WEIGHTED ESTIMATES FOR THE AVERAGING INTEGRAL OPERATOR

BOHUMÍR OPIC AND JIŘÍ RÁKOSNÍK

Abstract. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ satisfying:
$(\star) \quad v(x) x^{\rho}$ is equivalent to a non-decreasing function on $(0,+\infty)$
for some $\rho \geq 0$;

$$
[w(x) x]^{1 / q} \approx[v(x) x]^{1 / p} \quad \text { for all } x \in(0,+\infty)
$$

We prove that if the averaging operator $(A f)(x):=\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t, x \in(0,+\infty)$, is bounded from the weighted Lebesgue space $L^{p}((0,+\infty) ; v)$ into the weighted Lebesgue space $L^{q}((0,+\infty) ; w)$, then there exists $\varepsilon_{0} \in(0, p-1)$ such that the operator A is also bounded from the space $L^{p-\varepsilon}\left((0,+\infty) ; v(x)^{1+\delta} x^{\gamma}\right)$ into the space $L^{q-\varepsilon q / p}\left((0,+\infty) ; w(x)^{1+\delta} x^{\delta(1-q / p)} x^{\gamma q / p}\right)$ for all $\varepsilon, \delta, \gamma \in\left[0, \varepsilon_{0}\right)$. Conversely, assuming that the operator

$$
A: L^{p-\varepsilon}\left((0,+\infty) ; v(x)^{1+\delta} x^{\gamma}\right) \rightarrow L^{q-\varepsilon q / p}\left((0,+\infty) ; w(x)^{1+\delta} x^{\delta(1-q / p)} x^{\gamma q / p}\right)
$$

is bounded for some $\varepsilon \in[0, p-1), \delta \geq 0$ and $\gamma \geq 0$, we prove that the operator A is also bounded from the space $L^{p}((0,+\infty) ; v)$ into the space $L^{q}((0,+\infty) ; w)$.

In particular, our results imply that the class of weights v for which (\star) holds and the operator A is bounded on the space $L^{p}((0,+\infty) ; v)$ possesses similar properties to those of the A_{p}-class of B. Muckenhoupt.

1. Introduction

Let $1<p<+\infty$ and let v be a weight on $(0,+\infty)$, i.e., a measurable function which is positive a.e. on $(0,+\infty)$. By $L^{p}(v) \equiv L^{p}((0,+\infty) ; v)$ we denote the weighted Lebesgue space of all measurable functions f on $(0,+\infty)$ for which the norm

$$
\|f\|_{p, v}=\left(\int_{0}^{+\infty}|f(x)|^{p} v(x) \mathrm{d} x\right)^{1 / p}
$$

is finite.
We shall consider one of very important operators in the mathematical analysis, the averaging operator A defined by

$$
(A f)(x):=\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t, \quad x \in(0,+\infty)
$$

It is well known (see [B] or [OK]) that if $1<p<+\infty$ and w, v are weights on $(0,+\infty)$, then the averaging operator $A: L^{p}(v) \rightarrow L^{q}(w)$ is bounded if and only if

$$
\begin{equation*}
B:=\sup _{r>0}\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / q}\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}}<+\infty \tag{1}
\end{equation*}
$$

where $p^{\prime}=p /(p-1)$.

[^0]Throughout the paper we use the following convention: For two non-negative expressions (i.e. functions or functionals) F and G the symbol $F \lesssim G$ (or $F \gtrsim G$) means that $F \leq c G$ (or $c F \geq G$), where c is a positive constant independent of appropriate quantities involved in F and G. We shall write $F \approx G$ (and say that F and G are equivalent) if both relations $F \lesssim G$ and $F \gtrsim G$ hold.

Our main results are the following two theorems.
Theorem 1. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that:
(2) $v(x) x^{\rho}$ is equivalent to a non-decreasing function on $(0,+\infty)$ for some $\rho \geq 0$;

$$
\begin{equation*}
[w(x) x]^{1 / q} \approx[v(x) x]^{1 / p} \quad \text { for all } x \in(0,+\infty) \tag{3}
\end{equation*}
$$

Assume that the averaging operator $A: L^{p}(v) \rightarrow L^{q}(w)$ is bounded. Then there exists $\varepsilon_{0} \in(0, p-1)$ such that the operator

$$
A: L^{p-\varepsilon}\left(v(x)^{1+\delta} x^{\gamma}\right) \rightarrow L^{q-\varepsilon q / p}\left(w(x)^{1+\delta} x^{\delta(1-q / p)} x^{\gamma q / p}\right)
$$

is also bounded for all $\varepsilon, \delta, \gamma \in\left[0, \varepsilon_{0}\right)$.
Theorem 2. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that (2) and (3) hold. Assume that the averaging operator

$$
A: L^{p-\varepsilon}\left(v(x)^{1+\delta} x^{\gamma}\right) \rightarrow L^{q-\varepsilon q / p}\left(w(x)^{1+\delta} x^{\delta(1-q / p)} x^{\gamma q / p}\right)
$$

is bounded for some $\varepsilon \in[0, p-1), \delta \geq 0$ and $\gamma \geq 0$. Then the operator $A: L^{p}(v) \rightarrow$ $L^{q}(w)$ is also bounded.

Remark 1. Assumptions of Theorem 1 (or Theorem 2) ensure that

$$
\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / q}\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}} \approx 1 \quad \text { for all } r>0
$$

which means that (w, v) is the optimal couple of weights for which (1) holds.
Note also that assumption (3) is satisfied when $w=v$ and $q=p$.
Theorem 1 is a particular case of the following assertion.
Theorem 3. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that (2) and (3) hold. Assume that the averaging operator $A: L^{p}(v) \rightarrow L^{q}(w)$ is bounded. Then there exist $p_{0} \in(1, p)$ and $\varepsilon_{0}>0$ such that the operator

$$
A: L^{P}\left(v(x)^{1+\delta} x^{\gamma}\right) \rightarrow L^{Q}\left(w(x)^{1+\delta} x^{\delta(1-Q / P)} x^{\gamma Q / P}\right)
$$

is also bounded for all $P \in\left(p_{0},+\infty\right)$ and for every $\delta, \gamma \in\left[0, \varepsilon_{0}\right)$, where $Q=P q / p$.
Remark 2. If $1<p<+\infty$ and v is a weight on $(0,+\infty)$, then we write $v \in M_{p}$ when the averaging operator A is bounded on the space $L^{p}(v)$, that is, when (1) holds with $q=p$ and $w=v$. Let $A_{p}, 1<p<+\infty$, be the A_{p}-class of B. Muckenhoupt of those weights v on $(0,+\infty)$ for which the Hardy-Littlewood maximal operator associated with the interval $(0,+\infty)$ is bounded on the space $L^{p}(v)$. Recall that $A_{p} \subset M_{p}$. Denote by $C_{p}, 1<p<+\infty$, the C_{p}-class of Calderón (introduced in [BMR]) of those weights v on $(0,+\infty)$ for which both the operator A and its adjoint operator A^{\prime} are bounded on the space $L^{p}(v)$.

If (2) holds with $\rho=0$, then v is equivalent to a non-decreasing function on $(0,+\infty)$. It is known (cf. [CU, Theorem 6.1] or [CM, Proposition 2.3]) that a nondecreasing weight v satisfies $v \in M_{p}$ if and only if it belongs to the A_{p}-class.

Moreover, it can be shown that a non-decreasing weight v from the class M_{p} also belongs to the C_{p}-class. Since

$$
\begin{array}{ll}
v \in A_{p} \Longrightarrow v \in A_{p-\varepsilon} & \text { for some } \varepsilon \in(0, p-1), \\
v \in A_{p} \Longrightarrow v^{1+\varepsilon} \in A_{p} & \text { for some } \varepsilon>0, \\
v \in A_{p} \Longrightarrow v \in A_{q} & \text { for all } q \in[p,+\infty] \\
v \in C_{p} \Longrightarrow v(x) x^{\varepsilon} \in M_{p} & \text { for some } \varepsilon>0
\end{array}
$$

(cf. $[\mathrm{M}]$ or [GR] for the first three implications, and [BMR, Proposition 2.4] for the last one), Theorem 3 with $\rho=0$ also follows from properties of weights $v \in A_{p} \cap C_{p}$. (This is clear if, in addition, $p=q$ in Theorem 3. If $p<q$, one can show that it is again true due to condition (3).)

On the other hand, there are weights in the M_{p}-class which satisfy (2) but which do not belong to $A_{p} \cap C_{p}$. A simple example is $v(t)=t^{\beta}, t>0$, with $\beta \leq-1$. (Note that the weight $v(t)=t^{\beta}, t>0$, with $\beta \in \mathbb{R}$, belongs to the A_{p}-class or the C_{p}-class if and only if $-1<\beta<p-1$. However, v belongs to the M_{p}-class if and only if $\beta<p-1$.)

Remark 3. Denote by $D_{p}, 1<p<+\infty$, the subset of the M_{p}-class consisting of those weights v on $(0,+\infty)$ which satisfy condition (2). In particular, our results imply that the D_{p}-class possesses similar properties to those of the A_{p}-class. Namely,

$$
\begin{array}{ll}
v \in D_{p} \Longrightarrow v \in D_{p-\varepsilon} & \text { for some } \varepsilon \in(0, p-1), \\
v \in D_{p} \Longrightarrow v^{1+\varepsilon} \in D_{p} & \text { for some } \varepsilon>0, \tag{4}\\
v \in D_{p} \Longrightarrow v \in D_{q} & \text { for all } q \in[p,+\infty) .
\end{array}
$$

Moreover,

$$
v \in D_{p} \Longrightarrow v(x) x^{\varepsilon} \in D_{p} \quad \text { for some } \varepsilon>0
$$

It is well-known that a weight $v \in A_{p}$ possesses a better integrability than that mentioned in the A_{p}-condition and that such a weight v satisfies a reverse Hölder inequality. Implication (4) shows that also a weight $v \in D_{p}$ possesses better integrability properties than those mentioned in the definition of the D_{p}-class (cf. (1) with $w=v$ and $q=p$). It is even possible to prove that certain reverse Hölder inequalities hold for such a weight (cf. [O]).

The paper is organized as follows. In Section 2 we prove Theorem 1. Section 3 is devoted to the proof of Theorem 2. Finally, in Section 4 we prove Theorem 3.

Acknowledgement. We would like to thank Mario Milman for the information concerning properties of C_{p}-weights.

2. Proof of Theorem 1

To prove Theorem 1, we shall use the following two assertions.
Lemma A (see [N, Lemma 2]). Let $\varphi:(0,+\infty) \rightarrow(0,+\infty)$. If there is a constant $c_{0}>0$ such that

$$
\begin{equation*}
\int_{r}^{+\infty} \varphi(t) \frac{\mathrm{d} t}{t} \leq c_{0} \varphi(r) \quad \text { for all } r>0 \tag{5}
\end{equation*}
$$

then there exist positive constants α_{1} and c such that

$$
\int_{r}^{+\infty} \varphi(t) t^{\alpha} \frac{\mathrm{d} t}{t} \leq c \varphi(r) r^{\alpha} \quad \text { for all } r>0 \text { and } \alpha \in\left[0, \alpha_{1}\right)
$$

Remark 4. In fact, it is proved in [N$]$ that the last inequality holds for all $r>0$ and some $\alpha>0$. However, checking the proof of Lemma 2 in [N], one can see that Lemma A holds, e.g., with $\alpha_{1}=\left(2 c_{0}\right)^{-1}$ (and then one can put $c=2 c_{0}$), where c_{0} is the constant in (5).

Lemma \mathbf{A}^{*}. Let $\varphi:(0,+\infty) \rightarrow(0,+\infty)$. If there is a constant $c_{0}>0$ such that

$$
\int_{0}^{r} \varphi(t) \frac{\mathrm{d} t}{t} \leq c_{0} \varphi(r) \quad \text { for all } r>0
$$

then there exist positive constants β_{1} and c such that

$$
\int_{0}^{r} \varphi(t) t^{-\beta} \frac{\mathrm{d} t}{t} \leq c \varphi(r) r^{-\beta} \quad \text { for all } r>0 \text { and } \beta \in\left[0, \beta_{1}\right)
$$

Proof. Lemma A* can be obtained from Lemma A by the change of variables $t \mapsto$ t^{-1}.

In addition, we shall also need the following lemma.
Lemma B. Let $1<p \leq q<+\infty$ and let v, w be weights on $(0,+\infty)$ such that (2) and (3) hold. Assume that the averaging operator $A: L^{p}(v) \rightarrow L^{q}(w)$ is bounded. Then there exists a positive constant α_{0} such that

$$
\begin{equation*}
\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t \approx\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r}^{+\infty} w(t) t^{\alpha-q} \mathrm{~d} t \approx w(r) r^{\alpha+1-q} \tag{7}
\end{equation*}
$$

for all $r>0$ and $\alpha \in\left[0, \alpha_{0}\right)$.
Proof. Assume that all the assumptions of Lemma B are satisfied. Since the function $t \mapsto v(t) t^{\alpha+\rho}, \alpha \geq 0$, is equivalent to a non-decreasing function on $(0,+\infty)$,

$$
\begin{align*}
\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t & =\int_{0}^{r}\left[v(t) t^{\alpha+\rho}\right]^{1-p^{\prime}} t^{\rho\left(p^{\prime}-1\right)} \mathrm{d} t \tag{8}\\
& \gtrsim\left[v(r) r^{\alpha+\rho}\right]^{1-p^{\prime}} \int_{0}^{r} t^{\rho\left(p^{\prime}-1\right)} \mathrm{d} t \\
& \approx\left[v(r) r^{\alpha+\rho}\right]^{1-p^{\prime}} r^{\rho\left(p^{\prime}-1\right)+1} \\
& =\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}} \quad \text { for all } r>0 \text { and } \alpha \geq 0
\end{align*}
$$

Consequently, we obtain from (1), (8) (with $\alpha=0$) and (3) that

$$
\begin{equation*}
\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t \leq \frac{B^{q}}{\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{q / p^{\prime}}} \precsim v(r)^{q / p} r^{-q / p^{\prime}} \approx w(r) r^{1-q} \tag{9}
\end{equation*}
$$

for all $r>0$. Setting $\varphi(r)=w(r) r^{1-q}$, we can rewrite estimate (9) in the form

$$
\int_{r}^{+\infty} \varphi(t) \frac{\mathrm{d} t}{t} \lesssim \varphi(r) \quad \text { for all } r>0
$$

Thus, by Lemma A, there exist constants $\alpha_{1}>0$ and $c>0$ such that

$$
\begin{equation*}
\int_{r}^{+\infty} w(t) t^{\alpha-q} \mathrm{~d} t=\int_{r}^{+\infty} \varphi(t) t^{\alpha} \frac{\mathrm{d} t}{t} \leq c \varphi(r) r^{\alpha}=c w(r) r^{\alpha+1-q} \tag{10}
\end{equation*}
$$

for all $r>0$ and $\alpha \in\left[0, \alpha_{1}\right)$.

On the other hand, using (3) and the fact that the function $t \mapsto\left[v(t) t^{\rho+1}\right]^{q / p} t^{\alpha}$, $\alpha \geq 0$, is equivalent to a non-decreasing function on $(0,+\infty)$, we arrive at

$$
\begin{align*}
\int_{r}^{+\infty} w(t) t^{\alpha-q} \mathrm{~d} t & \approx \int_{r}^{+\infty}\left[v(t) t^{\rho+1}\right]^{q / p} t^{\alpha} t^{-\rho q / p-q-1} \mathrm{~d} t \tag{11}\\
& \succsim\left[v(r) r^{\rho+1}\right]^{q / p} r^{\alpha} \int_{r}^{+\infty} t^{-\rho q / p-q-1} \mathrm{~d} t \\
& \approx[v(r) r]^{q / p} r^{\alpha} r^{-q} \\
& =w(r) r^{\alpha+1-q} \quad \text { for all } r>0 \text { and } \alpha \geq 0
\end{align*}
$$

Thus, (10) and (11) imply that (7) holds for all $r>0$ and $\alpha \in\left[0, \alpha_{1}\right)$.
Condition (1) and the first three estimates in (11) (with $\alpha=0$) yield

$$
\begin{align*}
\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t & \leq \frac{B^{p^{\prime}}}{\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{p^{\prime} / q}} \tag{12}\\
& \precsim \frac{1}{\left([v(r) r]^{q / p} r^{-q}\right)^{p^{\prime} / q}} \\
& =v(r)^{1-p^{\prime}} r \quad \text { for all } r>0
\end{align*}
$$

Rewriting (12) in terms of the function $\psi(t)=v(t)^{1-p^{\prime}} t, t>0$, and applying Lemma A^{*}, we obtain that there are constants $\beta_{1}>0$ and $c_{1}>0$ such that

$$
\begin{equation*}
\int_{0}^{r} v(t)^{1-p^{\prime}} t^{-\beta} \mathrm{d} t \leq c_{1} v(r)^{1-p^{\prime}} r^{1-\beta} \tag{13}
\end{equation*}
$$

for all $r>0$ and $\beta \in\left[0, \beta_{1}\right)$. Setting $\alpha=\beta /\left(p^{\prime}-1\right)$ and $\alpha_{2}=\beta_{1} /\left(p^{\prime}-1\right)$, we can rewrite (13) in the form

$$
\int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t \precsim\left[v(r) r^{\alpha+1-p}\right]^{1-p^{\prime}}
$$

for all $r>0$ and $\alpha \in\left[0, \alpha_{2}\right.$). Together with (8), this shows that (6) holds for all $r>0$ and $\alpha \in\left[0, \alpha_{2}\right)$.

Now, it suffices to put $\alpha_{0}=\min \left\{\alpha_{1}, \alpha_{2}\right\}$.
Remark 5. On using (3), one can rewrite (7) as

$$
\begin{equation*}
\int_{r}^{+\infty} w(t) t^{\alpha-q} \mathrm{~d} t \approx v(r)^{q / p} r^{\alpha-q+q / p} \tag{14}
\end{equation*}
$$

for all $r>0$ and $\alpha \in\left[0, \alpha_{0}\right)$.
Remark 6. Let all the assumptions of Lemma B be satisfied. Then the operator

$$
A: L^{p}\left(v(x) x^{\alpha}\right) \rightarrow L^{q}\left(w(x) x^{\alpha q / p}\right)
$$

is also bounded for all $\alpha \in\left[0, \alpha_{0} p / q\right)$. Indeed, making use of estimates (6) and (14) (with α replaced by $\alpha q / p$), we see that (1) holds with $v(t)$ replaced by $v(t) t^{\alpha}$ and with $w(t)$ replaced by $w(t) t^{\alpha q / p}$ for all $\alpha \in\left[0, \alpha_{0} p / q\right)$.
Proof of Theorem 1. Let the assumptions of Theorem 1 be satisfied. By (6) and (7) (with $\alpha=0$), for all $r>0$,

$$
\begin{equation*}
\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \approx v(r)^{1-p^{\prime}} r \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t \approx w(r) r^{1-q} . \tag{16}
\end{equation*}
$$

Take $\delta, \gamma \geq 0, \varepsilon \in[0, p-1)$ and put $p(\varepsilon):=p-\varepsilon, q(\varepsilon):=q-\varepsilon q / p$. Clearly, $p(\varepsilon), p(\varepsilon)^{\prime} \in(1,+\infty), p^{\prime}-p(\varepsilon)^{\prime} \leq 0$ and $p(\varepsilon) / p=q(\varepsilon) / q=1-\varepsilon / p$. Thus,

$$
\kappa:=\frac{p^{\prime}-p(\varepsilon)^{\prime}}{1-p^{\prime}}+\delta \frac{1-p(\varepsilon)^{\prime}}{1-p^{\prime}} \geq 0
$$

and the function

$$
t \mapsto\left(\int_{0}^{t} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\kappa}
$$

is non-decreasing on $(0,+\infty)$. Consequently, applying (15), we obtain
(17) $\int_{0}^{r}\left[v(t)^{1+\delta} t^{\gamma}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t=\int_{0}^{r} v(t)^{1-p^{\prime}} v(t)^{\kappa\left(1-p^{\prime}\right)} t^{\gamma\left(1-p(\varepsilon)^{\prime}\right)} \mathrm{d} t$
$\approx \int_{0}^{r} v(t)^{1-p^{\prime}}\left(t^{-1} \int_{0}^{t} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\kappa} t^{\gamma\left(1-p(\varepsilon)^{\prime}\right)} \mathrm{d} t$
$\leq\left(\int_{0}^{r} v(\tau)^{1-p^{\prime}} \mathrm{d} \tau\right)^{\kappa} \int_{0}^{r} v(t)^{1-p^{\prime}} t^{-\kappa+\gamma\left(1-p(\varepsilon)^{\prime}\right)} \mathrm{d} t$
$\approx v(r)^{\kappa\left(1-p^{\prime}\right)} r^{\kappa} \int_{0}^{r}\left[v(t) t^{\alpha}\right]^{1-p^{\prime}} \mathrm{d} t$,
where

$$
\begin{aligned}
\alpha & \equiv \alpha(\varepsilon, \delta, \gamma) \\
& :=\frac{-\kappa+\gamma\left(1-p(\varepsilon)^{\prime}\right)}{1-p^{\prime}} \\
& =\frac{p^{\prime}-p(\varepsilon)^{\prime}}{\left(1-p^{\prime}\right)\left(p^{\prime}-1\right)}+\delta \frac{1-p(\varepsilon)^{\prime}}{\left(1-p^{\prime}\right)\left(p^{\prime}-1\right)}+\gamma \frac{1-p(\varepsilon)^{\prime}}{1-p^{\prime}} \geq 0
\end{aligned}
$$

Since the function $(\varepsilon, \delta, \gamma) \mapsto \alpha(\varepsilon, \delta, \gamma)$ is non-negative and continuous on the set $[0, p-1) \times[0,+\infty) \times[0,+\infty)$ and $\alpha(0,0,0)=0$, there is $\varepsilon_{1} \in(0, p-1)$ such that $\alpha(\varepsilon, \delta, \gamma) \in\left[0, \alpha_{0}\right)$ provided that $\varepsilon, \delta, \gamma \in\left[0, \varepsilon_{1}\right)$, where the number α_{0} is from Lemma B. Therefore, (17) and (6) imply that

$$
\int_{0}^{r}\left[v(t)^{1+\delta} t^{\gamma}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t \lesssim v(r)^{(1+\delta)\left(1-p(\varepsilon)^{\prime}\right)} r^{\gamma\left(1-p(\varepsilon)^{\prime}\right)+1}
$$

for all $r>0$ and $\varepsilon, \delta, \gamma \in\left[0, \varepsilon_{1}\right)$. Hence,

$$
\begin{equation*}
\left(\int_{0}^{r}\left[v(t)^{1+\delta} t^{\gamma}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t\right)^{1 / p(\varepsilon)^{\prime}} \lesssim v(r)^{-(1+\delta) / p(\varepsilon)} r^{-\gamma / p(\varepsilon)} r^{1 / p(\varepsilon)^{\prime}} \tag{18}
\end{equation*}
$$

for all $r>0$ and $\varepsilon, \delta, \gamma \in\left[0, \varepsilon_{1}\right)$.
Applying (7) (with $\alpha=0$), the fact that the function $t \mapsto\left(\int_{t}^{+\infty} w(\tau) \tau^{-q} \mathrm{~d} \tau\right)^{\delta} t^{\delta(1-q / p)}$, $\delta \leq 0$, is non-increasing on $(0,+\infty)$ and (14) (with $\alpha=0$), we get

$$
\begin{align*}
& \int_{r}^{+\infty} w(t)^{1+\delta} t^{\delta(1-q / p)} t^{\gamma q / p} t^{-q(\varepsilon)} \mathrm{d} t \tag{19}\\
& \approx \int_{r}^{+\infty} w(t)\left(t^{q-1} \int_{t}^{+\infty} w(\tau) \tau^{-q} \mathrm{~d} \tau\right)^{\delta} t^{(\gamma+\varepsilon) q / p-q} t^{\delta(1-q / p)} \mathrm{d} t \\
& \leq\left(\int_{r}^{+\infty} w(\tau) \tau^{-q} \mathrm{~d} \tau\right)^{\delta} r^{\delta(1-q / p)} \int_{r}^{+\infty} w(t) t^{(\gamma+\varepsilon) q / p+\delta(q-1)-q} \mathrm{~d} t \\
& \approx\left[v(r)^{q / p} r^{-q+q / p}\right]^{\delta} r^{\delta(1-q / p)} \int_{r}^{+\infty} w(t) t^{(\gamma+\varepsilon) q / p+\delta(q-1)-q} \mathrm{~d} t
\end{align*}
$$

Now, using (14) (with $(\gamma+\varepsilon) q / p+\delta(q-1)$ instead of α) to estimate the last integral, we arrive at

$$
\begin{equation*}
\int_{r}^{+\infty} w(t) t^{(\gamma+\varepsilon) q / p+\delta(q-1)-q} \mathrm{~d} t \approx v(r)^{q / p} r^{(\gamma+\varepsilon+1) q / p+\delta(q-1)-q} \tag{20}
\end{equation*}
$$

for all $r>0$ provided that $(\gamma+\varepsilon) q / p+\delta(q-1) \in\left[0, \alpha_{0}\right)$. Therefore, (19) and (20) imply that

$$
\begin{equation*}
\left(\int_{r}^{+\infty} w(t)^{1+\delta} t^{\delta(1-q / p)} t^{\gamma q / p} t^{-q(\varepsilon)} \mathrm{d} t\right)^{1 / q(\varepsilon)} \precsim v(r)^{(1+\delta) / p(\varepsilon)} r^{\gamma / p(\varepsilon)} r^{-1 / p(\varepsilon)^{\prime}} \tag{21}
\end{equation*}
$$

for all $r>0$ and $\varepsilon, \delta, \gamma \in\left[0, \varepsilon_{2}\right)$, where $\varepsilon_{2}:=\min \left\{\alpha_{0} p /(3 q), \alpha_{0} /(3(q-1))\right\}$.
Putting $\varepsilon_{0}=\min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ and using estimates (18) and (21) in (1) (with $w(t)$, $v(t), q$ and p replaced by $w(t)^{1+\delta} t^{\delta(1-q / p)} t^{\gamma q / p}, v(t)^{1+\delta} t^{\gamma}, q(\varepsilon)$ and $p(\varepsilon)$, respectively), we obtain the desired result.

3. Proof of Theorem 2

Assume that the assumptions of Theorem 2 are satisfied. Put $p(\varepsilon):=p-\varepsilon$ and $q(\varepsilon):=q-\varepsilon q / p$. The Hölder inequality with the exponents $\frac{\left(p(\varepsilon)^{\prime}-1\right)(1+\delta)}{\left(p^{\prime}-1\right)}$ and $\frac{\left(p(\varepsilon)^{\prime}-1\right)(1+\delta)}{\left(p(\varepsilon)^{\prime}-1\right)(1+\delta)-\left(p^{\prime}-1\right)}$ implies that, for all $r>0$,

$$
\begin{equation*}
\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t \leq\left(\int_{0}^{r}\left[v(t)^{1+\delta}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t\right)^{\frac{p^{\prime}-1}{\left(p(\varepsilon)^{\prime}-1\right)(1+\delta)}} r r^{\frac{\left(p(\varepsilon)^{\prime}-1\right)(1+\delta)-p^{\prime}+1}{\left(p(\varepsilon)^{\prime}-1\right)(1+\delta)}} \tag{22}
\end{equation*}
$$

Using the fact that the function $t \mapsto t^{\gamma\left(p(\varepsilon)^{\prime}-1\right)}$ is non-decreasing on the interval $(0,+\infty)$, we obtain

$$
\begin{equation*}
\int_{0}^{r}\left[v(t)^{1+\delta}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t \leq r^{\gamma\left(p(\varepsilon)^{\prime}-1\right)} \int_{0}^{r}\left[v(t)^{1+\delta} t^{\gamma}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t \quad \text { for all } r>0 \tag{23}
\end{equation*}
$$

Fix $\bar{\rho} \geq \max \{\rho(1+\delta)-\gamma, 0\}$. One can easily verify that (2) and (3) holds with $v(x) x^{\rho}, w(x), v(x), q$ and p replaced by $\left(v(x)^{1+\delta} x^{\gamma}\right) x^{\bar{\rho}}, w(x)^{1+\delta} x^{\delta(1-q / p)} x^{\gamma q / p}$, $v(x)^{1+\delta} x^{\gamma}, q(\varepsilon)$ and $p(\varepsilon)$, respectively. Thus, we can apply Lemma B (with $v(x) x^{\rho}$, $w(x), v(x), q$ and p replaced by $\left(v(x)^{1+\delta} x^{\gamma}\right) x^{\bar{\rho}}, w(x)^{1+\delta} x^{\delta(1-q / p)} x^{\gamma q / p}, v(x)^{1+\delta} x^{\gamma}$, $q(\varepsilon)$ and $p(\varepsilon)$, respectively). Hence, taking $\alpha=0$ in (6) and (7), we obtain, for all $r>0$,

$$
\begin{equation*}
\int_{0}^{r}\left[v(t)^{1+\delta} t^{\gamma}\right]^{1-p(\varepsilon)^{\prime}} \mathrm{d} t \approx\left[v(r)^{1+\delta} r^{\gamma}\right]^{1-p(\varepsilon)^{\prime}} r \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{r}^{+\infty} w(t)^{1+\delta} t^{\delta(1-q / p)} t^{\gamma q / p} t^{-q(\varepsilon)} \mathrm{d} t \approx w(r)^{1+\delta} r^{\delta(1-q / p)} r^{\gamma q / p} r^{1-q(\varepsilon)} \tag{25}
\end{equation*}
$$

Combining estimates (22)-(24), we arrive at

$$
\begin{equation*}
\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{1 / p^{\prime}} \lesssim v(r)^{-1 / p} r^{1 / p^{\prime}} \quad \text { for all } r>0 \tag{26}
\end{equation*}
$$

On the other hand, Hölder's inequality with the exponents $1+\delta$ and $(1+\delta) / \delta$ gives

$$
\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t \leq\left(\int_{r}^{+\infty} w(t)^{1+\delta} t^{\delta(1-q / p)} t^{\gamma q / p} t^{-q(\varepsilon)} \mathrm{d} t\right)^{\frac{1}{1+\delta}}\left(r^{\frac{q}{p}-\frac{\gamma q}{\delta p}-\frac{\varepsilon q}{\delta p}-q}\right)^{\frac{\delta}{1+\delta}}
$$

which, together with (25) and (3), implies that

$$
\begin{equation*}
\left(\int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / q} \lesssim w(r)^{1 / q} r^{-1 / q^{\prime}} \approx v(r)^{1 / p} r^{-1 / p^{\prime}} \quad \text { for all } r>0 \tag{27}
\end{equation*}
$$

Estimates (26) and (27) used in (1) yield the desired result.

4. Proof of Theorem 3

With respect to Theorem 1, it is sufficient to prove that the operator $A: L^{P}(v(x)) \rightarrow L^{Q}(w(x))$ is bounded if $p<P<+\infty$ and $Q / P=q / p$.

Using the monotonicity of the function $t \mapsto t^{q-Q}, t>0$, and (14) (with $\alpha=0$), we obtain

$$
\begin{aligned}
\left(\int_{r}^{+\infty} w(t) t^{-Q} \mathrm{~d} t\right)^{1 / Q} & \leq\left(r^{q-Q} \int_{r}^{+\infty} w(t) t^{-q} \mathrm{~d} t\right)^{1 / Q} \\
& \approx\left(r^{q-Q} v(r)^{q / p} r^{-q+q / p}\right)^{1 / Q} \\
& =v(r)^{1 / P} r^{-1 / P^{\prime}} \quad \text { for all } r>0
\end{aligned}
$$

Moreover, the Hölder inequality (with the exponents $\frac{1-p^{\prime}}{1-P^{\prime}}$ and $\frac{1-p^{\prime}}{P^{\prime}-p^{\prime}}$) and (6) (with $\alpha=0$) imply that

$$
\begin{aligned}
\left(\int_{0}^{r} v(t)^{1-P^{\prime}} \mathrm{d} t\right)^{1 / P^{\prime}} & \leq\left(\int_{0}^{r} v(t)^{1-p^{\prime}} \mathrm{d} t\right)^{\frac{1-P^{\prime}}{\left(1-p^{\prime}\right) P^{\prime}}} r^{\frac{P^{\prime}-p^{\prime}}{\left(1-p^{\prime}\right) P^{\prime}}} \\
& \approx\left[v(r)^{1-p^{\prime}} r\right]^{\frac{1-P^{\prime}}{\left(1-p^{\prime}\right) P^{\prime}}} r^{\frac{P^{\prime}-p^{\prime}}{\left(1-p^{\prime}\right) P^{\prime}}} \\
& =v(r)^{-1 / P} r^{1 / P^{\prime}} \text { for all } r>0
\end{aligned}
$$

Consequently, the result follows from (1) (with p and q replaced by P and Q, respectively).

References

[BMR] J. Bastero, M. Milman and F. J. Ruiz, On the connection between weighted norm inequalities, commutators and real interpolation. Mem. Amer. Math. Soc. 731, Providence, 2001.
[B] J. S. Bradley, Hardy inequalities with mixed norms. Canad. Math. Bull. 21 (1978), 405408.
[CM] J. Cerdà and J. Martín, Weighted Hardy inequalities and Hardy transforms of weights. Studia Math. 139 (2000), 189-196.
[CU] D. Cruz-Uribe, SFO, Piecewise monotonic doubling measures. Rocky Mountain J. Math. 26 (1996), 545-583.
[GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.
[M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function. Trans. Amer. Math. Soc. 165 (1972), 207-226.
[N] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166 (1994), 95-103.
[O] B. Opic, The averaging integral operator between weighted Lebesgue spaces and reverse Hölder inequalities. Preprint 187, IM ASCR, Prague, 2009.
[OK] B. Opic and A. Kufner, Hardy-type inequalities. Pitman Research Notes in Mathematics Series 219, Longman Scientific \& Technical, Harlow, 1990.

Institute of Mathematics, AS CR, Žitná 25, 11567 Praha 1, Czech Republic, or Department of Mathematics and Didactics, Pedagogical Faculty, Technical University of Liberec, Hálkova 6, 46117 Liberec, Czech Republic

E-mail address: opic@math.cas.cz
Institute of Mathematics, AS CR, Žitná 25, 11567 Praha 1, Czech Republic
E-mail address: rakosnik@math.cas.cz

[^0]: 2000 Mathematics Subject Classification. Primary 26D10; Secondary 46E30.
 Key words and phrases. Averaging integral operator, weighted Lebesgue spaces, weights.
 The paper was supported by the grants nos. 201/05/2033 and 201/08/0383 of the Czech Science Foundation and by the Institutional Research Plan no. AV0 Z10190503 of the Academy of Sciences of the Czech Republic.

