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EMBEDDINGS OF BESSEL-POTENTIAL-TYPE SPACES

BOHUMÍR OPIC

Abstract. We survey, comment and complement our results on embeddings of Bessel po-
tential spaces modelled upon Lorentz-Karamata spaces. Target spaces in our embeddings are
either Lorentz-Karamata spaces or generalized Hölder spaces. In particular, we characterize
sharp embeddings of spaces in question and we prove the non-compactness of such embed-
dings. As consequences of our results, we get both growth envelopes and continuous envelopes
of Bessel potential spaces modelled upon Lorentz-Karamata ones. We also show how to modify
parameters of target spaces to arrive to compact embeddings. Finally, we establish necessary
and sufficient conditions both for continuous and compact embeddings. As a result, we can
see that the modification mentioned above is optimal.

1. Introduction

Classical Bessel potential spaces Hσ,p(IRn) = HσLp(IRn), introduced in [3] and [9], have
played a significant role in mathematical analysis and in applications for many years (cf. [46],
[49], [1], etc.). These spaces are modelled upon the scale of Lebesgue spaces Lp(IRn) and they
coincide with the Sobolev spaces W k,p(IRn) = W kLp(IRn) when σ = k ∈ IN and p ∈ (1,+∞).
However, it has gradually become clear that to handle some situations (especially limiting ones)
a more refined tuning is desirable. For this purpose, one needs to replace the Lebesgue scale of
spaces by a scale of spaces which can be more finely tuned. For example, to obtain estimates of
degenerate elliptic differential operators with coefficients having singular behaviour, Edmunds
and Triebel (cf. [22], [23]) replaced the Lp spaces by the spaces Lp(log L)q of Zygmund type.
The same replacement enables to obtain interesting results concerning smoothness properties
of orientation–preserving maps (see [37] for references and an account of work in this direction).

In a series of recent papers [15]-[18] a systematic research of embeddings of Bessel potential
spaces with order of smoothness σ ≥ 1 modelled upon generalized Lorentz-Zygmund (GLZ)
spaces was carried out. The authors of those papers established embeddings of such spaces
either into GLZ-spaces or into Hölder-type spaces C0,λ(·)(Ω) and showed that their results are
sharp (within the given scale of target spaces) and fail to be compact. They also clarified the
role of the logarithmic terms involved in the quasi-norms of the spaces mentioned. This role
proved to be important especially in limiting cases. In particular, they obtained refinements
of the Sobolev embedding theorems, Trudinger’s limiting embedding as well as embeddings of
Sobolev spaces into λ(·)-Hölder continuous functions including the result of Brézis and Wainger
about almost Lipschitz continuity of elements of the (fractional) Sobolev space H1+n/p,p(IRn)
(cf. [8]). For a survey of these results we refer to [42].

Although GLZ-spaces form an important scale of spaces containing, for example, Zygmund
classes Lp(log L)α, Orlicz spaces of multiple exponential type, Lorentz spaces Lp,q, Lebesgue
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spaces Lp, etc., GLZ-spaces are a particular case of more general spaces, namely the Lorentz-
Karamata (LK) spaces.

The embeddings mentioned above were extended in [40]-[41] to the case when Bessel potential
spaces are modelled upon LK-spaces. Since Neves considered more general targets (besides
LK-spaces and Hölder-type spaces also generalized Hölder spaces), in several cases he obtained
improvements of embeddings from [15]-[18]. The sharpness and the non-compactness of these
embeddings were proved in [26] and [27]. (An account of the principal embedding results
involving Bessel potential spaces modelled upon LK-spaces is also given in [14].) We should
mention that in [26] and [27] we followed [31] and used a more general definition of LK-spaces;
in contrast to [40]-[41], [21] and [14], we did not require a symmetry (with respect to the point 1)
of slowly varying functions given on (0,+∞).

In [26], where target spaces of our embeddings are LK-spaces, main ingredients of proofs of
embeddings are the O’Neil inequality for convolutions and convenient Hardy-type inequalities.
The sharpness and non-compactness of embeddings in question are proved by means of suitable
sequences of test functions. The methods is based on results and techniques of [16] and [18].

Note that in [27] one of main steps in the proof of continuous embeddings of Bessel potential
spaces with order of smoothness σ ≥ 1 into generalized Hölder spaces consists in the application
of Stein’s inequality (cf. [6, Exercise 12(b), p. 430] or [13]). This inequality states that
a function u, such that the norm of its distributional gradient |∇u| belongs locally to the
Lorentz space Ln,1(IRn), can be redefined on a set of measure zero so that the modulus of
smoothness ω(u, ·) of u satisfies the inequality

(1.1) ω(u, t) -

∫ tn

0
s

1
n
−1|∇u|∗(s) ds for all t ∈ (0, 1)

(here |∇u|∗ denotes the non-increasing rearrangement of |∇u|). As in [26], appropriate se-
quences of test functions are used to prove the sharpness and non-compactness of embeddings
in question. The approach is based on results and techniques of [18].

In [19] and [20] the authors analysed the situation when the order of smoothness is less
than one. In such a case one cannot use the method in which inequality (1.1) and a lifting
argument (based on [17, Lemma 4.1] or [27, Lemma 4.5], which extend the Calderón result [9,
Theorem 7]) are applied to reduce the superlimiting case to the sublimiting one, and a new
approach was used. The authors of those papers established embeddings of such spaces into
Hölder-type spaces C0,λ(·)(Ω) and showed that their results concerning nonlimiting cases are
sharp (within the given scale of target spaces) and fail to be compact. Results of [20] were
extended in [29], where Bessel potential spaces were modelled upon LK-spaces.

In [19] also another question is treated. Namely, it is shown how to get compact embeddings of
Bessel-potential-type spaces into Lorentz-type spaces from sharp continuous ones in sublimiting
and limiting cases. While in the situation of classical Sobolev embeddings this can be achieved
by restricting the parameter on the power-type level, in our general situation the same effect is
caused by an appropriate modification of slowly varying function involved in the target space.

In [30] we established necessary and sufficient conditions for embeddings of Bessel potential
spaces HσX(IRn) with order of smoothness less than one, modelled upon rearrangement invari-

ant Banach function spaces X(IRn), into generalized Hölder spaces Λ
λ(·)
∞,r(Ω), 0 < r ≤ +∞. (We

refer to Section 2 for precise definitions. Note also that the space Λ
λ(·)
∞,∞(Ω) coincides with the

space C0,λ(·)(Ω) mentioned above.) For this purpose, we derived a convenient replacement of
(1.1). Namely, if σ ∈ (0, 1), X = X(IRn) is a rearrangement invariant Banach function space
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and the Bessel potential kernel gσ belongs to the associate space of X, then we proved that

(1.2) ω(f ∗ gσ , t) -

∫ tn

0
s

σ
n
−1f∗(s) ds for all t ∈ (0, 1) and every f ∈ X,

where f∗ denotes the non-increasing rearrangement of f . Moreover, estimate (1.2) is sharp in
the sense that

(1.3) ω(f ∗ gσ , t) %

∫ tn

0
s

σ
n
−1f∗(s) ds for all t ∈ (0, 1) and every f ∈ X,

where
f(x) = f∗(βn|x|

n)χ{y∈IRn: y1>0}∩B(0,1)(x), x = (x1, · · · , xn) ∈ IRn,

and βn is the volume of the unit ball in IRn. Inequalities (1.2) and (1.3) enabled us to show
that the continuous embedding of the Bessel potential space HσX(IRn) into the generalized

Hölder space Λ
µ(·)
∞,r(IR

n) is equivalent to the condition that

(1.4) gσ belongs to the associate space of X

and to the boundedness of the Hardy-type operator

(1.5) H : X −→ Lr((0, 1); t
−1/r(µ(t))−1),

where the operator H is defined by

(1.6) (Hf)(t) :=

∫ tn

0
s

σ
n
−1f∗(s) ds,

X denotes the representation space of X and Lr((0, 1); t
−1/r(µ(t))−1) is the weighted Lebesgue

space over the interval (0, 1).

Furthermore, we characterized compact subsets of generalized Hölder spaces Λ
µ(·)
∞,r(Ω), 0 <

r < +∞, with a bounded domain Ω in IRn and then we derived necessary and sufficient
conditions for compact embeddings of Bessel potential spaces HσX(IRn) into generalized Hölder

spaces Λ
µ(·)
∞,r(Ω), 0 < r < +∞. To this end, we made use of local versions of inequalities (1.2)

and (1.3) to show that the compactness of the embedding in question is equivalent to (1.4)
and to the compactness of the Hardy-type operator (1.5). (Note that if r = +∞, then our
conditions are sufficient; under some additional assumptions, they are also necessary.)

Finally, we applied our results to the case when X(IRn) is the Lorentz-Karamata space
Lp,q;b(IR

n). Applications cover both the superlimiting case when p > n/σ and the limiting
case when p = n/σ. Our results extend and improve those of [19], [20] and [29]. For instance,
taking the slowly varying function (involved in the definition of the Lorentz-Karamata space)
of logarithmic type and using Example 5.7 (i) (with σ = k ∈ N, k < n, and β = 0) and
Remark 5.8 (ii) below (cf. also [19, pp. 230, 231]), we obtain an interesting result which
has no analogue in the classical theory of embeddings of Sobolev-Orlicz spaces. Namely, the
Sobolev-Orlicz space W kL

n
k (log L)α(Rn), k ∈ N and k < n, (the Sobolev space modelled

upon the Orlicz space L
n
k (log L)α(Rn) ≡ LΦ(Rn), where the Young function satisfies Φ(t) =

[t(1 + | log t|)α]n/k, t > 0) is continuously embedded into the λ(·)–Hölder class C0,λ(·)(Rn) with

(1.7) λ(t) = (1 + | log t|)−α+1−k/n, t > 0,

that is,

(1.8) W kL
n
k (log L)α(Rn) →֒ C0,λ(·)(Rn)

provided that α > 1 − k/n (the function λ(t) tends to 0 as t → 0+ more slowly than any
function tε with ε > 0). This complements [17, Corollary 4.6] and illustrates the important role
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of the logarithmic term (log L)α involved in the Sobolev–Orlicz space W kL
n
k (log L)α(Rn). (By

the classical result, the Sobolev space W k, n
k (Rn) ≡ W kL

n
k (Rn), k ∈ N and k < n, is not even

continuously embedded into the space L∞(Ω) for any subdomain Ω ⊂ R
n.) If k = 1 and R

n is
replaced by a bounded domain Ω ⊂ R

n, then such a result also follows from [11, Theorem 3.15].
(Note that [11, Theorem 3.15] is stronger than [2, Theorem 8.40].) Embedding (1.8) with λ
from (1.7) should be also compared with the following corollary of [17, Theorem 4.11] (which
extends the result of [8] about “almost Lipschitz continuity”):

(1.9) W k+1L
n
k (log L)α(Rn) →֒ C0,λ(·)(Rn),

with

λ(t) = t (1 + | log t|)−α+1−k/n, t > 0,

if k ∈ N, k < n, and α < 1 − k/n.
Although embeddings (1.8) and (1.9) are sharp (within the given scale of target spaces), they

are consequences of more precise embeddings (5.16) and (4.65), respectively, mentioned below
(recall that, by Remark 5.8 (ii) below, embedding (5.16) holds for σ ∈ (0, n)).

Here we present a survey of some results proved in [26], [19], [27] and [30]. We also comment
and complement these results. Now we are able to look at them from a uniform point of view.
In particular, now we are able to characterize compact embeddings in all considered cases. We
also extend some results of [30] to the case when σ ∈ (0, n) (cf. Section 6 below). The survey
is organized as follows. Section 2 contains notation, definitions and preliminary assertions.
Sections 3 and 4 involve main results on embeddings of Bessel potential spaces, modelled upon
Lorentz-Karamata spaces, from [26] (partially also from [19]) and [27], respectively. While in
Section 3 target spaces of our embeddings are Lorentz-Karamata spaces, in Section 4 generalized
Hölder spaces serve as targets of embeddings. Note also that in Section 4 the Bessel potential
spaces with order of smoothness greater or equal one are considered. In contrast to Section 4, in
Section 5 we investigate the case when order of smoothness of Bessel potential spaces belongs to
the interval (0, 1). The approach of Section 5 is also more general than that of Section 4 since in
Section 5 Bessel potential spaces are modelled upon rearrangement invariant Banach function
spaces X(IRn). Embeddings of Bessel potential spaces modelled upon Lorentz-Karamata spaces
are then obtained as particular cases. Assertions of Section 5 are proved in [30]. We close this
survey with Section 6 (Concluding remarks), where we show that some results of Section 5 can
be extended to the case when order of smoothness belongs to the interval (0, n).

2. Notation and preliminaries

As usual, IRn denotes the Euclidean n-dimensional space. Throughout the paper µn is the n-
dimensional Lebesgue measure in IRn and Ω is a µn-measurable subset of IRn. We denote by χΩ

the characteristic function of Ω and put |Ω|n = µn(Ω). The family of all extended scalar-valued
(real or complex) µn-measurable functions on Ω is denoted by M(Ω). The non-increasing

rearrangement of f ∈ M(Ω) is the function f∗ defined by

f∗(t) := inf {λ ≥ 0 : |{x ∈ Ω : |f(x)|>λ}|n ≤ t} for all t ≥ 0.

By f∗∗ we denote the maximal function of f∗ given by f∗∗(t) := t−1
∫ t
0 f∗(τ) dτ , t > 0.

Given a rearrangement-invariant Banach function space (r. i. BFS) X, the associate space
is denoted by X ′. For general facts about rearrangement-invariant Banach function spaces we
refer to [6].

Let X and Y be two (quasi-)Banach spaces. We say that X coincides with Y (and write
X = Y ) if X and Y are equal in the algebraic and topological sense (their (quasi-)norms are
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equivalent). The symbol X →֒ Y or X →֒→֒ Y means that X ⊂ Y and the natural embedding
of X in Y is continuous or compact, respectively.

For two non-negative expressions (i.e. functions or functionals) A, B, the symbol A - B
(or A % B) means that A ≤ cB (or cA ≥ B), where c is a positive constant independent of
appropriate quantities involved in A and B. If A - B and A % B, we write A ≈ B and say
that A and B are equivalent. Throughout the paper we use the abbreviation LHS(∗) (RHS(∗))
for the left- (right-) hand side of the relation (∗). We adopt the convention that a/+∞ = 0 and
a/0 = +∞ for all a > 0. If p ∈ (0,+∞], the conjugate number p′ is given by 1/p + 1/p′ = 1.
Note that p′ is negative if p ∈ (0, 1). The symbol ‖.‖p;(c,d), p ∈ (0,+∞], stands for the usual
Lp-(quasi-)norm on the interval (c, d) ⊆ IRn. For ρ ∈ (0,+∞) and x ∈ IRn, B(x, ρ) = Bn(x, ρ)
denotes the open ball in IRn of radius ρ and centre x. By βn we mean the volume of the unit
ball in IRn.

Following [31], we say that a positive and Lebesgue-measurable function b is slowly varying

on (0,+∞), and write b ∈ SV (0,+∞), if, for each ǫ > 0, tǫb(t) is equivalent to a non-decreasing
function on (0,+∞) and t−ǫb(t) is equivalent to a non-increasing function on (0,+∞). The
family of all slowly varying functions includes not only powers of iterated logarithms and the
broken logarithmic functions of [24], but also such functions as t → exp (|log t|a) , a ∈ (0, 1).
(The last mentioned function has the interesting property that it tends to infinity more quickly
than any positive power of the logarithmic function.)

Some basic properties of slowly varying functions are mentioned in the following lemma. (We
refer to [31, Proposition 2.2] for properties (i)-(iii); property (iv) is a simple consequence of the
definition.)

Lemma 2.1. Let b, b1 and b2 belong to SV (0,+∞). Then

(i) b1b2 ∈ SV (0,+∞) and br ∈ SV (0,+∞) for each r ∈ IR;

(ii) given positive numbers ε and κ, there are positive constants cε and Cε such that

cε min{κ−ε, κε}b(t) ≤ b(κt) ≤ Cε max{κ−ε, κε}b(t) for all t > 0;

(iii) if α > 0 and q ∈ (0,∞], then, for all t > 0,
∥∥∥τα−1/qb(τ)

∥∥∥
q,(0,t)

≈ tαb(t) and

∥∥∥τ−α−1/qb(τ)
∥∥∥

q,(t,∞)
≈ t−αb(t);

(iv) if α > 0, then

tαb(t) → 0 as t → 0+.

We can see from Lemma 2.1 (iii) that any b ∈ SV (0,+∞) is equivalent to a b̃ ∈ SV (0,+∞)
which is continuous on (0,+∞). Consequently, without loss of generality, we can assume that all
slowly varying functions in question are continuous on (0,+∞). More properties and examples
of slowly varying functions can be found in [50, Chapter V, p. 186], [7], [21], [35], [40] and [31].

Let p, q ∈ (0,+∞], b ∈ SV (0,+∞) and let Ω be a measurable subset of IRn. The Lorentz-

Karamata (LK) space Lp,q;b(Ω) is defined to be the set of all functions f ∈ M(Ω) such that

(2.1) ‖f‖p,q;b;Ω := ‖t1/p−1/q b(t) f∗(t)‖q;(0,+∞) < +∞.

If Ω = IRn, we simply write ‖ · ‖p,q;b instead of ‖ · ‖p,q;b;IRn .
When 0 < p < +∞, the Lorentz-Karamata space Lp,q;b(Ω) contains the characteristic func-

tion of every measurable subset of Ω with finite measure and hence, by linearity, every µn-simple
function. When p = +∞, the Lorentz-Karamata space Lp,q;b(Ω) is different from the trivial

space if and only if ‖ t1/p−1/qb(t) ‖q;(0,1) < +∞.
The Lorentz-Karamata spaces Lp,q;b (introduced in [21] in the case when the function b is

symmetrical with respect to the point 1) form an important scale of spaces. They are particular
5



cases (if q ∈ [1,∞)) of the classical Lorentz spaces Λq(w) introduced by Lorentz (cf. [34], [12]).
On the other hand, if m ∈ IN, α = (α1, . . . , αm) ∈ IRm and

(2.2) b(t) = ℓ
α(t) :=

m∏

i=1

lαi
i (t) for all t > 0,

where, for t > 0, l1(t) := 1+|log t| , li(t) := l1(li−1(t)) if i > 1, then the LK-space Lp,q;b(Ω) is the
generalized Lorentz-Zygmund space Lp,q,α(Ω) introduced in [17] and endowed with the (quasi-)
norm ‖f‖p,q;α;Ω, which in turn becomes the Lorentz-Zygmund space Lp,q(log L)α1(Ω) of Bennett
and Rudnick (see [5], [6]) when m = 1. If α = (0, . . . , 0), we obtain the Lorentz space Lp,q(Ω)
endowed with the (quasi-)norm ‖.‖p,q;Ω, which is just the Lebesgue space Lp(Ω) equipped with
the (quasi-)norm ‖.‖p;Ω when p = q; if p = q and m = 1, we obtain the Zygmund space
Lp(log L)α1(Ω) endowed with the (quasi-)norm ‖.‖p;α1;Ω.

If b(t) = l1(t)
αl2(t)

β, t > 0, α, β ∈ IR, then we also write Lp,q(log L)α(log log L)β(Ω) instead
of Lp,q;b(Ω).

By a Young function Φ we mean a continuous, non-negative, strictly increasing and convex
function on [0,+∞) such that

lim
t→0+

Φ(t)/t = lim
t→+∞

t/Φ(t) = 0.

The symbol LΦ(Ω) is used to denote the corresponding Orlicz space equipped with the Luxem-
burg norm ‖ · ‖Φ.

Orlicz spaces and Lorentz-Karamata spaces are different scales of spaces with a non-trivial
intersection. For example, assume that b is given by (2.2). If 1 < p < ∞, then

(2.3) Lp,p;b(Ω) = LΦ(Ω),

where the Young function Φ satisfies (cf. [44])

(2.4) Φ(t) = [t b(t)]p for t ∈ [0,∞).

When p = 1, µn(Ω) < ∞ and either α1 > 0, or α1 = 0 and α2 > 0, . . . , or α1 = . . . = αm−1 = 0
and αm > 0, then (2.3) with Φ from (2.4) remains true. Moreover, if µn(Ω) < ∞, αm = −a
where a > 0, and, if m > 1, αi = 0 for i = 1, . . . ,m − 1, then (cf. [44])

(2.5) L∞,∞;b(Ω) = EXPm L1/a(Ω) := LΦ(Ω)

(if m = 1, we omit the index m in (2.5)), where

Φ(t) = (exp ◦ exp ◦ . . . ◦ exp︸ ︷︷ ︸
m times

)(t1/a) for all large t.

Note also that if b is given by (2.2) and p 6= q, then the space Lp,q;b(Ω) does not coincide with
an Orlicz space (cf. [44, p. 444]).

The Bessel kernel gσ , σ > 0, is defined as that function on IRn whose Fourier transform is

ĝσ(ξ) = (2π)−n/2(1+ |ξ|2)−σ/2, ξ ∈ IRn, where the Fourier transform f̂ of a function f is given

by f̂(ξ) = (2π)−n/2
∫
IRn e−iξ·x f(x) dx.

Let us summarize the basic properties of the Bessel kernel gσ:

(2.6) gσ is a positive, integrable function which is analytic except at the origin;

(2.7) gσ is radially decreasing;

(2.8) gσ(x) ≤ c1|x|
σ−ne−c2|x| for 0 < σ < n and all x ∈ IRn\{0};

(2.9) gσ(x) ≈ |x|σ−n as |x| → 0 if 0 < σ < n;
6



(2.10)

∣∣∣∣
∂

∂xj
gσ(x)

∣∣∣∣ ≤ c|x|σ−n−1 for 0 < σ ≤ n + 1, j ∈ {1, . . . , n} and all x ∈ IRn\{0};

(2.11) g∗σ(t) - t(σ−n)/ne−ct1/n
for 0 < σ < n and all t > 0

(c, c1 and c2 are positive constants).
Property (2.7) follows from formula (26) in [46, Chapter V]. For the proof of (2.6), (2.8)-(2.10)

see [4], for (2.11) see [15].
Let σ > 0 and let X = X(IRn) = X(IRn, µn) be a r. i. Banach function space endowed with

the norm ‖ · ‖X . The Bessel potential space HσX(IRn) is defined by

(2.12) HσX(IRn) := {u : u = f ∗ gσ , f ∈ X(IRn)}

and is equipped with the norm

(2.13) ‖u‖HσX := ‖f‖X .

Note that, given f ∈ X, the convolution u = f ∗gσ is well defined and finite µn-a.e. on IRn since
the measure space (IRn, µn) is resonant and so (cf. [6, Theorem II.6.6]) X →֒ L1(IRn)+L∞(IRn).

If p ∈ (1,+∞], q ∈ [1,+∞] and b ∈ SV (0,+∞), then the space Lp,q;b(IR
n) coincides

with a r. i. Banach function space X(IRn) (the (quasi-)norm (2.1) is equivalent to the norm

‖t1/p−1/q b(t) f∗∗(t)‖q;(0,+∞)). Consequently, if σ > 0, p ∈ (1,+∞], q ∈ [1,+∞] and b ∈
SV (0,+∞), then HσLp,q;b(IR

n) := HσX(IRn) is the usual Bessel potential space modelled
upon the Lorentz-Karamata space Lp,q;b(IR

n), which is equipped with the (quasi-)norm

(2.14) ‖u‖σ;p,q;b := ‖f‖p,q;b.

When m ∈ IN, α = (α1, . . . , αm) ∈ IRm and b = ℓ
α, we obtain the logarithmic Bessel

potential space HσLp,q;α(IRn), endowed with the (quasi-)norm ‖u‖σ;p,q;b and considered in [17].
Note that if α = (0, . . . , 0), HσLp,p;α(IRn) is simply the (fractional) Sobolev space Hσ,p(IRn)
of order σ.

When k ∈ IN, p, q ∈ (1,+∞) and b ∈ SV (0,+∞), then

HkLp,q;b(IR
n) = {u : Dαu ∈ Lp,q;b(IR

n) if |α| ≤ k},

and

‖u‖k;p,q;b ≈
∑

|α|≤k

‖Dαu‖p,q;b for all u ∈ HkLp,q;b(IR
n)

according to [27, Lemma 4.5] and [41, Theorem 5.3].
Let Ω be a domain in IRn. The space of all scalar-valued (real or complex), bounded and

continuous functions on Ω is denoted by CB(Ω) and it is equipped with the L∞(Ω)-norm. For
each h ∈ IRn, let Ωh = {x ∈ Ω : x+h ∈ Ω} and let ∆h be the difference operator given on scalar
functions f on Ω by (∆hf)(x) = f(x + h)− f(x) for all x ∈ Ωh. The modulus of smoothness of
a function f in CB(Ω) is defined by

ω(f, t) := sup
|h|≤t

‖∆hf |L∞(Ωh)‖ for all t ≥ 0.

If

ω̃(f, t) := ω(f, t)/t for all t > 0,

then ω̃(f, .) is equivalent to a non-increasing function on (0,+∞). The function f ∈ CB(Ω)
is uniformly continuous on Ω if and only if ω(f, t) → ω(f, 0) = 0 as t → 0+. We refer to [6,
pp. 331–333] and to [12, pp. 40 – 50] for more details.
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Let Ω be a domain in IRn. By C(Ω) we mean the subspace of CB(Ω) of all bounded and
uniformly continuous functions on Ω. A subset S of C(Ω) is equicontinuous if and only if

sup
f∈S

ω(f, t) → 0 as t → 0+.

Let r ∈ (0,+∞] and let Lr be the class of all continuous functions λ : (0, 1] → (0,+∞) which
are increasing on some interval (0, δ), with δ = δλ ∈ (0, 1], and satisfy

lim
t→0+

λ(t) = 0

and

(2.15)

∥∥∥∥t
−1/r t

λ(t)

∥∥∥∥
r;(0,δ)

< +∞.

When r = +∞, we simply write L instead of Lr.
If λ ∈ Lr, one can easy see that λ is equivalent to a continuous increasing function on the

interval (0,1]. Consequently, without loss of generality, we can assume that all elements of Lr

are continuous increasing functions on the interval (0,1].

Let r ∈ (0,+∞], λ ∈ Lr and let Ω be a domain in IRn. The generalized Hölder space Λ
λ(·)
∞,r(Ω)

consists of all those functions f ∈ CB(Ω) for which the quasi-norm

(2.16) ‖f |Λλ(·)
∞,r(Ω)‖ := ‖f |L∞(Ω)‖ +

∥∥∥∥t
−1/r ω(f, t)

λ(t)

∥∥∥∥
r;(0,1)

is finite. Standard arguments show that the space Λ
λ(·)
∞,r(Ω) is complete (cf. [38, Theorem 3.1.4]).

If (2.15) does not hold, then the space Λ
λ(·)
∞,r(Ω) contains only constant functions.

The space Λ
λ(.)
∞,∞(Ω) coincides (cf. [39, Proposition 3.5]) with the space C0,λ(.)(Ω) defined by

‖f |C0,λ(·)(Ω)‖ := sup
x∈Ω

|f(x)| + sup
x,y∈Ω

0<|x−y|≤1

|f(x) − f(y)|

λ(|x − y|)
< +∞.

If λ(t) = t, t ∈ (0, 1], and Ω = IRn, then Λ
λ(·)
∞,∞(Ω) coincides with the space Lip(IRn) of the

Lipschitz functions. If λ(t) ≡ tα, α ∈ (0, 1], then the space Λ
λ(·)
∞,r(Ω) coincides with the space

C0,α,r(Ω) introduced in [2].

The next lemma shows that we could define the generalized Hölder space Λ
λ(·)
∞,r(Ω) as a sub-

space of C(Ω) rather than a subspace of CB(Ω).

Lemma 2.2 ([30, Lemma 2.4]). Let r ∈ (0,+∞], λ ∈ Lr and let Ω be a domain in IRn. Then

Λλ(·)
∞,r(Ω) →֒ C(Ω).

Let Ω be a measurable subset of IRn. We denote by B(Ω) the set of all scalar-valued functions
(real or complex) which are bounded on Ω and we equip this set with the norm

‖f‖B(Ω) := sup{|f(x)| : x ∈ Ω}.

The following lemma is related to [17, Lemma 4.5].

Lemma 2.3 ([30, Lemma 3.3]). Let X = X(IRn) be a r. i. BFS and let Ω be a domain in IRn.

Suppose that σ > 0 and let gσ be the Bessel kernel. Then

(2.17) HσX(IRn) →֒ B(Ω)

if and only if

(2.18) ‖gσ‖X′ < +∞.
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We shall investigate embeddings of the form

(2.19) HσX(IRn) →֒ Y (Ω),

where σ > 0, X = X(IRn) is a r. i. Banach function space, Ω is a domain in IRn and Y (Ω) is
a convenient Banach space of functions defined on Ω. Note that embedding (2.19) means that
the mapping u 7→ u|Ω from HσX(IRn) into Y (Ω) is continuous. Note also that in the whole
paper we use the symbol u both for the function u and its restriction to Ω.

To describe compact embeddings of Bessel potential spaces modelled upon Lorentz-Karamata
spaces into generalized Hölder spaces, in [30] we proved the following assertion, where we

characterized totally bounded subsets of the space Λ
µ(·)
∞,r(Ω) with a bounded domain Ω ⊂ IRn.

Theorem 2.4 ([30, Theorem 7.1]). Let r ∈ (0,+∞), µ ∈ Lr and let Ω be a bounded domain

in IRn. Then S ⊂ Λ
µ(·)
∞,r(Ω) is totally bounded if and only if S is bounded in Λ

µ(·)
∞,r(Ω) and

(2.20) sup
u∈S

‖t−1/r[µ(t)]−1ω(u, t)‖r;(0,ξ) → 0 as ξ → 0+.

Remark 2.5 ([30, Remark 7.2]). (i) In Theorem 2.4 the implication

(2.21) S ⊂ Λµ(·)
∞,r(Ω) is bounded and (2.20) holds =⇒ S is totally bounded in Λµ(·)

∞,r(Ω)

remains true even if r = +∞. (This can be seen from the proof of Theorem 2.4.)
(ii) If r = +∞ in Theorem 2.4, then the reverse implication to (2.21) holds provided that

we assume that S ⊂ Λ
µ(·),0
∞,∞ (Ω). Here Λ

µ(·),0
∞,∞ (Ω) is a subspace of Λ

µ(·)
∞,∞(Ω) consisting of those

functions u which satisfy
lim

δ→0+

‖[µ(t)]−1 ω(u, t)‖∞;(0,δ) = 0.

(This follows from the necessity part of the proof of Theorem 2.4.)
(iii) Summarizing what we have said, we arrive at the following result.

Let u ∈ L and let Ω be a bounded domain in IRn. Then S ⊂ Λ
µ(·),0
∞,∞ (Ω) is totally bounded in

Λ
µ(·)
∞,∞(Ω) if and only if S is bounded in Λ

µ(·)
∞,∞(Ω) and

sup
u∈S

‖[µ(t)]−1 ω(u, t)‖∞;(0,ξ) → 0 as ξ → 0+.

3. Embeddings into Lorentz-Karamata spaces

In this section we present embeddings of Bessel-potential-type spaces into Lorentz-Karamata
spaces, which extend and slightly improve those of [16], [18] and complement those of [40]. Our
main results state that such embeddings are sharp and fail to be compact. We also show how
to modify parameters of target spaces to arrive to compact embeddings.

The first theorem concerns the sublimiting case when σ ∈ (0, n) and 1 < p < n/σ. Part (i) of
this theorem extends [18, Theorem 3.1] and [40, Theorem 5.1] and corresponds to the Sobolev-
type embedding. The second and the third parts concern the (local) sharpness of the embedding
from part (i) while the fourth part states that the embedding from part (i) is not compact. In
part (v) it is shown that this embedding becomes compact if the parameters of the target space
are restricted in a proper way.

Theorem 3.1 (cf. [26, Theorem 3.1]). Let σ ∈ (0, n), 1 < p < n/σ, q ∈ [1,+∞], r ∈ [q,+∞],
1/pσ = 1/p − σ/n and let b ∈ SV (0,+∞). Let Ω ⊂ IRn be a nonempty domain.

(i) Then

(3.1) HσLp,q;b(IR
n) →֒ Lpσ,r;b(IR

n).
9



(ii) Let P ∈ [pσ,+∞] and let b̃ ∈ SV (0,+∞). Suppose that either

(3.2) P > pσ

or

(3.3) P = pσ and lim
t→0+

b̃(t)

b(t)
= +∞.

Then the embedding

(3.4) HσLp,q;b(IR
n) →֒ LP,r;b̃(Ω)

does not hold.

(iii) Let q ∈ (0, q). Then the embedding

HσLp,q;b(IR
n) →֒ Lpσ,q;b(Ω)

fails.

(iv) The embedding

(3.5) HσLp,q;b(IR
n) →֒ Lpσ,r;b(Ω)

is not compact.

(v) Let Ω be bounded and let b̃ ∈ SV (0,+∞). Suppose that either

(3.6) P ∈ (0, pσ)

or

(3.7) P = pσ and lim
t→0+

b̃(t)

b(t)
= 0.

Then

(3.8) HσLp,q;b(IR
n) →֒→֒ LP,r;b̃(Ω).

Remark 3.2 ( [26, Remarks 3.2–3.6]). (i) By Theorem 3.1 (ii), all embeddings (3.1) are sharp
with respect to the first and third parameters of the target space. (This is why we consider all
embeddings (3.1) in Theorem 3.1 and not only optimal embedding (3.10) mentioned below.)

(ii) As

(3.9) Lpσ,r;b(IR
n) →֒ Lpσ,s;b(IR

n) if 0 < r < s < +∞,

among embeddings (3.1) the embedding

(3.10) HσLp,q;b(IR
n) →֒ Lpσ,q;b(Ω),

with Ω = IRn, is optimal. (Note that embedding (3.9) can be proved analogously as the classical
embedding Lpσ,r(IR

n) →֒ Lpσ,s(IR
n) if 0 < r < s < +∞.)

(iii) Theorem 3.1 (iii) shows that embedding (3.10) is also sharp with respect to the second
parameter.

(iv) By Theorem 3.1 (i), embedding (3.10) is continuous and, by Theorem 3.1 (iv), this embed-
ding is not compact. Moreover, Theorem 3.1 (iv) also shows that we cannot arrive to a compact
embedding if we replace the target space Lpσ,q;b(Ω) in (3.10) by a larger space Lpσ,r;b(Ω) with
r > q.

(v) Put X := HσLp,q;b(IR
n). By Theorem 3.1 (i),

sup
t>0

t1/pσb(t)f∗(t) - ‖f‖X for all f ∈ X,
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and, by Theorem 3.1 (ii), the inequality

sup
t>0

t1/pσ b̃(t)f∗(t) - ‖f‖X

does not hold for all f ∈ X if b̃ ∈ SV (0,+∞) satisfies

lim
t→0+

b̃(t)

b(t)
= +∞.

If we use an analogue of terminology from [32] or [48], this means that the function [t1/pσb(t)]−1,
t > 0, is the growth envelope function of the space HσLp,q;b(IR

n). Using also Theorem 3.1 (iii),
we can see that the couple

([t1/pσb(t)]−1, q)

is the growth envelope of the space HσLp,q;b(IR
n).

Remark 3.3. One can easily verify that the assumptions of part (ii) of Theorem 3.1 are

equivalent to: Let P ∈ (0,+∞], b̃ ∈ SV (0,+∞) and let

(3.11) lim
t→0+

t1/P b̃(t)

t1/pσ b(t)
= +∞.

Similarly, the assumptions of part (v) Theorem 3.1 can be rewritten as: Let Ω be bounded,

P ∈ (0,+∞], b̃ ∈ SV (0,+∞) and let

(3.12) lim
t→0+

t1/P b̃(t)

t1/pσ b(t)
= 0.

Note also that, by Lemma 2.1 (iii), t1/ρb(t) ≈ ‖τ1/ρ−1/rb(τ)‖r;(0, t) for all t ∈ (0,+∞) when

0 < ρ < +∞, 0 < r ≤ +∞ and b ∈ SV (0,+∞). Thus, the function t 7→ t1/ρb(t) is (equivalent)
to the fundamental function of the Lorentz-Karamata space Lρ,r;b (we refer to [6] for this
notion).

Proof of Theorem 3.1. Since pσ < +∞, parts (i)–(iv) coincide with parts (i)–(iv) of [26,
Theorem 3.1]. Thus, we refer to [26] for proofs of these statements. The proof of part (v) of
Theorem 3.1 is similar to that of [19, Theorem 3.1]. �

Corollary 3.4. Let all the assumptions of Theorem 3.1 be satisfied. Let P ∈ (0,+∞] and

b̃ ∈ SV (0,+∞).
(i) Let |Ω|n < +∞. Then

(3.13) HσLp,q;b(IR
n) →֒ LP,r;b̃(Ω)

if and only if

(3.14) lim
t→0+

t1/P b̃(t)

t1/pσ b(t)
< +∞.

(ii) Let Ω be bounded. Then

(3.15) HσLp,q;b(IR
n) →֒→֒ LP,r;b̃(Ω)

if and only if

(3.16) lim
t→0+

t1/P b̃(t)

t1/pσ b(t)
= 0.
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Proof. (i) Since singularities of slowly varying functions b and b̃ at the interval [0, |Ω|n] are
only those at 0, part (i) of the corollary is a consequence of parts (i) and (ii) of Theorem 3.1
(see also Remark 3.3).

(ii) The implication (3.16) ⇒ (3.15) holds by Theorem 3.1 (v) (see also Remark 3.3). The
converse implication follows by contradiction from estimates [26, (5.4)], [26, (5.6)] and the
second displayed estimate in Step 5 of the proof of [26, Theorem 3.1] (cf. also [26, (5.10)]). �

The next theorem represents an analogue of Theorem 3.1 and concerns the limiting case
when p = n/σ. Part (i) of this theorem extends [16, Theorem 3.1 and Theorem 3.2].

Theorem 3.5 (cf. [26, Theorem 3.7]). Let σ ∈ (0, n), q ∈ (1,+∞], r ∈ [q,+∞] and let

b ∈ SV (0,+∞) be such that

(3.17) ‖ t−1/q′ [b(t)]−1‖q′;(0,1) = +∞.

Suppose that Ω ⊂ IRn is a nonempty domain with |Ω|n < +∞ and that bqr ∈ SV (0,+∞)
satisfies

(3.18) bqr(t) := [b(t)]−q′/r

(∫ 2

t
τ−1[b(τ)]−q′dτ

)−1/q′−1/r

for all t ∈ (0, 1].

(i) Then

(3.19) HσLn/σ,q;b(IR
n) →֒ L∞,r;bqr(Ω).

(ii) If a function b̃ ∈ SV (0,+∞) is such that

(3.20) lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

‖τ−1/rbqr(τ)‖r;(0,t)

= +∞,

then the embedding

(3.21) HσLn/σ,q;b(IR
n) →֒ L∞,r;b̃(Ω)

does not hold.

(iii) Let q ∈ (0, q). Then the embedding

HσLn/σ,q;b(IR
n) →֒ L∞,q;bqq

(Ω)

fails, where bqq is again defined by (3.18) with r replaced by q.
(iv) The embedding

(3.22) HσLn/σ,q;b(IR
n) →֒ L∞,r;bqr(Ω)

is not compact.

(v) Let Ω be bounded and let b̃ ∈ SV (0,+∞) be such that

(3.23) lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

‖τ−1/rbqr(τ)‖r;(0,t)

= 0.

Then

(3.24) HσLn/σ,q;b(IR
n) →֒→֒ L∞,r;b̃(Ω).

Proof. Parts (i)–(iv) coincide with parts (i)–(iv) of [26, Theorem 3.7]. Thus, we refer to [26]
for proofs of these statements. The proof of part (v) of Theorem 3.5 makes use of the same
main ideas as that of [19, Theorem 3.4]. However, to estimate analogues of quantities J1,J2
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and J3 (J1,J2 and J3 are introduced in the proof of [19, Theorem 3.4]), one has to employ the
estimate

(3.25) ‖τ−1/rbqr(τ)‖r;(0,t) ≈

(∫ 2

t
τ−1[b(τ)]−q′dτ

)−1/q′

= bq∞(t) for all t ∈ (0, 1)

(which follows from (3.18) and (3.17)) and some further properties of slowly varying functions.
Therefore, it is much shorter to proceed as follows:

Put Y := L∞,r,b̃(Ω), X = Lp,q,b(IR
n) and K := {u ∈ HσX : ||u||HσX ≤ 1}. As in the proof

of [19, Theorem 3.4], it is sufficient to verify that, given ε > 0, there is δ > 0 such that

‖uχM ‖Y ≤ ε for all u ∈ K and every M ⊂ Ω with |M |n < δ.

Let ε > 0. Assumption (3.23) implies that there is δ > 0 such that

(3.26) B1(δ) := sup
0<R<δ

‖τ−1/r b̃(τ))‖r;(0,R)

‖τ−1/rbqr(τ)‖r;(0,R)

< ε.

Assume that u ∈ K and let M ⊂ Ω satisfy |M |n < δ. Then

‖uχM ‖Y ≤ ‖t−1/r b̃(t)u∗(t)‖r;(0,δ).

Moreover, by theorem on embeddings of classical Lorentz spaces (cf., e.g., [10, Theorem 3.1])
and by (3.26),

‖t−1/r b̃(t)u∗(t)‖r;(0,δ) ≤ B1(δ) ‖t
−1/rbqr(t)u∗(t)‖r;(0,δ) < ε ‖u‖∞,r;bqr .

Finally, by Theorem 3.5 (i),

‖u‖∞,r;bqr - ‖u‖HσX ≤ 1.

Combining estimates mentioned above, we arrive at ‖uχM ‖Y - ε for all u ∈ K and every
M ⊂ Ω with |M |n < δ. �

Corollary 3.6. Let all the assumptions of Theorem 3.5 be satisfied. Let b̃ ∈ SV (0,+∞).
(i) Let |Ω|n < +∞. Then

(3.27) HσLn/σ,q;b(IR
n) →֒ L∞,r;b̃(Ω)

if and only if

(3.28) lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

‖τ−1/rbqr(τ)‖r;(0,t)

< +∞.

(ii) Let Ω be bounded. Then

(3.29) HσLn/σ,q;b(IR
n) →֒→֒ L∞,r;b̃(Ω)

if and only if

(3.30) lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

‖τ−1/rbqr(τ)‖r;(0,t)

= 0.

Proof. (i) Singularities of slowly varying functions b and b̃ at the interval [0, |Ω|n] are only
those at 0. Thus, part (i) of the corollary is a consequence of parts (i) and (ii) of Theorem 3.5
and [10, Theorem 3.1]. Indeed, Theorem 3.5 (i), (3.28) and [10, Theorem 3.1] imply that

HσLn/σ,q;b(IR
n) →֒ L∞,r;bqr(Ω) →֒ L∞,r;b̃(Ω).

On the other hand, if (3.28) is not satisfied, then, by Theorem 3.5 (ii), embedding (3.27) fails.
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(ii) The implication (3.30) ⇒ (3.29) holds by Theorem 3.5 (v). The converse implication
follows by contradiction from estimates [26, (5.16)], [26, (5.22)] and (3.25) (cf. also [26, (5.23)]).
�

Remark 3.7 (cf. [26, Remarks 3.8–3.18]). (i) Theorem 3.5 (i) holds without assumption (3.17).

However, if q ∈ (1,+∞) and ‖ t−1/q′ [b(t)]−1‖q′;(0,1) < +∞, then

HσLn/σ,q;b(IR
n) →֒ CB(IRn),

c.f. [41, Proposition 5.6].
(ii) Assume that all the assumptions of Theorem 3.5 are satisfied. If r ∈ [q,+∞], then the

embedding

(3.31) HσLn/σ,q;b(IR
n) →֒ L∞,r;b̃(Ω)

with b̃ = bqr is sharp with respect to the parameter b̃ ∈ SV (0,+∞), that is, the target space

L∞,r;b̃(Ω) in (3.31) and the space L∞,r;bqr(Ω) (i.e., the target space in (3.31) with b̃ = bqr)

satisfy L∞,r;bqr(Ω) →֒ L∞,r;b̃(Ω). Indeed, the last embedding is equivalent to

‖t−1/r b̃(t) f∗(t)‖r;(0,|Ω|n) - ‖t−1/rbqr(t) f∗(t)‖r;(0,|Ω|n) for all f ∈ L∞,r;bqr(Ω).

This inequality holds (cf., e.g., [10, Theorem 3.1]) if

sup
x∈(0,|Ω|n))

‖t−1/r b̃(t)‖r;(0,|Ω|n)/‖t
−1/rbqr(t)‖r;(0,|Ω|n) < +∞,

which is equivalent to (3.28). The result follows from Corollary 3.6 (i) since (3.28) is satisfied
when (3.31) holds.

(iii) The target spaces in (3.19) form a scale {L∞,r;bqr(Ω)}+∞
r=q whose endpoint spaces with

r = +∞ and r = q are of particular interest. The former endpoint space L∞,∞;bq∞(Ω) cor-
responds to the target space in Trudinger’s-type embedding while the latter endpoint space
L∞,q;bqq(Ω) corresponds to the target space in the Brézis-Wainger-type embedding. Since the

spaces {L∞,r;bqr(Ω)}+∞
r=q satisfy

(3.32) L∞,r;bqr(Ω) →֒ L∞,s;bqs(Ω) if q ≤ r ≤ s ≤ +∞,

the embedding

(3.33) HσLn/σ,q;b(IR
n) →֒ L∞,q;bqq(Ω)

is optimal. (Making use of estimate (3.25), one can prove (3.32) analogously as the embedding
Lp,r(Ω) →֒ Lp,s(Ω), 0 < p < +∞, 0 < r ≤ s ≤ +∞. Another way how to verify (3.32) is to
apply, e.g., [10, Theorem 3.1].)

(iv) Theorem 3.5 (iii) shows that embedding (3.33) is also sharp with respect to the second
parameter.

(v) By Theorem 3.5 (i), embedding (3.33) is continuous and, by Theorem 3.5 (iv), this embed-
ding is not compact. Moreover, Theorem 3.5 (iv) also shows that we cannot arrive to a compact
embedding if we replace the target space L∞,q;bqq(Ω) in (3.33) by a larger space L∞,r;bqr(Ω) with
r > q.

(vi) Put X := HσLn/σ,q;b(IR
n). By Theorem 3.5 (i),

sup
t>0

bq∞(t)f∗(t) - ‖f‖X for all f ∈ X,

and, by Theorem 3.5 (ii) (cf. also part (vii) of this remark), the inequality

sup
t>0

b̃(t)f∗(t) - ‖f‖X
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does not hold for all f ∈ X if b̃ ∈ SV (0,+∞) satisfies

lim
t→0+

b̃(t)

bq∞(t)
= +∞.

This means that the function [bq∞(t)]−1 =
(∫ 2

t τ−1[b(τ)]−q′dτ
)1/q′

, t ∈ (0, 1], is the growth

envelope function of the space HσLn/σ,q;b(IR
n). Using also Theorem 3.5 (iii), we can see that

the couple ( (∫ 2

t
τ−1[b(τ)]−q′dτ

)1/q′

, q

)

is the growth envelope of the space HσLn/σ,q;b(IR
n).

(vii) Let r ∈ [q,+∞]. By (3.25),

(3.34) lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

‖τ−1/rbqr(τ)‖r;(0,t)

≈ lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

bq∞(t)
.

Together with the estimate

‖τ−1/r b̃(τ)‖r;(0,t) = ‖τ1−1/r[τ−1b̃(τ)]‖r;(0,t)(3.35)

% t−1b̃(t)‖τ1−1/r‖r;(0,t) ≈ b̃(t) for all t ∈ (0, 1),

this shows that condition (3.20) holds if

(3.36) lim
t→0+

b̃(t)

bq∞(t)
= +∞.

(viii) Let r = +∞ and let b̃ be equivalent to a non-decreasing function on some interval
(0, δ), δ ∈ (0, 1). Then, for all t ∈ (0, δ),

‖τ−1/r b̃(τ)‖r;(0,t) = ‖b̃(τ)‖∞;(0,t) ≈ b̃(t).

Applying this estimate in (3.34), we can see that (3.20) is now equivalent to (3.36).
(ix) Let r ∈ [q,+∞) and let

(3.37) ‖τ−1/r b̃(τ)‖r;(0,T ) < +∞ for some T ∈ (0, 1).

Then ‖τ−1/r b̃(τ)‖r;(0,t) → 0 as t → 0+. Since also, by (3.25) and (3.17), ‖τ−1/rbqr(τ)‖r;(0,t) → 0
as t → 0+, a convenient version of L’Hospital’s rule implies that

(3.38) lim
t→0+

‖τ−1/r b̃(τ)‖r;(0,t)

‖τ−1/rbqr(τ)‖r;(0,t)

= lim
t→0+

b̃(t)

bqr(t)

provided that the last limit exists.

Remark 3.8. It follows from Remark 3.3 that conditions (3.2), (3.3) are of the same form as
condition (3.20). The same concerns conditions (3.6), (3.7) and condition (3.23).

Examples 3.9 (cf. [28, Examples 3.1]). Let σ ∈ (0, n), p = n/σ, q ∈ (1,+∞] and let r ∈
[q,+∞]. Suppose that Ω ⊂ IRn is a nonempty domain with |Ω|n < +∞.

1. Let α, β ∈ IR and let b ∈ SV (0,+∞) be defined by

b(t) = l1(t)
α l2(t)

β , t > 0.
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(i) If α < 1/q′ and β ∈ IR, then

(3.39) HσLp,q(log L)α(log log L)β(IRn) →֒ L∞,q;bqq(Ω) →֒ L∞,r;bqr(Ω) →֒ L∞,∞;bq∞(Ω)

with

bqq(t) ≈ l1(t)
α−1 l2(t)

β , t ∈ (0, 1];

bqr(t) ≈ l1(t)
α−1/q′−1/r l2(t)

β, t ∈ (0, 1];

bq∞(t) ≈ l1(t)
α−1/q′ l2(t)

β, t ∈ (0, 1].

Note (cf. [25, Lemma 2.2]) that L∞,∞;bq∞(Ω) coincides with the Orlicz space LΦ(Ω), where

Φ(t) = exp(t1/γ(log t)β/γ) for all large t, γ = 1/q′ − α.

(ii) If α = 1/q′ and β < 1/q′, then

(3.40) HσLp,q(log L)α(log log L)β(IRn) →֒ L∞,q;bqq(Ω) →֒ L∞,r;bqr(Ω) →֒ L∞,∞;bq∞(Ω)

with

bqq(t) ≈ l1(t)
−1/q l2(t)

β−1, t ∈ (0, 1];

bqr(t) ≈ l1(t)
−1/r l2(t)

β−1/q′−1/r, t ∈ (0, 1];

bq∞(t) ≈ l2(t)
β−1/q′ , t ∈ (0, 1].

Recall that (see (2.5)) L∞,∞;bq∞(Ω) = EXP2 L1/γ(Ω), where γ = 1/q′ − β.

(iii) If α = 1/q′ and β = 1/q′, then

(3.41) HσLp,q(log L)α(log log L)β(IRn) →֒ L∞,q;bqq(Ω) →֒ L∞,r;bqr(Ω) →֒ L∞,∞;bq∞(Ω)

with

bqq(t) ≈ l1(t)
−1/q l2(t)

−1/q l3(t)
−1, t ∈ (0, 1];

bqr(t) ≈ l1(t)
−1/r l2(t)

−1/r l3(t)
−1/q′−1/r, t ∈ (0, 1];

bq∞(t) ≈ l3(t)
−1/q′ , t ∈ (0, 1].

Recall that (see (2.5)) L∞,∞;bq∞(Ω) = EXP3 Lq′(Ω).
(iv) If either α > 1/q′ or α = 1/q′ and β > 1/q′, then

HσLp,q(log L)α(log log L)β(IRn) →֒ CB(IRn).

2. Let α ∈ (0, 1), β ∈ IR and let b ∈ SV (0,+∞) be defined by

b(t) = l1(t)
−(α−1)/q′ exp(β l1(t)

α), t > 0.

(i) If β < 0, then

(3.42) HσLp,q;b(IR
n) →֒ L∞,q;bqq(Ω) →֒ L∞,r;bqr(Ω) →֒ L∞,∞;bq∞(Ω)

with

bqq(t) ≈ l1(t)
(α−1)/q exp(β l1(t)

α), t ∈ (0, 1];

bqr(t) ≈ l1(t)
(α−1)/r exp(β l1(t)

α), t ∈ (0, 1];
bq∞(t) ≈ exp(β l1(t)

α), t ∈ (0, 1].

(ii) If β > 0, then

HσLp,q;b(IR
n) →֒ CB(IRn).

16



4. Embeddings into generalized Hölder spaces: the case σ ≥ 1

In this section we present embeddings of Bessel-potential-type spaces into generalized Hölder
spaces , which extend and improve those of [18] and complement those of [41]. Our main results
state that such embeddings are sharp and fail to be compact. We also show how to modify
parameters of target spaces to arrive to compact embeddings.

Part (i) of the following theorem improves and extends [18, Theorem 3.2] and [41, Theo-
rem 5.10] and discusses embeddings of Bessel potential spaces modelled upon Lorentz-Karamata
spaces into generalized Hölder spaces in the sublimiting case. The second and the third parts
concern the sharpness of the embedding from part (i) while the fourth part states that the
embedding from part (i) is not compact. In part (v) it is shown that this embedding becomes
compact if the parameters of the target space are restricted in a proper way.

Theorem 4.1 (cf. [27, Theorem 3.1]). Let σ ∈ [1, n + 1), max{1, n/σ} < p < n/(σ − 1),
q ∈ (1,+∞), r ∈ [q,+∞] and let b ∈ SV (0,+∞). Suppose that Ω ⊂ IRn is a nonempty domain.

Let λ : (0, 1] → (0,+∞) be defined by

(4.1) λ(t) = tσ−n/p[b(tn)]−1, t ∈ (0, 1].

(Note that λ ∈ Lr for any r ∈ [1,+∞].)
(i) Then

(4.2) HσLp,q;b(IR
n) →֒ Λλ(·)

∞,r(IR
n).

(ii) If a function µ ∈ Lr satisfies

(4.3) lim
t→0+

λ(t)

µ(t)
= +∞,

then the embedding

(4.4) HσLp,q;b(IR
n) →֒ Λµ(.)

∞,r(Ω)

does not hold.

(iii) Let q ∈ (0, q). Then the embedding

(4.5) HσLp,q;b(IR
n) →֒ Λ

λ(·)
∞,q(Ω)

fails.

(iv) The embedding

HσLp,q;b(IR
n) →֒ Λλ(·)

∞,r(Ω)

is not compact.

(v) Let Ω be bounded and let µ ∈ Lr be such that

(4.6) lim
t→0+

λ(t)

µ(t)
= 0.

Then

(4.7) HσLp,q;b(IR
n) →֒→֒ Λµ(·)

∞,r(Ω).

Proof. (i) Part (i) coincides with part (i) of [27, Theorem 3.1]. Thus, we refer to [27] for the
proof of this statement.

(ii) Part (ii) is proved in [27] (see the proof of [27, Theorem 3.1 (ii)]) provided that condition
(4.3) is replaced by

(4.8) lim
t→0+

t
λ(t)∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

= 0.
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First, checking the proof of [27, Theorem 3.1 (ii)] (cf. lines 3–6 on page 316 in [27]), we see
that this theorem continue to hold if we replace assumption (4.8) by

(4.9) lim inf
t→0+

t
λ(t)∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

= 0.

Second, we prove that (4.9) is equivalent to (4.3) . Indeed, since (4.9) can be rewritten as

(4.10) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

t
λ(t)

= +∞,

it is sufficient to prove that (4.10) is equivalent to (4.3). Instead of this, it is enough to verify
that

(4.11) lim
t→0+

λ(t)

µ(t)
< +∞

if and only if

(4.12) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

t
λ(t)

< +∞.

To this end, first we assume that (4.11) holds. Then there is δ ∈ (0, 1) such that λ(t)/µ(t) . 1
for all t ∈ (0, δ), which implies that 1/µ(t) . 1/λ(t) for all t ∈ (0, δ). Using this estimate,
(4.1), the fact that 1 − σ + n/p > 0 and Lemma 2.1 (iii), we obtain

∥∥∥∥τ
−1/r τ

µ(τ)

∥∥∥∥
r;(0,t)

.

∥∥∥∥τ
−1/r τ

λ(τ)

∥∥∥∥
r;(0,t)

(4.13)

=
∥∥∥τ−1/rτ1−σ+n/p [b(τn)]

∥∥∥
r;(0,t)

= t1−σ+n/p [b(tn)]

=
t

λ(t)
for all t ∈ (0, δ),

and (4.12) follows.
Suppose now that (4.12) holds. Then there is δ ∈ (0, 1) such that

(4.14)

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

t
λ(t)

. 1 for all t ∈ (0, δ).

Since the function 1/µ is non-increasing on (0, 1), we obtain
∥∥∥∥τ

−1/r τ

µ(τ)

∥∥∥∥
r;(0,t)

≥
1

µ(t)

∥∥∥τ1−1/r
∥∥∥

r;(0,t)
≈

t

µ(t)
for all t ∈ (0, 1).

This and (4.14) imply that

1 &

t
µ(t)

t
λ(t)

=
λ(t)

µ(t)
for all t ∈ (0, δ),

and (4.11) follows.
(iii) Part (iii) coincides with part (iii) of [27, Theorem 3.1]. Thus, we refer to [27] for the

proof of this statement.
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(iv) Part (iv) is the same as part (iv) of [27, Theorem 3.1]. Thus, we refer to [27] for the
proof of this statement.

(v) Put X := Lp,q,b(IR
n) and S := {u ∈ HσX : ||u||HσX ≤ 1}. By Theorem 2.4 and

Remark 2.5 (i), it is enough to prove that

(4.15) S is bounded in Λµ(·)
∞,r(Ω)

and

(4.16) sup
u∈S

‖t−1/r[µ(t)]−1ω(u, t)‖r;(0,ξ) → 0 as ξ → 0+.

First, by Theorem 4.1 (i), (4.2) holds. Thus, to verify (4.15), it is sufficient to show that

(4.17) Λλ(·)
∞,r(Ω) →֒ Λµ(·)

∞,r(Ω).

Since, for any f ∈ CB(Ω), ω̃(f, .) is equivalent to a non-increasing function, we see from (2.16)
that (4.17) holds if

(4.18) L∞,r;t/λ(t)(0, 1) →֒ L∞,r;t/µ(t)(0, 1).

However, by [10, Theorem 3.1], embedding (4.18) holds when

(4.19) sup
x∈(0,1)

∥∥∥t−1/r t/µ(t)
∥∥∥

r;(0,x)

/∥∥∥t−1/r t/λ(t)
∥∥∥

r;(0,x)
< +∞.

Take ε > 0. By (4.6), there is δ ∈ (0, 1) such that

(4.20) 1/µ(t) ≤ ε/λ(t) for all t ∈ (0, δ).

Using this estimate, one can show (cf. 4.13) that

(4.21)
∥∥∥t−1/r t/µ(t)

∥∥∥
r;(0,x)

. ε x/λ(x) for all x ∈ (0, δ).

Moreover, by (4.1) and Lemma 2.1 (iii),

(4.22)
∥∥∥t−1/r t/λ(t)

∥∥∥
r;(0,x)

≈ x/λ(x) for all x ∈ (0, 1).

Thus, (4.19) is a consequence of (4.21), (4.22) and the fact that the functions µ and λ have
singularities only at 0.

To prove (4.16), take ε > 0. Then, by (4.6), there is δ ∈ (0, 1) such that (4.20) holds. If
ξ ∈ (0, δ), then (4.20) and Theorem 4.1 (i) imply that

sup
u∈S

‖t−1/r[µ(t)]−1ω(u, t)‖r;(0,ξ) ≤ ε sup
u∈S

‖t−1/r[λ(t)]−1ω(u, t)‖r;(0,ξ) - ε sup
u∈S

‖u‖HσX ≤ ε

and (4.16) follows. �

Corollary 4.2. Let all the assumptions of Theorem 4.1 be satisfied. Suppose that µ ∈ Lr.

(i) Then

(4.23) HσLp,q;b(IR
n) →֒ Λµ(.)

∞,r(IR
n)

if and only if

(4.24) lim
t→0+

λ(t)

µ(t)
< +∞.

(ii) Let Ω ⊂ IRn be bounded and let r < +∞. Then

(4.25) HσLp,q;b(IR
n) →֒→֒ Λµ(.)

∞,r(Ω)
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if and only if

(4.26) lim
t→0+

λ(t)

µ(t)
= 0.

Proof. Part (i) of the corollary is a consequence of parts (i) and (ii) of Theorem 4.1. Indeed,
by Theorem 4.1 (i), embedding (4.2) holds. Moreover,

Λλ(·)
∞,r(IR

n) →֒ Λµ(.)
∞,r(IR

n)

(this embedding is a consequence of (4.24) – cf. the proof of (4.17)).
On the other hand, if (4.24) is not satisfied, then, by Theorem 4.1 (ii), embedding (4.23)

fails.
(ii) The implication (4.26) ⇒ (4.25) holds by Theorem 4.1 (v). The converse implication

follows by contradiction. Indeed, assume that (4.25) holds and

(4.27) lim
t→0+

λ(t)

µ(t)
> 0.

Consider the functions us, s ∈ (0, 1/4), given by [27, (4.18)] (with G from [27, (5.4)]). By [27,
(5.6)],

(4.28) ‖u‖σ;p,q;b . 1 for all s ∈ (0, 1/4).

Take S ∈ (0, 1/4) fixed. An analogue of [27, (5.13)] (with λ replaced by µ) reads as

(4.29) ‖(us − uS)|Λµ(.)
∞,r(Ω)‖ &

λ(s)

ks
‖t−1/r t/µ(t)‖r;(0,ks)

for all sufficiently small positive s. Since

‖t−1/r t/µ(t)‖r;(0,ks) ≥ ‖t1−1/r‖r;(0,ks) /µ(ks) ≈ ks/µ(ks) for all s ∈ (0, 1/4),

we obtain from (4.29) that

(4.30) ‖(us − uS)|Λµ(.)
∞,r(Ω)‖ &

λ(s)

µ(ks)
≈

λ(s)

µ(s)

for all sufficiently small positive s. However, (4.30), (4.27) and (4.28) contradict (4.25). �

Remark 4.3 (cf. [30, Remark 7.5]). (i) In Corollary 4.2 (ii) the implication (4.26) =⇒ (4.25)
remains true even if r = +∞. This follows from Theorem 4.1 (v).

(ii) We see from Remark 2.5 (iii) that if we assume additionally in Corollary 4.2 (ii) that
r = +∞ and the space X(IRn) := Lp,q;b(IR

n) and µ ∈ L are such that

(4.31) HσX(IRn) →֒ Λµ(·),0
∞,∞ (Ω),

then (4.25) is equivalent to (4.26).
(iii) For example, (4.31) (with any r.i. BFS X(IRn)) is satisfied provided that

(4.32) the Schwartz space S (IRn) is dense in HσX(IRn),

(4.33) HσX(IRn) →֒ Λµ(·)
∞,∞(Ω),

(4.34) lim
t→0+

t/µ(t) = 0.
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Indeed, given u ∈ HσX(IRn) and ε > 0, there is v ∈ S (IRn) such that ‖u − v‖HσX < ε.
Moreover, ω(v, t) ≤ ct for all t ∈ (0, 1), where c = c(v) is a positive constant. Thus, using also
(4.33), we obtain

‖[µ(t)]−1ω(u, t)‖∞;(0,δ) ≤ ‖[µ(t)]−1ω(u − v, t)‖∞;(0,δ) + ‖[µ(t)]−1ω(v, t)‖∞;(0,δ)

- ‖u − v‖HσX + c‖t/µ(t)‖∞;(0,δ)

≤ ε + c‖t/µ(t)‖∞;(0,δ) for all δ ∈ (0, 1).

Together with (4.34), this implies (4.31).
For instance, (4.32) holds if

(4.35) the Schwartz space S (IRn) is dense in X(IRn).

Indeed, this is a consequence of (2.12), (2.13), the fact that the mapping h 7→ gσ ∗ h maps
S (IRn) on S (IRn), and (4.35).

In particular, (4.35) is satisfied provided that the r. i. BFS X(IRn) has absolutely continuous
norm (cf. [17, Remark 3.13]).

Remark 4.4 (cf. [27, Remark 3.1 (i)–(iv)]). (i) If r = +∞, then (4.2) yields

HσLp,q;b(IR
n) →֒ Cλ(·)(IRn).

(ii) By Theorem 4.1, all embeddings (4.2) are sharp with respect to the parameter λ of the
target space. (This is why we consider all embeddings (4.2) and not only optimal embedding
(4.37) mentioned below.)

(iii) As

(4.36) Λλ(·)
∞,r(IR

n) →֒ Λλ(·)
∞,s(IR

n) if 0 < r < s ≤ +∞,

among embeddings (4.2) the embedding

(4.37) HσLp,q;b(IR
n) →֒ Λλ(·)

∞,q(IR
n)

is optimal. (Note that embedding (4.36) can be proved analogously as ([26, (3.6)]) if one replaces
the role of f∗(t) by the role of ω̃(f, t). Another way how to verify (4.36) is to apply, e.g., [10,

Theorem 3.1] and the fact that, for any f ∈ CB(IRn), ω̃(f, .) is equivalent to a non-increasing
function.)

(iv) By Theorem 4.1 (i), embedding (4.37) is continuous and, by Theorem 4.1 (iv), this embed-
ding is not compact. Moreover, Theorem 4.1 (iv) also shows that we cannot arrive to a compact

embedding if we replace the target space Λλ(·)
∞,q(IR

n) in (4.37) by a larger space Λλ(·)
∞,r(IR

n) with

r > q or even by Λλ(·)
∞,r(Ω), where Ω is a bounded domain in IRn.

(v) Put X := HσLp,q;b(IR
n) and r = +∞. By Theorem 4.1 (i),

sup
t∈(0,1)

ω̃(f, t)

λ(t)/t
- ‖f‖X for all f ∈ X,

and, by Theorem 4.1 (i) and (ii), the inequality

sup
t∈(0,1)

ω̃(f, t)

µ(t)/t
- ‖f‖X

does not hold for all f ∈ X if µ ∈ L satisfies (4.3). If we use an analogue of terminology from

[32] and [48], this means that the function λ(t)
t = tσ−n/p−1[b(tn)]−1, t ∈ (0, 1], is the continuous

envelope function of the space HσLp,q;b(IR
n). Using also Theorem 4.1 (iii), we can see that the

couple

(tσ−n/p−1[b(tn)]−1, q)
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is the continuous envelope of the space HσLp,q;b(IR
n).

The next result is an analogue of Theorem 4.1 and concerns the limiting case when p =
n/(σ − 1). Part (i) of this theorem is an extension of [18, Theorem 3.3].

Theorem 4.5 (cf. [27, Theorem 3.2]). Let σ ∈ (1, n + 1), q ∈ (1,+∞), r ∈ [q,+∞] and let

b ∈ SV (0,+∞) be such that

(4.38) ‖ t−1/q′ [b(t)]−1‖q′;(0,1) = +∞.

Suppose that Ω ⊂ IRn is a nonempty domain and that λqr ∈ Lr is defined by

(4.39) λqr(t) = t [b(tn)]q
′/r

(∫ 2

tn
τ−1[b(τ)]−q′dτ

)1/q′+1/r

, t ∈ (0, 1].

(i) Then

(4.40) HσLn/(σ−1),q;b(IR
n) →֒ Λ

λqr(.)
∞,r (IRn).

(ii) If a function µ ∈ Lr satisfies

(4.41) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

= +∞,

then the embedding

(4.42) HσLn/(σ−1),q;b(IR
n) →֒ Λµ(.)

∞,r(Ω)

does not hold.

(iii) Let q ∈ (0, q). Then the embedding

(4.43) HσLn/(σ−1),q;b(IR
n) →֒ Λ

λqq(.)
∞,q (Ω)

fails, where λqq is again defined by (4.39) with r replaced by q.
(iv) The embedding

HσLn/(σ−1),q;b(IR
n) →֒ Λ

λqr(.)
∞,r (Ω)

is not compact.

(v) Let Ω be bounded and let µ ∈ Lr be such that

(4.44) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

= 0.

Then

(4.45) HσLp,q;b(IR
n) →֒→֒ Λµ(·)

∞,r(Ω).

Proof. (i) Part (i) coincides with part (i) of [27, Theorem 3.2]. Thus, we refer to [27] for the
proof of this statement.

(ii) Part (ii) is proved in [27] (see the proof of [27, Theorem 3.2 (ii)]) provided that condition
(4.41) is replaced by

(4.46) lim
t→0+

∥∥∥τ−1/r τ
λqr(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

µ(τ)

∥∥∥
r;(0,t)

= 0.
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Checking the proof of [27, Theorem 3.2 (ii)] (cf. estimates [27, (5.29)] and [27, (5.30)], we see
that this theorem continue to hold if we replace assumption (4.46) by

lim inf
t→0+

∥∥∥τ−1/r τ
λqr(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

µ(τ)

∥∥∥
r;(0,t)

= 0.

However, the last condition is equivalent to (4.41).
(iii) Part (iii) coincides with part (iii) of [27, Theorem 3.2]. Thus, we refer to [27] for the

proof of this statement.
(iv) Part (iv) is the same as part (iv) of [27, Theorem 3.2]. Thus, we refer to [27] for the

proof of this assertion.
(v) By Theorem 2.4 and Remark 2.5 (i), it is enough to prove (4.15) and (4.16).
First, by Theorem 4.5 (i), embedding (4.40) holds. Thus, to verify (4.15), it is sufficient to

prove (4.17) with λ replaced by λqr. As in the proof of Theorem 4.1 (v), (4.17) with λ replaced
by λqr is a consequence of (4.19) with λ replaced by λqr. However, this variant of (4.19) follows
from (4.44) and the fact that the functions µ and λqr have singularities only at 0.

To prove (4.16), take ε > 0. Then, by (4.44), there is δ ∈ (0, 1) such that

(4.47) ‖τ−1/rτ/µ(τ)‖r;(0,t) ≤ ε‖τ−1/rτ/λqr(τ)‖r;(0,t) for all t ∈ (0, δ).

Together with [10, Theorem 3.1] and the fact that, for any f ∈ CB(Ω), ω̃(f, .) is equivalent to
a non-increasing function, this implies that

(4.48) sup
u∈S

‖τ−1/r[µ(τ)]−1ω(u, τ)‖r;(0,δ) - ε sup
u∈S

‖τ−1/r[λqr(τ)]−1ω(u, τ)‖r;(0,δ).

Let ξ ∈ (0, δ). Then (4.48) and Theorem 4.5 (i) imply that

sup
u∈S

‖t−1/r[µ(t)]−1ω(u, t)‖r;(0,ξ) - ε sup
u∈S

‖t−1/r[λqr(t)]
−1ω(u, t)‖r;(0,δ) - ε sup

u∈S
‖u‖HσX ≤ ε

and (4.16) follows. �

Corollary 4.6. Let all the assumptions of Theorem 4.5 be satisfied. Suppose that µ ∈ Lr.

(i) Then

(4.49) HσLp,q;b(IR
n) →֒ Λµ(.)

∞,r(IR
n)

if and only if

(4.50) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

< +∞.

(ii) Let Ω ⊂ IRn be bounded and let r < +∞. Then

(4.51) HσLp,q;b(IR
n) →֒→֒ Λµ(.)

∞,r(Ω)

if and only if

(4.52) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

= 0.
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Proof. Part (i) of the corollary is a consequence of parts (i) and (ii) of Theorem 4.5. Indeed,
by Theorem 4.5 (i), embedding (4.40) holds. Moreover,

Λ
λqr(·)
∞,r (IRn) →֒ Λµ(.)

∞,r(IR
n)

(this embedding is a consequence of (4.50) – cf. the proof of (4.17)).
On the other hand, if (4.50) is not satisfied, then, by Theorem 4.5 (ii), embedding (4.49)

fails.
(ii) The implication (4.52) ⇒ (4.51) holds by Theorem 4.5 (v). The converse implication

follows by contradiction. Indeed, assume that (4.51) holds and

(4.53) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

> 0.

Consider the functions us, s ∈ (0, 1/4), given by [27, (4.18)] (with G from [27, (5.21)]). By [27,
(5.26)],

(4.54) ‖u‖σ;p,q;b . 1 for all s ∈ (0, 1/4).

Take S ∈ (0, 1/4) fixed. An analogue of [27, (5.32)] (with λr replaced by µ) reads as

(4.55) ‖(us − uS)|Λµ(.)
∞,r(Ω)‖ & B(s) ‖t−1/r t/µ(t)‖r;(0,sε),

for all sufficiently small positive s, where B(s) :=
(∫ 2

sn τ−1[b(τ)]−q′dτ
)1/q′

. Since B(s) ≈ B(εs)

and B(s) ≈ ‖t−1/r t/λq,r(t)‖
−1
r;(0,s) for all s ∈ (0, 1/4) (cf. [27, (5.30)]), (4.55) implies that

(4.56) ‖(us − uS)|Λµ(.)
∞,r(Ω)‖ &

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,sε)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,sε)

for all sufficiently small positive s. However, (4.56), (4.53) and (4.54) contradict (4.51). �

Remark 4.7. (i) In Corollary 4.6 (ii) the implication (4.52) =⇒ (4.51) remains true even if
r = +∞. This follows from Theorem 4.5 (v).

(ii) We see from Remark 2.5 (iii) that if we assume additionally in Corollary 4.6 (ii) that
r = +∞ and the space X(IRn) := Lp,q;b(IR

n) and µ ∈ L are such that (4.31) holds, then (4.51)
is equivalent to (4.52).

(iii) Concerning (4.31), we refer to Remark 4.3 (iii).

Remark 4.8 (cf. [27, Remark 3.2 (i)–(vii)]). (i) Part (i) of Theorem 4.5 holds without assump-

tion (4.38). However, if ‖ t−1/q′ [b(t)]−1‖q′;(0,1) < +∞, then

HσLn/(σ−1),q;b(IR
n) →֒ Lip(IRn),

c.f. [41, Theorem 5.12].
(ii) Assume that all the assumptions of Theorem 4.5 are satisfied. If r ∈ [q,+∞], then the

embedding

(4.57) HσLp,q;b(IR
n) →֒ Λµ(.)

∞,r(IR
n)

with µ = λqr is sharp with respect to the parameter µ ∈ Lr, that is, the target space Λ
µ(.)
∞,r(IR

n)

in (4.57) and the target space Λ
λqr(.)
∞,r (IRn) (i.e. the target space in (4.57) with µ = λqr) satisfy

(4.58) Λ
λqr(·)
∞,r (IRn) →֒ Λµ(·)

∞,r(IR
n).
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Indeed, as in the proof of Theorem 4.1 (v), embedding (4.58) holds when (4.18) with λ replaced
by λqr is satisfied. However, by [10, Theorem 3.1], this variant of (4.18) is a consequence of
(4.19) with λ replaced by λqr. Finally, (4.57) and Corollary 4.6 (i) imply (4.50), which, in turn,
yields the mentioned variant of (4.19).

(iii) The target spaces in (4.40) form a scale {Λ
λqr(.)
∞,r (IRn)}+∞

r=q whose endpoint spaces with r =

+∞ and r = q are of particular interest. The former endpoint space Λ
λq∞(.)
∞,∞ (IRn) corresponds

to the target space in the Brézis-Wainger-type embedding while the latter endpoint space

Λ
λqq(.)
∞,q (IRn) corresponds to the target space in the Triebel-type embedding. Since the spaces

{Λ
λqr(.)
∞,r (IRn)}+∞

r=q satisfy

(4.59) Λ
λqr(.)
∞,r (IRn) →֒ Λ

λqs(.)
∞,s (IRn) if q ≤ r ≤ s ≤ +∞,

the embedding (4.40) with r = q, that is,

(4.60) HσLn/(σ−1),q;b(IR
n) →֒ Λ

λqq(.)
∞,q (IRn).

is optimal. (The proof of (4.59) is analogous to the proof of ([26, (3.14)]) if one replaces the
role of f∗(t) by the role of ω̃(f, t).)

(iv) By Theorem 4.5 (i), embedding (4.60) is continuous and, by Theorem 4.5 (iv), this embed-
ding is not compact. Moreover, Theorem 4.5 (iv) also shows that we cannot arrive to a compact

embedding if we replace the target space Λ
λqq(.)
∞,q (IRn) in (4.60) by a larger space Λ

λqr(.)
∞,r (Ω) with

r > q.
(v) Put X = HσLn/(σ−1),q;b(IR

n) and r = +∞. By Theorem 4.5 (i),

sup
t∈(0,1)

ω̃(f, t)

λq∞(t)/t
- ‖f‖X for all f ∈ X,

and, by Theorem 4.5 (i) and (ii) (cf. also part (vi) of this remark), the inequality

sup
t∈(0,1)

ω̃(f, t)

µ(t)/t
- ‖f‖X

does not hold for all f ∈ X if µ ∈ L satisfies

lim
t→0+

λq∞(t)

µ(t)
= +∞.

If we use an analogue of terminology from [32] and [48], this means that the function

λq∞(t)
t =

(∫ 2
tn τ−1[b(τ)]−q′dτ

)1/q′

, t ∈ (0, 1], is the continuous envelope function of the space

HσLn/(σ−1),q;b(IR
n). Using also Theorem 4.5 (iii), we can see that the couple

((∫ 2

tn
τ−1[b(τ)]−q′dτ

)1/q′

, q

)

is the continuous envelope of the space HσLn/(σ−1),q;b(IR
n).

(vi) Let r ∈ [q,+∞]. Using (4.39) and (4.38), we arrive at

(4.61)

∥∥∥∥τ
−1/r τ

λqr(τ)

∥∥∥∥
r;(0,t)

≈
t

λq∞(t)
for all t ∈ (0, 1).
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This implies that

(4.62) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

≈ lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)

t
λq∞(t)

.

Together with estimate

‖τ−1/rτ/µ(τ)‖r;(0,t) ≥ ‖τ1−1/r‖r;(0,t)/µ(t) ≈ t/µ(t) for all t ∈ (0, δ),

this shows that condition (4.41) is satisfied if

(4.63) lim
t→0+

λq∞(t)

µ(t)
= +∞.

(vii) Let r = +∞ and let the function t 7→ t/µ(t) be equivalent to a non-decreasing function
on some interval (0, δ) ⊂ (0, 1). Then

‖τ−1/rτ/µ(τ)‖r;(0,t) = ‖τ/µ(τ)‖∞;(0,t) ≈ t/µ(t) for all t ∈ (0, δ).

Applying this estimate in (4.62), we can see that (4.41) is now equivalent to (4.63).

(viii) Let r ∈ [q,+∞). Since any function ρ ∈ Lr satisfies
∥∥∥τ−1/r τ

ρ(τ)

∥∥∥
r;(0,δ)

< +∞ (cf. (2.15)),

we have
∥∥∥τ−1/r τ

ρ(τ)

∥∥∥
r;(0,t)

→ 0 as t → 0+. In particular, this holds with ρ = µ and ρ = λqr.

Thus, L’Hospital’s rule gives

(4.64) lim
t→0+

∥∥∥τ−1/r τ
µ(τ)

∥∥∥
r;(0,t)∥∥∥τ−1/r τ

λqr(τ)

∥∥∥
r;(0,t)

= lim
t→0+

λqr(t)

µ(t)

provided that the last limit exists.

Examples 4.9 (cf. [28, Examples 3.2]). Let σ ∈ (1, n + 1), p = n/(σ − 1), q ∈ (1,+∞] and let

r ∈ [q,+∞].

1. Let α, β ∈ IR and let b ∈ SV (0,+∞) be defined by

b(t) = l1(t)
α l2(t)

β , t > 0.

(i) If α < 1/q′ and β ∈ IR, then

(4.65) HσLp,q(log L)α(log log L)β(IRn) →֒ Λ
λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn),

with
λqq(t) ≈ t l1(t)

1−α l2(t)
−β , t ∈ (0, 1];

λqr(t) ≈ t l1(t)
1/r+1/q′−α l2(t)

−β, t ∈ (0, 1];

λq∞(t) ≈ t l1(t)
1/q′−α l2(t)

−β, t ∈ (0, 1].

(ii) If α = 1/q′ and β < 1/q′, then

HσLp,q(log L)α(log log L)β(IRn) →֒ Λ
λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn),

with

λqq(t) ≈ t l1(t)
1/q l2(t)

1−β , t ∈ (0, 1];

λqr(t) ≈ t l1(t)
1/r l2(t)

1/r+1/q′−β, t ∈ (0, 1];

λq∞(t) ≈ t l2(t)
1/q′−β, t ∈ (0, 1].
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(iii) If α = 1/q′ and β = 1/q′, then

HσLp,q(log L)α(log log L)β(IRn) →֒ Λ
λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn),

with
λqq(t) ≈ t l1(t)

1/q l2(t)
1/q l3(t), t ∈ (0, 1];

λqr(t) ≈ t l1(t)
1/r l2(t)

1/r l3(t)
1/r+1/q′ , t ∈ (0, 1];

λq∞(t) ≈ t l3(t)
1/q′ , t ∈ (0, 1].

(iv) If either α > 1/q′ or α = 1/q′ and β > 1/q′, then

HσLp,q(log L)α(log log L)β(IRn) →֒ Lip(IRn).

2. Let α ∈ (0, 1), β ∈ IR and let b ∈ SV (0,+∞) be defined by

b(t) = l1(t)
−(α−1)/q′ exp(β l1(t)

α), t > 0.

(i) If β < 0, then

HσLp,q;b(IR
n) →֒ Λ

λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn)

with
λqq(t) ≈ t l1(t

n)−(α−1)/q exp(−β l1(t
n)α), t ∈ (0, 1];

λqr(t) ≈ t l1(t
n)−(α−1)/r exp(−β l1(t

n)α), t ∈ (0, 1];
λq∞(t) ≈ t exp(−β l1(t

n)α), t ∈ (0, 1].

(ii) If β > 0, then

HσLp,q;b(IR
n) →֒ Lip(IRn).

5. Embeddings into generalized Hölder spaces: the case σ ∈ (0, 1)

In this section we present main results from [30]. First, we characterize continuous embed-
dings of the space HσX(IRn), with σ ∈ (0, 1) and a r. i. BFS X = X(IRn) = X(IRn, µn), into

the generalized Hölder space Λ
µ(·)
∞,r(IR

n) and then we apply this result to the case when the space
X(IRn) is the Lorentz-Karamata space Lp,q;b(IR

n). Second, we describe compact embeddings
of the space HσX(IRn), with σ ∈ (0, 1) and a r. i. BFS X = X(IRn) = X(IRn, µn), into the

generalized Hölder space Λ
µ(·)
∞,r(IR

n) and then we make use of this result in the case when the
space X(IRn) is the Lorentz-Karamata space Lp,q;b(IR

n).

Assuming that gσ ∈ X ′ in the next theorem, we reduce the continuous embedding to in-
equality (5.2) below, which involves the Hardy-type operator (1.6).

Theorem 5.1 ([30, Theorem 5.1]). Let σ ∈ (0, 1) and let X = X(IRn) = X(IRn, µn) be

a r. i. BFS such that ‖gσ‖X′ < +∞. Assume that r ∈ (0,+∞] and µ ∈ Lr. Then

(5.1) HσX(IRn) →֒ Λµ(·)
∞,r(IR

n)

if and only if

(5.2)

∥∥∥∥t
− 1

r [µ(t)]−1

∫ tn

0
τ

σ
n
−1f∗(τ) dτ

∥∥∥∥
r;(0,1)

- ‖f‖X for all f ∈ X.

Using Theorem 5.1 and Lemma 2.3, we arrive at the following corollary.

Corollary 5.2 ([30, Corollary 5.2]). Let σ ∈ (0, 1) and let X = X(IRn) be a r. i. BFS. Assume

that r ∈ (0,+∞] and µ ∈ Lr. Then (5.1) holds if and only if ‖gσ‖X′ < +∞ and (5.2) is

satisfied.
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Continuous embeddings of spaces HσLp,q;b(IR
n) with σ ∈ (0, 1) into generalized Hölder spaces

in the superlimiting case (that is, when p > n/σ) are characterized in the next theorem. Note
that part (i) of this theorem complements Corollary 4.2 (i).

Theorem 5.3 ([30, Theorem 6.3]). Let σ ∈ (0, 1), p ∈ (n
σ ,+∞), q ∈ [1,+∞], b ∈ SV (0,+∞),

r ∈ (0,+∞] and µ ∈ Lr. Let λ : (0, 1] → (0,+∞) be defined by

(5.3) λ(x) := xσ−n
p [b(xn)]−1 for all x ∈ (0, 1].

(Note that λ ∈ Lr for any r ∈ (0,+∞].)
(i) If 1 ≤ q ≤ r ≤ +∞, then

HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

if and only if

(5.4) lim
x→0+

λ(x)

µ(x)
< +∞.

(ii) If 0 < r < q ≤ +∞ and q > 1, then

HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

if and only if

(5.5)

∫ 1

0

(
λ(x)

µ(x)

)u dx

x
< +∞,

where 1
u := 1

r − 1
q .

Remark 5.4 ([30, Remark 6.4]). Assume that all the assumptions of Theorem 5.3 are satisfied.
(i) If r ∈ [q,+∞], then the embedding

(5.6) HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

with µ = λ is sharp with respect to the parameter µ (which means that the target space

Λ
µ(·)
∞,r(IR

n) in (5.6) and the space Λ
λ(·)
∞,r(IR

n) (that is, the target space in (5.6) with µ = λ)

satisfy Λ
λ(·)
∞,r(IR

n) →֒ Λ
µ(·)
∞,r(IR

n)). This follows from Theorem 5.3 (i) (condition (5.4)).
(ii) Among embeddings (5.6) that one with µ = λ and r = q is optimal, that is, the target

space Λ
µ(·)
∞,r(IR

n) in (5.6) and the space Λ
λ(·)
∞,q(IR

n) (that is, the target space in (5.6) with µ = λ
and r = q) satisfy

(5.7) Λλ(·)
∞,q(IR

n) →֒ Λµ(·)
∞,r(IR

n).

Indeed, if r ∈ [q,+∞], this follows from part (i) and the fact that Λ
λ(·)
∞,r(IR

n) →֒ Λ
λ(·)
∞,s(IR

n) if
0 < r < s ≤ +∞ (cf. [27, eq. (3.6)]). To verify it when 0 < r < q, note that (5.7) is satisfied if

∥∥∥∥t
−1/r ω(f, t)

µ(t)

∥∥∥∥
r;(0,1)

-

∥∥∥∥t
−1/q ω(f, t)

λ(t)

∥∥∥∥
q;(0,1)

for all f ∈ Λλ(·)
∞,q(IR

n).

Since ω(f, ·) is non-decreasing on (0, 1), this inequality holds (cf. [33, Proposition 2.1 (ii)] and
[47, Lemma, p. 176]) if

∫ 1

0

∥∥∥t−1/r[µ(t)]−1
∥∥∥

u

r;(x,1)
[λ(x)]u

dx

x
< +∞.

However, one can show that the last condition is equivalent to (5.5). The result follows from
Theorem 5.3 (ii) since (5.5) is satisfied when (5.6) holds.
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(iii) The embedding

HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

does not hold if µ = λ and r ∈ (0, q) (this follows from Theorem 5.3 (ii)).

(iv) Using the terminology of [32] or [48], we obtain that
(

λ(x)
x , q

)
is the continuity envelope

of HσLp,q;b(IR
n) (this is a consequence of part (i) with r = +∞ and part (iii)).

The following assertion is an analogue of Theorem 5.3 and concerns the limiting case when
p = n/σ.

Theorem 5.5 ([30, Theorem 6.5]). Let σ ∈ (0, 1), p = n
σ , q ∈ (1,+∞], r ∈ (0,+∞], µ ∈ Lr

and let b ∈ SV (0,+∞) be such that ‖t−1/q′ [b(t)]−1‖q′;(0,1) < +∞. Let λqr ∈ Lr be defined by

(5.8) λqr(x) := [b(xn)]q
′/r

(∫ xn

0
t−1[b(t)]−q′ dt

)1/q′+1/r

, x ∈ (0, 1].

(i) If 1 < q ≤ r ≤ +∞, then

HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

if and only if

(5.9) lim
x→0+

‖t−1/r[µ(t)]−1‖r;(x,1)

‖t−1/r[λqr(t)]−1‖r;(x,1)

< +∞.

(ii) If 0 < r < q ≤ +∞ and q > 1, then

HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

if and only if

(5.10)

∫ 1/2

0

(
‖t−1/r[µ(t)]−1‖r;(x,1)

‖t−1/r[λqr(t)]−1‖r;(x,1)

)u (∫ xn

0
t−1[b(t)]−q′ dt

)−1

[b(xn)]−q′ dx

x
< +∞,

where 1
u := 1

r − 1
q .

Remark 5.6 ([30, Remark 6.6]). Assume that all assumptions of Theorem 5.5 are satisfied.
(i) If r ∈ [q,+∞], then the embedding

(5.11) HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

with µ = λqr is sharp with respect to the parameter µ, that is, the target space Λ
µ(·)
∞,r(IR

n) in

(5.11) and the space Λ
λqr(·)
∞,r (IRn) (i.e., the target space in (5.11) with µ = λqr) satisfy

(5.12) Λ
λqr(·)
∞,r (IRn) →֒ Λµ(·)

∞,r(IR
n).

Indeed, the last embedding is satisfied if

(5.13)

∥∥∥∥t
−1/r ω(f, t)

µ(t)

∥∥∥∥
r;(0,1)

-

∥∥∥∥t
−1/r ω(f, t)

λqr(t)

∥∥∥∥
r;(0,1)

for all f ∈ Λ
λqr(·)
∞,r (IRn).

Since ω(f, ·) is non-decreasing on (0, 1), this inequality holds (cf. [33, Proposition 2.1 (i)]) if

(5.14) sup
x∈(0,1)

∥∥∥t−1/r[µ(t)]−1
∥∥∥

r;(x,1)

/∥∥∥t−1/r[λqr(t)]
−1
∥∥∥

r;(x,1)
< +∞,

which is equivalent to (5.9). The result follows from Theorem 5.5 (i) since (5.9) is satisfied
when (5.11) holds.
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(ii) Among embeddings (5.11) that one with µ = λqq and r = q is optimal, that is, the target

space Λ
µ(·)
∞,r(IR

n) in (5.11) and the space Λ
λqq(·)
∞,q (IRn) (that is, the target space in (5.11) with

µ = λqq and r = q) satisfy

(5.15) Λ
λqq(·)
∞,q (IRn) →֒ Λµ(·)

∞,r(IR
n).

Indeed, if r ∈ [q,+∞], this follows from part (i) and the fact that Λ
λqr(·)
∞,r (IRn) →֒ Λ

λqs(·)
∞,s (IRn)

if q ≤ r ≤ s ≤ +∞ (the proof of this is analogous to the proof of [27, eq. (3.18)]). To verify it
when 0 < r < q, note that (5.15) is satisfied if

∥∥∥∥t
−1/r ω(f, t)

µ(t)

∥∥∥∥
r;(0,1)

-

∥∥∥∥t
−1/q ω(f, t)

λqq(t)

∥∥∥∥
q;(0,1)

for all f ∈ Λ
λqq(·)
∞,q (IRn).

Since ω(f, ·) is non-decreasing on (0, 1), this inequality holds (cf. [33, Proposition 2.1 (ii)] and
[47, Lemma, p. 176]) if

∫ 1

0

∥∥∥t−1/r[µ(t)]−1
∥∥∥

u

r;(x,1)

∥∥∥t−1/q[λqq(t)]
−1
∥∥∥
−q u

r

q;(x,1)
[λqq(x)]−q dx

x
< +∞.

However, one can show that the last condition is equivalent to (5.10). The result follows from
Theorem 5.5 (ii) since (5.10) is satisfied when (5.11) holds.

(iii) The embedding

HσLp,q;b(IR
n) →֒ Λµ(·)

∞,r(IR
n)

does not hold if µ = λqr and r ∈ (0, q) (this follows from Theorem 5.5 (ii)).

(iv) Using the terminology of [32] or [48], we obtain that
(

λq∞(x)
x , q

)
is the continuity envelope

of HσLp,q;b(IR
n) (this is a consequence of part (i) with r = +∞ and part (iii)).

Examples 5.7. Let σ ∈ (0, 1), p = n/σ, q ∈ (1,+∞] and let r ∈ [q,+∞].

1. Let α, β ∈ IR and let b ∈ SV (0,+∞) be defined by

b(t) = l1(t)
α l2(t)

β , t > 0.

(i) If α > 1/q′ and β ∈ IR, then

(5.16) HσLp,q(log L)α(log log L)β(IRn) →֒ Λ
λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn),

with
λqq(t) ≈ l1(t)

1−α l2(t)
−β , t ∈ (0, 1];

λqr(t) ≈ l1(t)
1/r+1/q′−α l2(t)

−β , t ∈ (0, 1];

λq∞(t) ≈ l1(t)
1/q′−α l2(t)

−β , t ∈ (0, 1].

(ii) If α = 1/q′ and β > 1/q′, then

HσLp,q(log L)α(log log L)β(IRn) →֒ Λ
λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn),

with
λqq(t) ≈ l1(t)

1/q l2(t)
1−β , t ∈ (0, 1];

λqr(t) ≈ l1(t)
1/r l2(t)

1/r+1/q′−β, t ∈ (0, 1];

λq∞(t) ≈ l2(t)
1/q′−β, t ∈ (0, 1].

(iii) If either α < 1/q′ or α = 1/q′ and β < 1/q′ or α = 1/q′ and β = 1/q′, then we have (3.39)
or (3.40) or (3.41), respectively.

2. Let α ∈ (0, 1), β ∈ IR and let b ∈ SV (0,+∞) be defined by

b(t) = l1(t)
−(α−1)/q′ exp(β l1(t)

α), t > 0.
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(i) If β > 0, then

HσLp,q;b(IR
n) →֒ Λ

λqq(·)
∞,q (IRn) →֒ Λ

λqr(·)
∞,r (IRn) →֒ C0,λq∞(·)(IRn)

with
λqq(t) ≈ l1(t

n)−(α−1)/q exp(−β l1(t
n)α), t ∈ (0, 1];

λqr(t) ≈ l1(t
n)−(α−1)/r exp(−β l1(t

n)α), t ∈ (0, 1];
λq∞(t) ≈ exp(−β l1(t

n)α), t ∈ (0, 1].

(ii) If β < 0, then (3.42) holds.

Remark 5.8. (i) Note that the embedding

HσLp,q(log L)α(log log L)β(IRn) →֒ C0,λq∞(·)(IRn)

mentioned in part (ii) of Examples 5.7 remains true even if σ ∈ (0, n) provided that q ∈ (1,+∞)
(see [19, Theorem 4.3]).

(ii) Examples 5.7 continue to hold even if σ ∈ (0, n). This follows from results of the next
section.

Now, we make use of Theorem 2.4 to characterize compact embeddings of Bessel potential

spaces HσX(IRn) into generalized Hölder spaces Λ
µ(·)
∞,r(Ω).

Theorem 5.9 ([30, Theorem 7.3]). Let σ ∈ (0, 1) and let X = X(IRn) = X(IRn, µn) be

a r. i. BFS such that ‖gσ‖X′ < ∞. Assume that r ∈ (0,+∞), µ ∈ Lr and that Ω is a bounded

domain in IRn. Then

(5.17) HσX(IRn) →֒→֒ Λµ(·)
∞,r(Ω) ∗)

if and only if

(5.18) sup
‖f‖X≤1

∥∥∥∥t
− 1

r [µ(t)]−1

∫ tn

0
τ

σ
n
−1f∗(τ) dτ

∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+.

Using Theorem 5.9 and Lemma 2.3, we arrive at the following corollary.

Corollary 5.10 ([30, Corollary 7.4]). Let σ ∈ (0, 1) and let X = X(IRn) be a r. i. BFS. Assume

that r ∈ (0,+∞), µ ∈ Lr and that Ω is a bounded domain in IRn. Then (5.17) holds if and

only if ‖gσ‖X′ < +∞ and (5.18) is satisfied.

Compact embeddings of spaces HσLp,q;b(IR
n) with σ ∈ (0, 1) into generalized Hölder spaces

in the superlimiting case (that is, when p > n/σ) are characterized in the next theorem. Note
that part (i) of this theorem complements Corollary 4.2 (ii).

Theorem 5.11 ([30, Theorem 8.2]). Let σ ∈ (0, 1), p ∈ (n
σ ,+∞), q ∈ [1,+∞], b ∈ SV (0,+∞),

r ∈ (0,+∞) and µ ∈ Lr. Assume that Ω is a bounded domain in IRn. Let λ : (0, 1] → (0,+∞)
be defined by

(5.19) λ(x) := xσ−n
p [b(xn)]−1 for all x ∈ (0, 1].

(Note that λ ∈ Lr for any r ∈ (0,+∞].)
(i) If 1 ≤ q ≤ r < +∞, then

HσLp,q;b(IR
n) →֒→֒ Λµ(·)

∞,r(Ω)

if and only if

(5.20) lim
x→0+

λ(x)

µ(x)
= 0.

∗) Recall that this means that the mapping u 7→ u|Ω from H
σ
X(IRn) into Λ

µ(·)
∞,r(Ω) is compact.
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