function

$$
t \mapsto\left(\int_{0}^{t} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\delta}, \quad t>0
$$

(19) and again (21), we arrive at

$$
\begin{aligned}
\int_{0}^{r}\left[v(t)^{1-p^{\prime}}\right]^{1+\delta} \mathrm{d} t & =\int_{0}^{r} v(t)^{1-p^{\prime}}\left[v(t)^{1-p^{\prime}}\right]^{\delta} \mathrm{d} t \\
& \approx \int_{0}^{r} v(t)^{1-p^{\prime}}\left(t^{-1} \int_{0}^{t} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\delta} \mathrm{d} t \\
& \leq\left(\int_{0}^{r} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\delta} \int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t \\
& \approx\left(\int_{0}^{r} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\delta}\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}} \\
& =\left(\int_{0}^{r} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\delta} v(r)^{1-p^{\prime}} r^{-\delta+1} \\
& \approx\left(\int_{0}^{r} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{1+\delta} r^{-\delta}, \quad \text { for all } r>0
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(\frac{1}{r} \int_{0}^{r}\left[v(t)^{1-p^{\prime}}\right]^{1+\delta} \mathrm{d} t\right)^{1 /(1+\delta)} \lesssim \frac{1}{r} \int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \tag{23}
\end{equation*}
$$

for all $r>0$ and $\delta \in\left[0, \delta_{1}\right)$.
Take $\delta \in\left(0, \delta_{2}\right)$, where $\delta_{2}:=\alpha_{0} /(p-1)$ and put $\alpha:=\delta(p-1)$. Using (22), the monotonicity of the function

$$
t \mapsto\left(\int_{t}^{+\infty} v(\tau) \tau^{-p} \mathrm{~d} \tau\right)^{\delta}, \quad t>0
$$

(20) and again (22), we obtain

$$
\begin{aligned}
\int_{r}^{+\infty} v(t)^{1+\delta} t^{-p} \mathrm{~d} t & =\int_{r}^{+\infty} v(t) t^{-p} v(t)^{\delta} \mathrm{d} t \\
& \approx \int_{r}^{+\infty} v(t) t^{-p}\left(t^{p-1} \int_{t}^{+\infty} v(\tau) \tau^{-p} \mathrm{~d} \tau\right)^{\delta} \mathrm{d} t \\
& \leq\left(\int_{r}^{+\infty} v(\tau) \tau^{-p} \mathrm{~d} \tau\right)^{\delta} \int_{r}^{+\infty} v(t) t^{\alpha-p} \mathrm{~d} t \\
& \approx\left(\int_{r}^{+\infty} v(\tau) \tau^{-p} \mathrm{~d} \tau\right)^{\delta} v(r) r^{\alpha+1-p} \\
& =\left(\int_{r}^{+\infty} v(\tau) \tau^{-p} \mathrm{~d} \tau\right)^{\delta} v(r) r^{1-p} r^{\delta(p-1)} \\
& \approx\left(\int_{r}^{+\infty} v(\tau) \tau^{-p} \mathrm{~d} \tau\right)^{1+\delta} r^{\delta(p-1)}, \quad \text { for all } r>0
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left(\frac{1}{r^{1-p}} \int_{r}^{+\infty} v(t)^{1+\delta} t^{-p} \mathrm{~d} t\right)^{1 /(1+\delta)} \lesssim \frac{1}{r^{1-p}} \int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t \tag{24}
\end{equation*}
$$

for all $r>0$ and $\delta \in\left[0, \delta_{2}\right)$.
Putting $\delta_{0}:=\min \left\{\delta_{1}, \delta_{2}\right\}$, we get estimates (8) and (9) from (23) and (24).

4. Proofs of Corollaries 1 and 2

Proof of Corollary 1. (i) Assume that (10) is satisfied. Then, by Theorem 2, there is $\delta_{0}>0$ such that reverse Hölder inequalities (8) and (9) hold. Together with (10) and (2) (used with $q=p$ and $w=v$), this implies that

$$
\begin{aligned}
& \left(\int_{r}^{+\infty} v(t)^{1+\delta} t^{-p} \mathrm{~d} t\right)^{1 / p}\left(\int_{0}^{r}\left[v(t)^{1+\delta}\right]^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}} \\
& \lesssim\left[\left(\frac{1}{r^{1-p}} \int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t\right)^{1+\delta} r^{1-p}\right]^{1 / p}\left[\left(\frac{1}{r} \int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1+\delta} r\right]^{1 / p^{\prime}} \\
& =\left[\left(\int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t\right)^{1 / p}\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}}\right]^{1+\delta} \\
& \lesssim 1 \quad \text { for all } r>0 \text { and } \delta \in\left[0, \delta_{0}\right)
\end{aligned}
$$

Consequently, (11) holds with any $\delta \in\left[0, \delta_{0}\right)$.
(ii) Assume now that (11) is satisfied with some $\delta>0$. Together with the Hölder inequalities (used with the exponents $1+\delta,(1+\delta) / \delta$ and the measures $t^{-p} \mathrm{~d} t$ or
$\mathrm{d} t$) and (2) (applied with $q=p$ and w, v replaced by $v^{1+\delta}$), this shows that

$$
\begin{aligned}
& \left(\int_{r}^{+\infty} v(t) t^{-p} \mathrm{~d} t\right)^{1 / p}\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}} \\
& \lesssim\left[\left(\int_{r}^{+\infty} v(t)^{1+\delta} t^{-p} \mathrm{~d} t\right)^{1 /(1+\delta)}\left(\int_{r}^{+\infty} t^{-p} \mathrm{~d} t\right)^{\delta /(1+\delta)}\right]^{1 / p} \\
& \quad \times\left[\left(\int_{0}^{r}\left[v(t)^{1-p^{\prime}}\right]^{1+\delta} \mathrm{d} t\right)^{1 /(1+\delta)} r^{\delta /(1+\delta)}\right]^{1 / p^{\prime}} \\
& \approx\left[\left(\int_{r}^{+\infty} v(t)^{1+\delta} t^{-p} \mathrm{~d} t\right)^{1 / p}\left(\int_{0}^{r}\left[v(t)^{1+\delta}\right]^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}}\right]^{1 /(1+\delta)} \\
& \lesssim 1 \quad \text { for all } r>0 .
\end{aligned}
$$

Consequently, (10) holds.
Proof of Corollary 2. By Corollary 1, (10) is equivalent to (11). Thus, putting $V(x):=v(x)^{1+\delta}$ and $W(x):=w(x)^{1+\delta} x^{\delta(1-q / p)}, x>0$, we see that the result will follow from Theorem 1 provided that we show that
$V(x) x^{\bar{\rho}}$ is equivalent to a non-decreasing function on $(0,+\infty)$ for some $\bar{\rho} \geq 0$ and

$$
[W(x) x]^{1 / q} \approx[V(x) x]^{1 / p} \quad \text { for all } x \in(0,+\infty)
$$

We can easily see that the former condition is a consequence of (3) if $\bar{\rho} \geq \rho(1+\delta)$ and that the latter one is equivalent to (4).

References

[B] J. S. Bradley, Hardy inequalities with mixed norms. Canad. Math. Bull. 21 (1978), 405408.
[OK] B. Opic and A. Kufner, Hardy-type inequalities. Pitman Research Notes in Mathematics Series 219, Longman Scientific \& Technical, Harlow, 1990.
[OR] B. Opic and J. Rákosník, On weighted estimates for the averaging integral operator. Preprint no. 186, IM AS CR, Prague, 2009.
[N] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103.

Institute of Mathematics, AS CR, Žitná 25, 11567 Praha 1, Czech Republic, or Department of Mathematics and Didactics, Pedagogical Faculty, Technical University of Liberec, Hálkova 6, 46117 Liberec, Czech Republic

E-mail address: opic@math.cas.cz

[^0]: 2000 Mathematics Subject Classification. Primary 26D10; Secondary 46E30.
 Key words and phrases. Averaging integral operator, weighted Lebesgue spaces, weights, Hardy-type inequalities, reverse Hölder inequalities.

 The paper was supported by the grant no. 201/08/0383 of the Czech Science Foundation and by the Institutional Research Plan no. AV0 Z10190503 of the Academy of Sciences of the Czech Republic.

