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Anisotropic L2−estimates of weak solutions

to the stationary Oseen-type equations in R3

for a rotating body

S.Kra£mar, �.Ne£asová and P.Penel

Abstract

We study the Oseen problem with rotational e�ect in the whole three-
dimensional space. Using a variational approach we prove existence and unique-
ness theorems in anisotropically weighted Sobolev spaces. As the main tool we
derive and apply an inequality of the Friedrichs-Poincaré type.

1 Introduction

1.1 A problem

In a three-dimensional exterior domain in R3, the classical Oseen problem [18] de-
scribes the velocity vector u and the associated pressure p by a linearized version of
the incompressible Navier-Stokes equations as a perturbation of v∞ the velocity at
in�nity; v∞ is generally assumed to be constant in a �xed direction, say the �rst axis,
v∞ = |v∞| e1. In the next we denote |v∞| by k, and we will write the Oseen operator
k ∂1v. On the other hand it is known that for various �ows past a rotating obstacle,
the Oseen operator appears with some concrete non-constant coe�cient functions,
e.g. a (x) = ω × x, where ω is a given vector, see [9, 17]; in view of industrial ap-
plications a(x) can also play the role of an �experimental� known velocity �eld, see
[10].

This paper is devoted to the study of the following problem in R3 for vector function
u = u (x) and scalar function p = p (x):

−ν ∆u + k∂1u− (ω × x) · ∇u + ω × u +∇p = f in R3 (1.1)
divu = g in R3 (1.2)

u → 0 as |x| → ∞ (1.3)

where ω = (ω̃, 0, 0) is a constant vector, ν, k and ω̃ are some positive constants, and
f = f(x) a given vector function, g = g (x) a given scalar function.

We examine the problem assuming conditions which are necessary for an extension
of existence and uniqueness results also on the case of exterior domains (and solenoidal
solutions), see a forthcoming paper [12]. In particular, we need the assumption of a
non-zero divergence in general. We restrict ourselves to the assumption of compact
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support of g, it is su�cient for this aim. For this reason we will also prove two
di�erent uniqueness theorems, see Section 3.

The system arises from the Navier-Stokes system modelling viscous incompressible
�uid around a rotating body which is moving with a non-zero velocity in the direction
of its axis of rotation. An appropriate coordinate transform and a linearization yield
in the stationary case equations (1.1) and (1.2), for details see [3, 9].

Let us begin with some comment and relevant process of analysis of the problem
(1.1)�(1.3). The governing �uid motion is linear, but we are concerned in this paper
with R3 and the convective operators, k ∂1 and (ω × x) · ∇, cannot be treated as
perturbations of lower order of the Laplacian, this is well known.

A common approach to study the asymptotic properties of the solutions to the
Dirichlet problem of the classical steady Oseen �ow is to use convolutions with Os-
een fundamental tensor and its �rst and second gradients for the velocity (or with
the fundamental solution of Laplace equation for the pressure): the Lq estimates
in anisotropically weighted Sobolev spaces can be derived, see e.g. [2, 11, 13, 14].
The fundamental solution to rotating Oseen problem in the time dependent case is
known, see [20], but, unfortunately, the respective stationary kernel is not seem to
be of Calderon-Zygmund type. The Littlewood-Paley theory o�ers another approach
for an Lq-analysis: Thus, Lq estimates in non-weighted spaces were derived for the
rotating Stokes problem by T. Hishida [9], and for the rotating Oseen problem in
R3 by R. Farwig [3, 4]. Looking for estimates in anisotropically weighted spaces,
see [5], this approach generates some technical di�culties. Another approach using
non-stationary equations in both the linear and also non-linear cases is proposed by
G.P. Galdi and A.L. Silvestre in [8].

In this paper we will prefer a variational approach. The same variational view-
point has been already applied in [15, 16] by S. Kra£mar and P. Penel to solve the
following generic scalar model equation with a given non-constant and, in general,
non-solenoidal vector function a in an exterior domain Ω

−ν ∆u + k∂1u− a · ∇u = f in Ω

together with boundary conditions u = 0 on ∂Ω and u → 0 as |x| → ∞.
To re�ect the decay properties near the in�nity we introduce the following weight

functions:

w(x) = ηα
β (x) = ηα,δ

β,ε (x) = (1 + δr)α (1 + εs)β ,

with r = r (x) = |x| = (
∑3

i=1 x2
i )

1/2, s = s (x) = r − x1, x ∈ R3, ε, δ > 0, α, β ∈ R.
Discussing the range of the exponents α and β the corresponding weighted spaces
Lq (R3; w) give the appropriate framework to test the solutions to (1.1)-(1.3). This
paper is concerned with q = 2.

Let us mention that ηα
β belongs to the Muckenhoupt class A2 of weights in R3 if

−1 < β < 1 and −3 < α + β < 3.

1.2 Basic notations and elementary properties

Let us outline our notations. Let

Dm,q = Dm,q
(
R3
)

=
{
u ∈ L1

loc

(
R3
)

: Dlu ∈ Lq
(
R3
)}
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with the seminorm |u|m,q =
(∑

|l|=m

∫
R3 |u|q

)1/q

. It is known that Dm,q is a Banach
space (and if q = 2 a Hilbert space), provided we identify two functions u1, u2

whenever |u1 − u2|m,q = 0, i.e. u1, u2 di�er (at most) on the polynomial of the degree
m− 1. As usual, we denote by Dm,q

0 the closure of C∞
0 = C∞

0 (R3) in Dm,q.
Let (L2 (R3; w))

3 be the set of measurable vector functions f = (f1, f2, f3) on R3

such that
‖f‖2

2,R3; w =

∫
R3

|f |2 w dx < ∞.

We will use the notation L2
α,β instead of

(
L2
(
R3; ηα

β

))3 and ‖ · ‖2,α,β instead of
‖ · ‖

(L2(R3; ηα
β ))

3 . Let us de�ne the weighted Sobolev space H1
(
R3; ηα0

β0
, ηα1

β1

)
as the

set of functions u ∈ L2
α0,β0

with the weak derivatives ∂iu ∈ L2
α1,β1

. The norm of
u ∈ H1

(
R3; ηα0

β0
, ηα1

β1

)
is given by

‖u‖H1(R3; η
α0
β0

,η
α1
β1

) =

(∫
R3

|u|2 ηα0
β0

dx +

∫
R3

|∇u|2 ηα1
β1

dx

)1/2

.

As usual,
◦
H1
(
R3; ηα0

β0
, ηα1

β1

)
will be the closure of C∞

0 in H1
(
R3; ηα0

β0
, ηα1

β1

)
, where

C∞
0 is (C∞

0 (R3))
3
.

For simplicity, we shall use the following abbreviations:

L2
α,β instead of

(
L2
(
R3; ηα

β

))3
‖ · ‖2,α,β instead of ‖ · ‖

(L2(R3; ηα
β ))

3

◦
H1

α, β instead of
◦
H1
(
R3; ηα−1

β−1 , η
α
β

)
Vα,β instead of

◦
H1
(
R3; ηα−1

β , ηα
β

)
We shall use these last two Hilbert spaces for α ≥ 0, β > 0, α + β < 3. H1 and
◦
H1 mean, as usual, the non-weighted spaces (H1 (R3; 1, 1))3 and (

◦
H1 (R3; 1, 1))3,

respectively.
Concerning the weight functions ηα

β , we will use two notations ηα
β (x) and ηα,δ

β,ε(x)
taking the advantages of the following remark:

Remark 1.1 Let us note that for ηα,δ
β,ε and for any δ1, δ2, ε1, ε2 > 0 one has

cmin · ηα,δ2
β,ε2

≤ ηα,δ1
β,ε1

≤ cmax · ηα,δ2
β,ε2

,

cmin = min (1, (δ1/δ2)
α)·min(1, (ε1/ε2)

β), cmax = max (1, (δ1/δ2)
α) ·max(1, (ε1/ε2)

β).
The parameters δ and ε are useful to rescale separately the isotropic and anisotropic
parts of weight function ηα

β .

We also use the notation of sets BR = {x ∈ R3; |x| ≤ R} , BR = {x ∈ R3; |x| ≥ R} .
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1.3 Main results

The weighted estimates of the solution to the stationary classical Oseen problem were
�rstly obtained by R. Finn 1959, see [6], and then improved by R. Farwig [1] in 1992,
see [15] for other comments and references.

Let us assume for a moment that pressure p is known. In solving the problem
(1.1)�(1.3) with respect to u and p by means of a pure variational approach, we shall
deal with the following equation:

ν

∫
R3

|∇u|2 wdx + ν

∫
R3

u∇u · ∇w dx− k

2

∫
R3

|u|2 ∂1wdx (1.4)

−1

2

∫
R3

|u|2 div (w [ω × x]) dx =

∫
R3

f uw dx−
∫

R3

∇p · uw dx

as we get integrating formally the product of (1.1) and w u with w an appropriate
weight function. First, let us note that div

(
ηα

β [ω × x]
)
equals zero for w = ηα

β . The
left hand side can be estimated from below:

2−1ν

∫
R3

|∇u|2 w dx + 2−1

∫
R3

|u|2
(
−ν |∇w|2 /w − k∂1w

)
dx (1.5)

Because the term −ν |∇w|2 /w− k∂1w is known explicitly, we have the possibility to
evaluate it from below by a small negative quantity in the form −C ηα−1

β−1 without any
constraint in s(·) (see Lemma 2.5).

An improved weighted Friedrichs-Poincaré type inequality in
◦
H1

α, β is necessary: it
is the �rst main technical result of this paper. The obtained inequality allows us to
compensate by the viscous Dirichlet integral the �small� negative contribution in the
second integral of (1.5). We �nally prove the existence of a weak solution (1.1) - (1.3)
in Vα,β by the Lax-Milgram theorem.

The main results can be summarized in the following theorems (parameters α, β,
δ, ε are speci�ed in Section 1.2):

Theorem 1.2 Let β > 0. There are positive constants R0, c0, c1 depending on α,
β, δ, ε (explicit expressions of these constants are given by Lemma 2.3, essentially
c0 = O(ε−2 + δ−2) and c1 = O(ε−1δ−1) for δ and ε tending to zero) such that for all

v∈
◦
H1

α, β

‖v‖2
2,α−1,β−1 ≤ c0

∫
BR0

|∇v|2 ηα
β dx + c1

∫
BR0

|∇v|2 ηα
β dx. (1.6)

Theorem 1.3 (Existence and uniqueness) Let 0 < β ≤ 1, 0 ≤ α < y1β, f ∈ L2
α+1,β,

g ∈ W 1,2
0 with supp g = K ⊂⊂ R3, and

∫
R3 g dx = 0; y1 will be precised in Lemma

4.3. Then there exists a unique weak solution {u, p} of the problem (1.1) - (1.3) such
that u ∈ Vα,β, p ∈ L2

α,β−1, ∇p ∈ L2
α+1,β and

‖u‖2,α−1,β + ‖∇u‖2,α,β + ‖p‖2,α,β−1 + ‖∇p‖2,α+1,β ≤ C
(
‖f‖2,α+1,β + ‖g‖1,2

)
.
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2 Friedrichs-Poincaré inequality

In this section we derive an inequality of the Friedrichs-Poincaré type in weighted
Sobolev spaces. We also recall some necessary technical assertions, for more details
see [15].

Proposition 2.1 For arbitrary α, β ≥ 0 and x ∈ R3, x 6= 0 :

∆ηα
β (x) ≥ 2β min (1, β) ε δ ηα−1

β−1 (x)

Proof. We introduce β∗ = min(β, 1) in an explicit expression of ∆ηα
β :

∆ηα
β =

{(
α2δ2 1 + εs

1 + δr
− αδ2 1 + εs

1 + δr

)
+ 2αβδε

s

r

+2β (β − 1)
ε

r
(1 + δr)

εs

1 + εs

+2α δ2 (1 + εs)
1

δr
+ (1− β∗ + β∗) 2β

ε

r
(1 + δr)

}
ηα−1

β−1 ,

for r > 0. We denote the �ve terms in { } by T1, T2, . . . , T5, and overwrite the previ-
ous relation as ∆ηα

β = {[T1 + T4] + T2 + [T3 + (1− β∗) T5] +β∗T5} ηα−1
β−1 . Observing

that T5 ≥ 2βεδ, the proposition is trivial. ut

Proposition 2.2 Let α ≥ 0, β ≥ 0, δ > 0, ε > 0 and κ > 1. Then for x ∈ R3,
|x| ≥

∣∣δ−1 − (2ε)−1
∣∣ (κ− 1)−1:∣∣∇ηα

β (x)
∣∣2 ≤ 2 κ δ ε (α + β)2

(
η

α−1/2
β−1/2 (x)

)2

(2.7)

Let α ≥ 0, β ≥ 0, δ > 0, ε > 0 and (β − α) (2ε− δ) ≥ 0. Then for x ∈ R3, x 6= 0:∣∣∇ηα
β (x)

∣∣2 ≤ (αδ + 2βε)2
(
η

α−1/2
β−1/2 (x)

)2

(2.8)

Proof. If β = 0 and α = 0 then both inequalities (2.7) and (2.8) are valid. Let us
concentrate on the nontrivial cases:

For r > 0, s ∈ [0, 2r], we have that ∂g/∂s > 0, where g is a function de�ned by
relations: ∣∣∇ηα

β (x)
∣∣2 = g(s (x) , r (x))

(
η

α−1/2
β−1/2 (x)

)2

,

g(s, r) ≡ α2δ2

(
1 + εs

1 + δr

)
+ 2αβδε

s

r
+ 2β2ε2

(
1 + δr

1 + εs

)
s

r
.

So, g(s, r) is increasing as a function of s and

G (r) ≡ max
s∈[0,2r]

g(s, r) = g (2r, r) (2.9)

= α2δ2 1 + 2εr

1 + δr
+ 4αβδε + 4β2ε2 1 + δr

1 + 2εr
≤ 2κ (α + β)2 δε

for κ > 1 and r ≥
∣∣δ−1 − (2ε)−1

∣∣ (κ− 1)−1. So, inequality (2.7) is proved.
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To justify second inequality (2.8), we observe that for the given values of α, β, δ,
ε and for r > 0, G(r) ≤ G(0). ut

Next we derive an inequality of the Friedrichs-Poincaré type in the space
◦
H1

α, β. It
is necessary for our aim to get expressions of constants in this inequality. It follows
from Proposition 2.1

Lemma 2.3 Let α ≥ 0, β > 0, α + β < 3, κ > 1. Let δ and ε be arbitrary positive

constants, such that (β − α) (2ε− δ) ≥ 0. Then for all u∈
◦
H1

α, β

‖u‖2
2,α−1,β−1 ≤ c0 ‖∇u|BR0‖

2
2,α,β + c1

∥∥∇u|BR0
∥∥2

2,α,β
, (2.10)

where c0 = [(αδ + 2βε) / (ββ∗δε)]2 , c1 = [(2κ) / (δε)] · [(α + β) / (ββ∗)]2 and R0 ≥∣∣δ−1 − (2ε)−1
∣∣ (κ− 1)−1.

Remark 2.4 Let us observe that if additionally δ < 2ε and 1 < κ ≤ 2ε/δ + δ/ (2ε)−1
then c0 ≥ c1.

Proof of Lemma 2.3 Due to the density of C∞
0 in

◦
H1

α, β it is su�cient to prove the
inequality for all u ∈ C∞

0 . From Proposition 2.1 it follows that for v ∈ C∞
0

2ββ∗δε

∫
R3\Bρ

v2ηα−1
β−1 dx ≤

∫
R3\Bρ

v2∆ηα
β dx

= −2

∫
R3\Bρ

v∇ v·∇ηα
β dx +

∫
∂Bρ

v2∇ηα
β ·n dS

≤ ββ∗δε

∫
R3\Bρ

v2ηα−1
β−1 dx +

1

ββ∗δε

∫
R3\Bρ

|∇v|2
∣∣∇ηα

β

∣∣2 η−α+1
−β+1 dx

+

∫
∂Bρ

v2 ∇ηα
β ·n dS.

Hence, because the surface integral is a value of the order O (ρ2) , we have:

ββ∗δε

∫
R3

v2ηα−1
β−1 dx ≤ 1

ββ∗δε

∫
R3

|∇v|2
∣∣∇ηα

β

∣∣2 η−α+1
−β+1 dx (2.11)

By means of the Cauchy-Schwarz inequality and from Proposition 2.2 with R3=BR0∪
BR0 , R0≥

∣∣δ−1 − (2ε)−1
∣∣ /(κ− 1) we �nally get (2.10). ut

We will need some technical lemmas. Let us de�ne Fα,β(s, r; ν) by the relation:

Fα,β (s, r; ν) · ηα−1
β−1 ≡ −ν

∣∣∇ηα
β

∣∣2 /ηα
β − k ∂1 ηα

β (2.12)

The following lemma gives the evaluation of Fα,β(s, r; ν) from below

Lemma 2.5 Let 0 ≤ α < β, κ > 1, 0 < ε ≤ (1/ (2κ))· (k/ν) · ((β − α) /β2) and δ,
ν, k > 0. Then

Fα,β (s, r; ν)−
(
1− κ−1

)
kδε (β − α) s ≥ −αδk

(
1 + νk−1αδ

)
(2.13)

for all r > 0 and s ∈ [0, 2r] .
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Proof. Expressing the function Fα,β (s, r; ν) explicitly we get:

Fα,β (s, r; ν) = −να2δ2

(
1 + εs

1 + δr

)
− 2ναβδε

s

r
− 2νβ2ε2

(
1 + δr

1 + εs

)
s

r

−kαδ (1 + εs)
r − s

r
+ kβε (1 + δr)

s

r

For convenient use we subtract (1− κ−1) kδε (β − α) s from Fα,β (s, r; ν). We observe
(see Appendix A) that, for the given α, β, ε, κ, for all δ, ν, k > 0 and for r >
0, Fα,β (s, r; ν) − (1− κ−1) kδε (β − α) s ≥ Fα,β (0, r; ν) , which immediately gives
inequality (2.13). ut

The following technical proposition about the existence of a solution of an ordi-
nary di�erential equation in a space of periodical functions we need in the proof of
uniqueness of a solution of problem (1.1)�(1.3), see the proof of Theorem 3.1, and
also in the proof of existence of a solution of the problem for checking solenoidality
of a constructed solution, see the proof of Theorem 4.4.

Proposition 2.6 Let a ∈ C, Re a > 0. Let f ∈ C∞ (R) be a 2π-periodical complex
function. Then there is unique 2π-periodical solution g ∈ C∞ (R) of the equation

g′ + a g = f

and the solution g can be expressed in the following form:

g (ϕ) =
(
e2πa − 1

)−1
∫ 2π

0

eatf (ϕ + t) dt = e−aϕ

∫ ϕ

−∞
eatf (t) dt

Proof of the proposition follows from standard computations.

3 Uniqueness in R3

In this section we will prove two theorems about uniqueness of a weak solution of
problem (1.1)�(1.3). The �rst method gives the uniqueness in �larger� function spaces.
On the other hand the second method can be used without any change also in the
case of an exterior domain. In the present paper we need only one of these two
uniqueness results. But, the both theorems (the second formulated in an exterior
domain) are necessary for extension the results of present paper onto the case of an
exterior domain, see [12].

Theorem 3.1 (Uniqueness in R3) Let {u, p} be a distributional solution of the prob-
lem (1.1)�(1.3) with f = 0, g = 0 such that u ∈ D1,2

0 and p ∈ L2
loc. Then u = 0 and

p = const.

Proof. From the condition u ∈ D1,2
0 we get ∇u ∈ L2, u ∈ L6, u ∈ S ′. Because

div ((ω × x) · ∇u− ω × u) = (ω × x) ·∇divu = 0, we have 4p = 0. Hence, applying
Laplacian and the Fourier transform we get

4 (−ν ∆u + k ∂1u− (ω × x) · ∇u + ω × u) = 0,
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|ξ|2
(
ν |ξ|2 û + i k ξ1û− (ω × ξ) · ∇ξû + ω × û

)
= 0 in S ′.

Assuming the equation in cylindrical coordinates (ξ1, ρ, ϕ) , and denoting T (ϕ) v̂ =
û (ξ1, ρ, ϕ) , where

T (ϕ) =

 1, 0, 0
0, cos (ϕ) , − sin (ϕ)
0, sin (ϕ) , cos (ϕ)

 ,

we get
|ξ|2

{
−∂ϕv̂ +

[
(ν/ω̃) |ξ|2 + i (k/ω̃) ξ1

]
v̂
}

= 0 in S ′. (3.14)

We will show that from this equation follows that supp v̂ ⊂ {0} , and due to the
de�nition of v̂ we will have also supp û ⊂ {0} . This means that u is a polynomial of
x1, x2, x3. Because u ∈ L6 we get u = 0. Substituting into (1.1) we get ∇p = 0 and
p = const.

So, we have to prove that for an arbitrary real vector function Ψ ∈ C∞
0 (R3 \ {0})

de�ned for [ξ1, ξ2, ξ3] ∈ R3 we have 〈v̂, Ψ〉 = 0. If for each Ψ ∈ C∞
0 (R3 \ {0}) there

is a function Φ ∈ C∞
0 (R3 \ {0}) such that

∂ϕ

(
|ξ|2 Φ

)
+
[
(ν/ω̃) |ξ|2 + i (k/ω̃) ξ1

] (
|ξ|2 Φ

)
= Ψ (3.15)

then from (3.14) follows:

0 =
〈
|ξ|2

{
−∂ϕv̂ +

[
(ν/ω̃) |ξ|2 + i (k/ω̃) ξ1

]
v̂
}

, Φ
〉

=
〈
v̂, ∂ϕ

(
|ξ|2 Φ

)
+
[
(ν/ω̃) |ξ|2 + i (k/ω̃) ξ1

] (
|ξ|2 Φ

)〉
= 〈v̂, Ψ〉

Hence, the proof of supp v̂ ⊂ {0} is reduced to the solvability of (3.15). First we note
that it is su�cient to solve the equation

∂ϕζ +
(
(ν/ω̃) |ξ|2 + i (k/ω̃) ξ1

)
ζ = Ψ (3.16)

because the division on the expression |ξ|2 de�nes the one-to-one correspondence of
the space C∞

0 (R3 \ {0}) onto C∞
0 (R3 \ {0}) .

To analyze the equation (3.16) we assume this equation in cylindrical coordinates
[ξ1, ρ, ϕ] , ρ = (ξ2

2 + ξ2
3)

1/2
. For an arbitrary real vector function Ψ ∈ C∞

0 (R3 \ {0})
de�ned for [ξ1, ξ2, ξ3] ∈ R3 we de�ne f (t) := Ψ (ξ1, ρ cos t, ρ sin t) , a := (ν/ω̃) |ξ|2 +
i (k/ω̃) ξ1, assuming ω̃ > 0. Using the Proposition 2.6 we get the solution of (3.16 )
in the form

ζ (ξ1, ρ, ϕ) =

{
exp

[
2π

(
ν

ω̃
|ξ|2 + i

k

ω̃

)]
− 1

}−1

·
∫ 2π

0

exp

[(
ν

ω̃
|ξ|2 + i

k

ω̃
ξ1

)
t

]
Ψ (ξ1, ρ cos (t + ϕ) , ρ sin (t + ϕ)) dt.

It is easy to see that function ζ as the function of [ξ1, ξ2, ξ3] is in�nitely di�erentiable
with respect to these variables and ζ ∈ C∞

0 (R3 \ {0}) . Finally we put Φ = ζ/ |ξ|2 .
ut

Theorem 3.2 Let {u, p} be a distributional solution of the problem (1.1)�(1.3) with
f = 0 and g = 0 such that u ∈V0,0 and p ∈ L2

−1,0. Then u = 0 and p = 0.
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Proof. Let Φ = Φ(z) ∈ C∞
0 (〈0, +∞)) be a non-increasing cut-o� function such

that Φ(z) ≡ 1 for z < 1/2 and Φ(z) ≡ 0 for z > 1. Let |Φ′| ≤ 3. Let ΦR ≡ ΦR (x) ≡
Φ (|x|/R). We have |∇ΦR| ≤ 3/R and |∂1ΦR| ≤ 3/R for x ∈ R3, R/2 ≤ |x| ≤ R.
Let {Rj} ∈ R be an increasing sequence of radii with the limit +∞. So we have that

uj ≡ u ·ΦRj
∈

◦
H1, and {uj} is a sequence of functions with limit u in the space V0,0.

Using the (non-solenoidal) test functions ϕ = u Φ2
Rj

= uj ΦRj
∈

◦
H1 for equation

(1.1) we get:

ν

∫
R3

∇u · ∇
(
u Φ2

Rj

)
dx + k

∫
R3

∂1u · u Φ2
Rj

dx (3.17)

+

∫
R3

(ω × x) · ∇u · u Φ2
Rj

dx +

∫
R3

∇p · u Φ2
Rj

dx = 0

Using in (3.17) relation ∇u · ∇
(
uΦ2

Rj

)
= |∇uj|2 −∇ΦRj

· ∇ΦRj
u2, integrating by

parts, we get after some evident rearrangements

ν

∫
R3

|∇uj|2 dx− 1

2

∫
R3

div (ω × x)u2
j dx

−k

2

∫
R3

u2 ∂1Φ
2
Rj

dx− 1

2

∫
R3

u2 (ω × x) · ∇Φ2
Rj

dx

−ν

∫
R3

∣∣∇ΦRj

∣∣2 u2 dx−
∫

R3

pu·∇
(
Φ2

Rj

)
dx = 0.

ν

∫
R3

|∇uj|2 dx ≤ C

(∫
B

Rj/2

Rj

u2r−1 dx +

∫
B

Rj/2

Rj

|p| |u| r−1 dx

)
.

u ∈ L2
−1,0, p ∈ L2

−1,0, pu ∈ L1
−1,0. So, for j → ∞ we get

∫
R3 |∇u|2 dx ≤ 0. Hence,

the function ∇u = 0 a.e. in R3, and this means u is a constant a.e. in R3. From
u ∈ L2

−1,0 follows that u = 0 a.e. in R3. Using now an arbitrary test function φ for
equation (1.1), we get

∫
R3 ∇p φ dx = 0. So, the function ∇p = 0 a.e. in R3, and this

means p is a constant a.e. in R3. From p ∈ L2
−1,0 follows that p = 0 a.e. in R3, and

the uniqueness is proved. ut

4 Existence of a solenoidal solution

In this section we will construct a weak solution of the problem assuming that g = 0.

4.1 Existence of the pressure in R3

If there exist distributions u, p satisfying

−ν ∆u + k ∂1u− (ω × x) · ∇u + ω × u +∇p = f in R3

divu = 0 in R3

then pressure p satis�es the equation

4p = div f (4.18)

9



because div ((ω × x) · ∇u− ω × u) = (ω × x) ·∇divu = 0, and div(∆u + k ∂1u) = 0
provided divu = 0.

Let E be the fundamental solution of the Laplace equation, i.e. E = −1/ (4πr) .
Assuming �rstly f ∈C∞

0 we have p = E ?div f and ∇p = ∇E ?div f and so, p = ∇E ? f
and∇p = ∇2E? f . It is well known that both formulas can be extended for f ∈ L2

α+1, β

with 0 < β < 1 and −2 < α + β < 2 (the last convolution ∇p = ∇2E ? f due to
the fact that ∇2E is the singular kernel of the Calderon-Zygmund type and that ηα+1

β

belongs to the Muckenhoupt class of weights A2 ), see [2, Thm. 3.2, Thm 5.5], [14,
Thm. 4.4, Thm 5.4], where the theorems are formulated for the pressure part P of
the fundamental solution of the classical Oseen problem, so P = ∇E and ∇P = ∇2E .
For f ∈ L2

α+1, β we get p ∈ L2
α, β−1 and ∇p ∈ L2

α+1, β, and there are positive constants
C1, C2 such that the following estimates are satis�ed:

‖p‖2
2,α,β−1 ≤ C1 ‖f‖2

2,α+1,β , ‖∇p‖2
2,α+1,β ≤ C2 ‖f‖2

2,α+1,β (4.19)

4.2 The problem in BR.

We will study in this section the existence of a weak solution of the following problem
in a bounded domain BR, pressure p is assumed here to be known, the right hand
side f −∇p = f̃ ∈ L2

α+1, β :

−ν∆u + k ∂1u− (ω × x) · ∇u + ω × u = f̃ in BR (4.20)
u = 0 on ∂BR (4.21)

We show the existence of a weak solution uR ∈
◦
H(BR) . Following (1.4), (1.5) again

with w = η0
β0
, β0 ∈ (0, 1], using notation (2.12), let us introduce a continuous bilinear

form Q̃ (·, ·) on
◦
H(BR)×

◦
H(BR):

Q̃ (u,v) =

∫
BR

ν∇u · ∇
(
v · η0

β0

)
dx + k

∫
BR

∂1u ·
(
vη0

β0

)
dx

+

∫
BR

(ω × x) · ∇u
(
vη0

β0

)
dx,

Q̃ (v,v) ≥ 2−1ν

∫
BR

|∇v|2 η0
β0

dx + 2−1

∫
BR

v2F0,β0 (s, r; ν) η−1
β0−1dx. (4.22)

Lemma 4.1 Let 0 < β0 ≤ 1. Then, for all f̃ ∈ L2
1,β0

(BR), ε0 < (1/2) · (k/ν) · (1/β0),

ηα
β0
≡ ηα,ε0

β0,ε0
, there exists unique uR ∈

◦
H(BR) such that for all v ∈

◦
H(BR)

Q̃ (uR,v) =

∫
BR

f̃ ·vη0
β0

dx. (4.23)

Proof. Bilinear form Q̃ is coercive, i.e. there exists a constant CR > 0 such that
Q̃ (v,v) ≥ CR ‖v‖2 , where ‖·‖ is here the norm in the space

◦
H(BR). Indeed, we get

Q̃ (v,v) ≥ ν

2

∫
BR

|∇v|2 η0
β0

dx +
1

2

∫
BR

v2F0,β0(s, r; ν) η−1
β0−1dx

10



Because ε0 < (1/2) · (k/ν) · (1/β0) there is a constant κ satisfying all previous con-
ditions and additionally ε0 ≤ (1/2κ) · (k/ν) · (1/β0). Because α = 0 we get from
Lemma 2.5∫

BR

v2F0,β0(s, r; ν) η−1
β0−1dx ≥

(
1− κ−1

)
kε2

0β0

∫
BR

v2η−1
β0−1s dx,

Q̃ (v,v) ≥ ν

2

∫
BR

|∇v|2 η0
β0

dx +
1

2

(
1− 1

κ

)
kε0β0

∫
BR

v2η−1
β0−1 (ε0s) dx.

Using Lemma 2.3 and Remark 2.4 we derive:

Q̃ (v,v) ≥ ν

4

∫
BR

|∇v|2 η0
β0

dx +
ν

16
ε2
0β

2
0

∫
BR

v2η−1
β0−1dx

+
1

2

(
1− 1

κ

)
kε0β0

∫
BR

v2η−1
β0−1 (ε0s) dx

≥
(

1− 1

κ

)
ν

4
min

{
1,

1

4
ε2
0β

2
0 , 2

k

ν
β0ε0

}
(4.24)

·
(∫

BR

|∇v|2 η0
β0

dx +

∫
BR

v2η−1
β0

dx

)
Q̃ (v,v) ≥ CR

(∫
BR

|∇v|2 dx +

∫
BR

v2dx

)
= CR ‖v‖2 , (4.25)

where CR = (ν/4) · (1− κ−1) · min {1, ε2
0β

2
0/4, 2 (k/ν) βε0} · (1 + ε0 R) . Using Lax-

Milgram theorem we get that there is uR ∈
◦
H(BR) such that (4.23) is satis�ed. ut

Remark 4.2 An arbitrary function Φ∈
◦
H(BR) can be expressed in the form Φ =

φ η0
β0
, where φ is a function from

◦
H(BR). Therefore we have for uR

Q (uR,Φ) =

∫
BR

f̃ ·Φ dx, (4.26)

for an all Φ∈
◦
H(BR) where by the de�nition Q (uR,Φ) ≡ Q

(
uR, φ · η0

β0

)
≡ Q̃ (uR, φ) .

4.3 Uniform estimates of uR

Our next aim is to prove that the weak solutions uR of (4.23) are uniformly bounded
in Vα,β as R → +∞.

Let y1 be the unique real solution of the algebraic equation 4y3 +8y2 +5y−1 = 0.
It is easy to verify that y1 ∈ (0, 1). We will explain later, why the control of α/β by
y1 is necessary.

Lemma 4.3 Let 0 < β ≤ 1, 0 ≤ α < y1β, f̃ ∈ L2
α+1,β. Then, as R → +∞, the weak

solutions uR of (4.23) given by Lemma 4.1 are uniformly bounded in Vα,β. There is
a constant c > 0, which does not depend on R such that∫

R3

ũ2
Rηα−1

β dx +

∫
R3

|∇ũR|2 ηα
βdx ≤ c

∫
R3

∣∣∣̃f ∣∣∣2 ηα+1
β dx (4.27)

for all R greater than some R0 > 0, ũR being extension by zero of uR on R3 \BR.
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Proof. First, we derive estimate of uR on a bounded subdomain BR0 ⊂ BR; The
choice of R0 will be given in the next part of the proof. Our aim is to get an estimate
with a constant not depending on R. Let us substitute φ = uR into (4.23). Hence,
we get from (4.24):

Q̃ (uR,uR) =

∫
BR

f̃ uRη0
β0

dx ≥ C1

(∫
BR

|∇uR|2 η0
β0

dx +

∫
BR

u2
Rη−1

β0
dx

)
,

with the constant C1 > 0 stated in (4.24). Let R0 be some �xed positive number
such that 0 < R0 < R. We get∫

BR

|∇uR|2 ηα
βdx +

∫
BR

u2
Rηα−1

β dx ≤ C2

∫
BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx, (4.28)

where the constant C2 = C−1
1 (1 + ε0 R0)

α (1 + ε0 2 R0)
|β−β0| depend on k, ν, α, β,

β0, ε0, R0, κ, but does not depend on R.
Now, we are going to derive an estimate of uR on domain BR. Using the test

function Φ=uRηα
β =uR(1 + δr)α(1 + εs)β ∈

◦
H(BR) in (4.26) we get after integration

by parts:

ν

∫
BR

|∇uR|2 ηα
βdx + ν

∫
BR

uR∇uR · ∇ηα
β dx− k

2

∫
BR

u2
R ∂1η

α
βdx

=

∫
BR

f̃uRηα
βdx

So, we get for some κ > 1:

ν

2

∫
BR

|∇uR|2 ηα
βdx +

1

2

∫
BR

u2
RFα,β(s, r; ν)ηα−1

β−1dx ≤
∫

BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx

Let R0 ≥
∣∣δ−1 − (2ε)−1

∣∣ (κ − 1)−1. Using Lemma 2.5 (with 0 ≤ α < β, ε ≤
(1/ (2κ)) (k/ν) ((β − α) /β2)) and Lemma 2.3 (with δ < 2ε), the second term in
the previous estimate can be evaluated from below:∫

BR

u2
R Fα,β(s, r; ν))ηα−1

β−1 dx

≥ −αδk
(
1 +

νκ

k
αδ
) 2κ

δε

(
α + β

ββ∗

)2 ∫
B

R0
R

|∇uR|2 ηα
βdx

+
(
1− κ−1

)
kδε (β − α)

∫
B

R0
R

u2
Rηα−1

β−1s dx− 2C4

∫
BR0

|∇uR|2 ηα
βdx

Denote C5 = αδk (1 + κ (ν/κ) αδ) (κ/ (δ ε)) ((α + β) / (ββ∗))2 . It is clear that C5 ≤
ν/ (2 κ2) < ν/ (2 κ) if 1 + νκαδ/k ≤ κ (i.e. δ ≤ (k/ν) · ((κ− 1)) / (κβ) ) and
α ≤ (1/ (2κ4)) · (ν/k) · ((β β∗) / (α + β))2 ε. We have

ν

2κ

∫
BR

|∇uR|2 ηα
β dx +

1

2

(
1− 1

κ

)
kδε (β − α)

∫
BR

u2
Rηα−1

β−1 s dx

−C6

∫
BR0

u2
Rηα−1

β−1dx− C7

∫
BR0

|∇uR|2 ηα
βdx ≤

∫
BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx.
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We use now relation (4.28) in order the estimate the integrals computed on the domain
BR0 . Before using the mentioned inequality we should re-scale it with respect to new
values ε, δ, see Remark 1.1. The new constant in (4.28) after rescaling we denote C ′

2.

ν

κ

∫
BR

|∇uR|2 ηα
βdx + kδε (β − α)

∫
BR

u2
Rηα−1

β−1sdx ≤ C8

∫
BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx,

where C8 = {1 + C ′
2 max (C6, C7)} · 2 · (1− κ−1)

−1. We use Lemma 2.3 and Remark
2.4. So, if δ < 2ε and 1 < κ ≤ 2ε/δ + δ/ (2ε)− 1 we get

ν

2 κ

(
β β∗δ ε

αδ + 2βε

)2 ∫
BR

u2
R ηα−1

β−1 dx ≤ ν

2κ

∫
BR

|∇uR|2 ηα
β dx,

ν

2κ

∫
BR

|∇uR|2 ηα
βdx +

ν

2κ

(
β β∗δ ε

αδ + 2βε

)2 ∫
BR

u2
Rηα−1

β−1 dx

+kδε (β − α)

∫
BR

u2
Rηα−1

β−1s dx ≤ C8

∫
BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx.

So we get ∫
BR

|∇uR|2 ηα
βdx + 2

∫
BR

u2
Rηα−1

β−1 dx + 2ε

∫
BR

u2
Rηα−1

β−1s dx

=

∫
BR

|∇uR|2 ηα
βdx + 2

∫
BR

u2
Rηα−1

β dx ≤ C10

∫
BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx,

C9 = min
(
ν/ (2κ) , (ν/ (2κ)) (ββ∗δε/ (αδ + 2βε))2 , kδ (β − α) /2) and C10 = C8/C9.

We have also:∫
BR

∣∣∣̃f ∣∣∣ |uR| ηα
βdx ≤ t

2

∫
BR

u2
Rηα−1

β dx +
1

2t

∫
BR

∣∣∣̃f ∣∣∣2 ηα+1
β dx

So, if we choose t = 2 · C−1
10 then we get :∫

BR

|∇uR|2 ηα
βdx +

∫
BR

u2
R ηα−1

β dx ≤ c

∫
R3

∣∣∣̃f ∣∣∣2 ηα+1
β dx,

It can be easily shown that the all conditions on α, β, δ, ε, κ used in the proof are
compatible if 0 ≤ α < y1β, see Appendix B. ut

4.4 The problem in R3 with zero divergence

Let y1 be the same as in Lemma 4.3.

Theorem 4.4 (Existence and uniqueness) Let 0 < β ≤ 1, 0 ≤ α < y1β, f ∈ L2
α+1,β.

Then there exists a unique weak solution {u, p} of the problem

−ν ∆u + k∂1u− (ω × x) · ∇u + ω × u +∇p = f in R3, (4.29)
divu = 0 in R3 (4.30)

such that u ∈ Vα,β, p ∈ L2
α,β−1, ∇p ∈ L2

α+1,β and

‖u‖2
2,α−1,β + ‖∇u‖2

2,α,β + ‖p‖2
2,α,β−1 + ‖∇p‖2

2,α+1,β ≤ C ‖f‖2
2,α+1,β . (4.31)
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Proof. Existence. Let p be the same as in Subsection 4.1. Let Rn ⊂ R, Rn > 0,
n ∈ N be a sequence converging to +∞. Let uRn be the weak solution of (4.20),
(4.21) on BRn . Extending uRn by zero on R3 \BRn to a function ũn ∈ Vα,β we get a
bounded sequence {ũn} in Vα,β. Thus, there is a subsequence ũnk

of ũn with a weak
limit u in Vα,β. Obviously, u is a weak solution of (4.29) and

‖u‖2
2,α−1,β + ‖∇u‖2

2,α,β ≤ lim inf
k∈N

(∫
R3

ũ2
nk

ηα−1
β dx +

∫
R3

|∇ũnk
|2 ηα

β dx

)
≤ c

∣∣∣̃f ∣∣∣2 ηα+1
β dx = c

∫
R3

|f −∇p|2 ηα+1
β dx.

Taking into account also relation (4.19) we get (4.31).
Let us also check that for u the equation (4.30) is satis�ed. Let us mention that

u ∈ H2
loc because f −∇p ∈ L2

α+1, β. So, computing the divergence of (4.29) we get

−ν ∆ (divu) + k∂1 (divu)− (ω × x) · ∇ (divu) = div f −4p (4.32)

in distributional sense. From (4.18) and (4.31) we have

−ν ∆γ + k∂1γ − (ω × x) · ∇γ = 0

for γ = divu ∈ L2
α, β ⊂ L2. Using Fourier transform we get(

ν |ξ|2 + i k ξ1

)
γ̂ − (ω × ξ) · ∇ξγ̂ = 0 in S ′.

Assuming γ̂ in cylindrical coordinates [ξ1, ρ, ϕ] , ρ = (ξ2
2 + ξ2

3)
1/2

, we can overwrite
the equation in the form:

−∂ϕγ̂ +
[
(ν/ω̃) |ξ|2 + i (k/ω̃) ξ1

]
γ̂ = 0.

Using the same approach as in the proof of the uniqueness Theorem 3.1 we prove
that supp γ̂ ⊂ {0} . The proof of this fact is reduced to the solvability of the equation
(3.16) which was proved for arbitrary Ψ ∈ C∞

0 (R3 \ {0}) in the proof of Theorem 3.1.
So, by the same procedure we derive that γ is a polynomial in R3 and because γ ∈ L2

we get γ ≡ 0, i.e. (4.30). The uniqueness of the solution follows from Theorem 3.1.
ut

5 The problem with non-zero divergence

First of all let us formulate the lemma which will be used for the extension of our
results to the case with nonzero divergence:

Lemma 5.1 (M.E. Bogovski, G.P. Galdi, H. Sohr)
Let Ω ⊆ Rn, n ≥ 2, be a bounded Lipschitz domain, and 1 < q < ∞, n ∈ N. Then

for each g ∈ W k, q
0 (Ω) with

∫
Ω

g dx = 0, there exists G ∈
(
W k+1, q

0 (Ω)
)n

satisfying

divG =g , ‖G‖(W k+1, q
0 (Ω))

n ≤ C ‖g‖W k, q
0 (Ω)

with some constant C = C (q, k, Ω) > 0.
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For the proof and further references see e.g. [19, Lemma 2.3.1]. We will prove the
following theorem:

Theorem 5.2 (Existence and uniqueness) Let 0 < β ≤ 1, 0 ≤ α < y1β, f ∈ L2
α+1,β,

g ∈ W 1,2
0 with supp g = K ⊂⊂ R3, and

∫
R3 g dx = 0. Then there exists a unique weak

solution {u, p} of the problem

−ν ∆u + k∂1u− (ω × x) · ∇u + ω × u +∇p = f in R3,

divu = g in R3

such that u ∈ Vα,β, p ∈ L2
α,β−1, ∇p ∈ L2

α+1,β and

‖u‖2
2,α−1,β + ‖∇u‖2

2,α,β + ‖p‖2
2,α,β−1 + ‖∇p‖2

2,α+1,β ≤ C
(
‖f‖2

2,α+1,β + ‖g‖2
1,2

)
.

Proof. Using Lemma 5.1 we �nd G ∈ W2,2
0 , suppG ⊂ K, where K is a bounded

Lipschitz domain containing in ε−neighbourhood Kε of compact set K for an arbi-
trary ε > 0, divG =g, ‖G‖2,2 ≤ C ‖g‖1,2. Let us assume the following problem

−ν ∆U + k ∂1U− (ω × x) · ∇U + ω ×U +∇p = F in R3

divU = 0 in R3

where U = u + G, F = f − ν ∆G + k ∂1G + (ω × x) · ∇G − ω × G with G ∈
W2, 2

0 , function G has a compact support, and ‖G‖2,2 ≤ C ‖g‖1,2. The assertion of
Theorem 5.2 follows from Theorem 4.4. ut

Appendix A

Relation (2.13) follows from an estimate of the derivative of F1 :

∂

∂s
F1 (s, r) ≡ ∂

∂s

{
Fα,β (s, r; ν)−

(
1− κ−1

)
kδε (β − α) s

}
= −να2δ2ε

1

1 + δr
− 2ναβδε

1

r
− 2νβ2ε2 1 + δr

r

1

(1 + εs)2

−kαδε + kαδ
1

r
(1 + 2εs) + kβε (1 + δr)

1

r
−
(
1− κ−1

)
kδε (β − α)

≥ δε
{
r−1
[
k (α/ε + β/δ)− να2 − 2ναβ − 2νβ2ε/δ

]
+
[
−2νβ2ε + k (β − α) /κ

]}
≥ 0

The last inequality follows from the fact that we have kα/ε ≥ ν α2 +2 ν α β, kβ/δ ≥
2 ν β2ε/δ, k (β − α) /κ ≥ 2νβ2ε if ε ≤ (1/ (2κ)) (k/ν) ((β − α) /β2) . Hence, if the
last inequality (which is included in the conditions of Lemma 2.5) is satis�ed then
(∂/∂s) F1 (s, r) ≥ 0. So, we get immediately:

F1 (s, r) ≥ F1 (0, r) ≡ −kαδ − να2δ2 (1 + δr)−1 ≥ −αδk
(
1 + νk−1αδ

)
15



Appendix B
Let us show that all conditions on α, β, δ, ε, κ used in the proof of Lemma 4.3 are
compatible if 0 < β ≤ 1, 0 ≤ α < y1β. Let us collect these assumptions: 0 < δ < 2ε,
1 < κ ≤ 2ε/δ + δ/ (2ε) − 1, 0 ≤ α < β, ε ≤ (1/ (2κ2)) · (k/ν) · ((β − α) /β2),
δ ≤ (k/ν) · (κ− 1) / (κβ) , α ≤ (1/ (2 κ4)) · (k/ν) · (β β∗/ (α + β))2 ε.

From α ≤ (1/ (2 κ4)) · (k/ν) · (β β∗/ (α + β))2 ε, and ε ≤ (1/ (2κ2)) · (k/ν) ·
((β − α) /β2) we get α ≤ (1/ (4κ6)) · (β∗)2 (β − α) / (α + β)2 . So we get (κ > 1,
β ≤ 1): α/β ≤ (1/ (4κ6)) (1− α/β) / (1 + α/β)2 . By substitution y = α/β we get
the inequality

4y3 + 8y2 + 4y + κ−6 · (y − 1) ≤ 0. (5.33)

Taking into account the condition 0 ≤ α < β we seek for solutions from [0, 1).
It is clear that the equation 4y3 + 8y2 + y + κ−6(y − 1) = 0 has a unique real
solution yκ ∈ (0, 1) for κ > 1. It is also clear that arbitrary y ∈ [0, yκ) solves
(5.33). The value yκ as a function of κ is decreasing. For κ → 1 we get the
inequality 4y3 + 8y2 + 5y − 1 ≤ 0. This respective equation has a unique solu-
tion y1 =

(√
13/

(
6
√

6
)

+ 53/216
)1/3

+ (1/30)
(√

13/
(
6
√

6
)

+ 53/216
)−1/3

. Approx-
imately, with an error less than 10−8 we have y1

.
= 0.1582981, (y1 > 1/7). If

0 ≤ α < y1β then there is κ > 1 su�ciently close to number 1, such that 0 ≤ α ≤ yκβ,
so the relation α ≤ (1/ (4κ6)) · (β∗)2 (β − α) / (α + β)2 is satis�ed. Then we can de-
�ne ε = 1/ (2κ2) · (k/ν) · ((β − α) / (β2)) . The relation ε ≤ (1/ (2κ)) · (k/ν) · (1/β)
is satis�ed. Then we take su�ciently small δ > 0 such that 0 < δ < 2ε and
1 < κ ≤ 2ε/δ + δ/ (2ε) − 1. Hence, all conditions which we assume in the proof
of Lemma 4.3 are satis�ed.
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