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Abstract. Let 1 < p ≤ q < +∞ and let v, w be weights on (0, +∞) satisfying:

v(x)xρ is equivalent to a non-decreasing function on (0, +∞) for some ρ ≥ 0;

[w(x)x]1/q ≈ [v(x)x]1/p for all x ∈ (0, +∞).

Let A be the averaging operator given by (Af)(x) := 1
x

R x
0 f(t) dt, x ∈ (0, +∞).

First, we prove that the operator

A : Lp((0, +∞); v)→ Lp((0, +∞); v) is bounded

if and only if the operator

A : Lp((0, +∞); v)→ Lq((0, +∞); w) is bounded.

Second, we show that the boundedness of the averaging operator A on the

space Lp((0, +∞); v) implies that, for all r > 0, the weight v1−p′
satisfies the

reverse Hölder inequality over the interval (0, r) with respect to the measure

dt, while the weight v satisfies the reverse Hölder inequality over the interval

(r, +∞) with respect to the measure t−p dt. As a corollary, we obtain that
the boundedness of the averaging operator A on the space Lp((0, +∞); v)

is equivalent to the boundedness of the averaging operator A on the space

Lp((0, +∞); v1+δ) for some δ > 0.

1. Introduction

Let 1 < p < +∞ and let v be a weight on (0,+∞), i.e., a measurable func-
tion which is positive a.e. on (0,+∞). By Lp(v) ≡ Lp((0,+∞); v) we denote the
weighted Lebesgue space of all measurable functions f on (0,+∞) for which the
norm

‖f‖p,v =
(∫ +∞

0

|f(x)|pv(x) dx

)1/p

is finite.
We shall consider one of the basic operators in the mathematical analysis, the

averaging operator A defined by

(Af)(x) :=
1
x

∫ x

0

f(t) dt, x ∈ (0,+∞).

It is well known (see [B] or [OK]) that if 1 < p < +∞ and w, v are weights on
(0,+∞), then the averaging operator A : Lp(v) → Lq(w) is bounded, that is, there
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exists a constant c > 0 such that

(1) ‖Af‖q,w ≤ c‖f‖p,v for all f ∈ Lp(v),

if and only if

(2) B := sup
r>0

(∫ +∞

r

w(t)t−q dt

)1/q (∫ r

0

v(t)1−p′
dt

)1/p′

< +∞,

where p′ = p/(p− 1).
Throughout the paper we use the following convention: For two non-negative

expressions (i.e. functions or functionals) F and G the symbol F . G (or F & G)
means that F ≤ cG (or cF ≥ G), where c is a positive constant independent of
appropriate quantities involved in F and G. We shall write F ≈ G (and say that
F and G are equivalent) if both relations F . G and F & G hold.

Our aim is to prove the following assertions.

Theorem 1. Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that:

(3) v(x)xρ is equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0;

(4) [w(x)x]1/q ≈ [v(x)x]1/p for all x ∈ (0,+∞).

Then the averaging operator

(5) A : Lp(v) → Lp(v) is bounded

if and only if the operator

(6) A : Lp(v) → Lq(w) is bounded.

Assumptions of Theorem 1 and (5) ensure that(∫ +∞

r

w(t)t−q dt

)1/q (∫ r

0

v(t)1−p′
dt

)1/p′

≈ 1 for all r > 0,

which means that (w, v) is the optimal couple of weights for which (1) holds. Note
also that assumption (4) is satisfied when w = v and q = p.

In the particular case when ρ = 0 in (3) the statement of Theorem 1 has been
communicated to us by a referee of another our paper.

It is known that the weight v satisfying both (3) with ρ = 0 and (5) belongs
to the Ap-class of B. Muckenhoupt. Since v ∈ Ap implies that v1−p′ ∈ Ap′ , the
following two reverse Hölder inequalities hold for such a weight:(

1
r

∫ r

0

[v(t)1−p′
]1+δ dt

)1/(1+δ)

.
1
r

∫ r

0

v(t)1−p′
dt,(

1
r

∫ r

0

v(t)1+δ dt

)1/(1+δ)

.
1
r

∫ r

0

v(t) dt,

for all r > 0 and some δ > 0.
The next theorem shows that the former inequality remains true even when ρ ≥ 0

in (3) while the latter inequality is then replaced by the reverse Hölder inequality
for the weight v, the interval (r, +∞) and the measure t−p dt.

Theorem 2. Let 1 < p < +∞ and let v be a weight on (0,+∞) such that (3)
holds. Assume that the averaging operator

(7) A : Lp(v) → Lp(v) is bounded.

Then there is δ0 > 0 such that

(8)
(

1
r

∫ r

0

[v(t)1−p′
]1+δ dt

)1/(1+δ)

.
1
r

∫ r

0

v(t)1−p′
dt
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and

(9)
(

1
r1−p

∫ +∞

r

v(t)1+δt−p dt

)1/(1+δ)

.
1

r1−p

∫ +∞

r

v(t)t−p dt

for all r > 0 and δ ∈ [0, δ0).

Corollary 1. Let 1 < p < +∞ and let v be a weight on (0,+∞) such that (3)
holds. Then the averaging operator

(10) A : Lp(v) → Lp(v) is bounded

if and only if there is δ > 0 such that the operator

(11) A : Lp(v1+δ) → Lp(v1+δ) is bounded.

Corollary 1 is a particular case of the following assertion.

Corollary 2. Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) such that
(3) and (4) hold. Then (10) is satisfied if and only if there is δ > 0 such that the
operator

A : Lp(v(x)1+δ) → Lq(w(x)1+δxδ(1−q/p)) is bounded.

We refer to [OR] for further related results.

Remark 1. It has been said that the weight v satisfying both (3) with ρ = 0 and (5)
belongs to the Ap-class of B. Muckenhoupt. On the other hand, there are weights
which satisfy (3) and (5) but which do not belong to the Ap-class. A simple example
is v(t) = tβ , t > 0, with β ≤ −1.

The paper is organized as follows. In Section 2 we prove Theorem 1 while
the proof of Theorem 2 is given in Section 3. Section 4 is devoted to proofs of
Corollaries 1 and 2.

2. Proof of Theorem 1

To prove Theorem 1, we shall use the following assertion. (Note that its proof
is based on [N, Lemma 2] and a dual version of Nakai’s result.)

Lemma 1 (see [OR, Lemma B]). Let 1 < p ≤ q < +∞ and let v, w be weights on
(0,+∞) such that (3) and (4) hold. Assume that the averaging operator
A : Lp(v) → Lq(w) is bounded. Then there exists a positive constant α0 such
that ∫ r

0

[v(t)tα]1−p′
dt ≈ [v(r)rα+1−p]1−p′

and ∫ +∞

r

w(t)tα−q dt ≈ w(r)rα+1−q

for all r > 0 and α ∈ [0, α0).

Proof of Theorem 1. (i) Assume that (6) holds. Then, by Lemma 1, there exists
α0 > 0 such that

(12)
∫ r

0

[v(t)tα]1−p′
dt ≈ [v(r)rα+1−p]1−p′

for all r > 0 and α ∈ [0, α0).

Hence,

(13)
∫ r

0

v(t)1−p′
dt ≈ v(r)1−p′

r for all r > 0.
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Moreover, using (12) with a fixed α ∈ (0, α0), we get

(14) v(r) ≈ rp−1−α

(∫ r

0

[v(t)tα]1−p′
dt

)1/(1−p′)

for all r > 0.

Thus, applying also the monotonicity of the function

(15) t 7→
(∫ t

0

[v(τ)τα]1−p′
dτ

)1/(1−p′)

, t > 0,

and (12), we arrive at∫ +∞

r

v(t)t−p dt ≈
∫ +∞

r

tp−1−α

(∫ t

0

[v(τ)τα]1−p′
dτ

)1/(1−p′)

t−p dt

≤
(∫ r

0

[v(τ)τα]1−p′
dτ

)1/(1−p′) ∫ +∞

r

t−1−α dt

≈ v(r)r1−p for all r > 0,

which implies that

(16)
(∫ +∞

r

v(t)t−p dt

)1/p

. v(r)1/pr−1/p′
for all r > 0.

On the other hand, by (13),

(17)
(∫ r

0

v(t)1−p′
dt

)1/p′

≈ v(r)−1/p r1/p′
for all r > 0.

Estimates (16) and (17) used in (2) yield (5).
(ii) Assume now that (5) holds. By Lemma 1 (with p = q and w = v), (12) is

satisfied. (Note that (4) holds when p = q and w = v.) Consequently, (13), (14)
and (17) remain true. Thus, using also the monotonicity of the function (15), we
arrive at ∫ +∞

r

v(t)q/ptq/p−1t−q dt

≈
∫ +∞

r

(
tp−1−α

(∫ t

0

[v(τ)τα]1−p′
dτ

)1/(1−p′)
)q/p

tq/p−1−q dt

≤
(∫ r

0

[v(τ)τα]1−p′
dτ

)q/[p(1−p′)] ∫ +∞

r

t−αq/p−1 dt

≈ v(r)q/prq/p−q for all r > 0.

Since, by (4), w(t) ≈ v(t)q/ptq/p−1 for all t > 0, the last estimate implies that

(18)
(∫ +∞

r

w(t)t−q dt

)1/q

. v(r)1/pr−1/p′
for all r > 0.

Estimates (17) and (18) used in (2) yield (6). �

3. Proof of Theorem 2

Assume that (7) holds. Then, by Lemma 1 (with q = p and w = v), there is
α0 > 0 such that

(19)
∫ r

0

[v(t)tα]1−p′
dt ≈ [v(r)rα+1−p]1−p′
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and

(20)
∫ +∞

r

v(t)tα−p dt ≈ v(r)rα+1−p

for all r > 0 and α ∈ [0, α0). Consequently, for all r > 0,

(21) v(r)1−p′
≈ r−1

∫ r

0

v(t)1−p′
dt

and

(22) v(r) ≈ rp−1

∫ +∞

r

v(t)t−p dt.

Take δ ∈ (0, δ1), where δ1 := α0(p′ − 1) and put α := δ/(p′ − 1). Using (21), the
monotonicity of the function

t 7→
(∫ t

0

v(τ)1−p′
dτ

)δ

, t > 0,

(19) and again (21), we arrive at

∫ r

0

[v(t)1−p′
]1+δ dt =

∫ r

0

v(t)1−p′
[v(t)1−p′

]δ dt

≈
∫ r

0

v(t)1−p′
(

t−1

∫ t

0

v(τ)1−p′
dτ

)δ

dt

≤
(∫ r

0

v(τ)1−p′
dτ

)δ ∫ r

0

[v(t)tα]1−p′
dt

≈
(∫ r

0

v(τ)1−p′
dτ

)δ

[v(r)rα+1−p]1−p′

=
(∫ r

0

v(τ)1−p′
dτ

)δ

v(r)1−p′
r−δ+1

≈
(∫ r

0

v(τ)1−p′
dτ

)1+δ

r−δ, for all r > 0,

which implies that

(23)
(

1
r

∫ r

0

[v(t)1−p′
]1+δ dt

)1/(1+δ)

.
1
r

∫ r

0

v(t)1−p′
dt

for all r > 0 and δ ∈ [0, δ1).
Take δ ∈ (0, δ2), where δ2 := α0/(p− 1) and put α := δ(p− 1). Using (22), the

monotonicity of the function

t 7→
(∫ +∞

t

v(τ)τ−p dτ

)δ

, t > 0,
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(20) and again (22), we obtain

∫ +∞

r

v(t)1+δt−p dt =
∫ +∞

r

v(t)t−pv(t)δ dt

≈
∫ +∞

r

v(t)t−p

(
tp−1

∫ +∞

t

v(τ)τ−p dτ

)δ

dt

≤
(∫ +∞

r

v(τ)τ−p dτ

)δ ∫ +∞

r

v(t)tα−p dt

≈
(∫ +∞

r

v(τ)τ−p dτ

)δ

v(r)rα+1−p

=
(∫ +∞

r

v(τ)τ−p dτ

)δ

v(r)r1−p rδ(p−1)

≈
(∫ +∞

r

v(τ)τ−p dτ

)1+δ

rδ(p−1), for all r > 0,

which implies that

(24)
(

1
r1−p

∫ +∞

r

v(t)1+δt−p dt

)1/(1+δ)

.
1

r1−p

∫ +∞

r

v(t)t−p dt

for all r > 0 and δ ∈ [0, δ2).
Putting δ0 := min{δ1, δ2}, we get estimates (8) and (9) from (23) and (24). �

4. Proofs of Corollaries 1 and 2

Proof of Corollary 1. (i) Assume that (10) is satisfied. Then, by Theorem 2, there
is δ0 > 0 such that reverse Hölder inequalities (8) and (9) hold. Together with (10)
and (2) (used with q = p and w = v), this implies that

(∫ +∞

r

v(t)1+δt−p dt

)1/p(∫ r

0

[v(t)1+δ]1−p′
dt

)1/p′

.

[(
1

r1−p

∫ +∞

r

v(t)t−p dt

)1+δ

r1−p

]1/p [(
1
r

∫ r

0

v(t)1−p′
dt

)1+δ

r

]1/p′

=

[(∫ +∞

r

v(t)t−p dt

)1/p(∫ r

0

v(t)1−p′
dt

)1/p′]1+δ

. 1 for all r > 0 and δ ∈ [0, δ0).

Consequently, (11) holds with any δ ∈ [0, δ0).
(ii) Assume now that (11) is satisfied with some δ > 0. Together with the Hölder

inequalities (used with the exponents 1 + δ, (1 + δ)/δ and the measures t−p dt or
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dt) and (2) (applied with q = p and w, v replaced by v1+δ), this shows that(∫ +∞

r

v(t)t−p dt

)1/p(∫ r

0

v(t)1−p′
dt

)1/p′

.

[(∫ +∞

r

v(t)1+δt−p dt

)1/(1+δ)(∫ +∞

r

t−p dt

)δ/(1+δ)
]1/p

×

[(∫ r

0

[v(t)1−p′
]1+δ dt

)1/(1+δ)

rδ/(1+δ)

]1/p′

≈

[(∫ +∞

r

v(t)1+δt−p dt

)1/p(∫ r

0

[v(t)1+δ]1−p′
dt

)1/p′]1/(1+δ)

. 1 for all r > 0.

Consequently, (10) holds. �

Proof of Corollary 2. By Corollary 1, (10) is equivalent to (11). Thus, putting
V (x) := v(x)1+δ and W (x) := w(x)1+δxδ(1−q/p), x > 0, we see that the result will
follow from Theorem 1 provided that we show that

V (x)xρ is equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0

and
[W (x)x]1/q ≈ [V (x)x]1/p for all x ∈ (0,+∞).

We can easily see that the former condition is a consequence of (3) if ρ ≥ ρ(1 + δ)
and that the latter one is equivalent to (4). �
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