ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

 MATHEMATICAL INSTITUTE

ON THE INITIAL VALUE PROBLEM FOR TWO-DIMENSIONAL SYSTEMS OF LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MONOTONE OPERATORS

Jiř̌i Šremr

(preprint)

$$
\frac{162}{2005}
$$

ON THE INITIAL VALUE PROBLEM FOR TWO-DIMENSIONAL SYSTEMS OF LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH MONOTONE OPERATORS

JIŘÍ ŠREMR

We establish new efficient conditions sufficient for the unique solvability of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators.

2000 Mathematics Subject Classification: 34K06, 34K10

1. Introduction and Notation

On the interval $[a, b]$, we consider two-dimensional differential system

$$
\begin{equation*}
u_{i}^{\prime}(t)=\sigma_{i 1} \ell_{i 1}\left(u_{1}\right)(t)+\sigma_{i 2} \ell_{i 2}\left(u_{2}\right)(t)+q_{i}(t) \quad(i=1,2) \tag{1.1}
\end{equation*}
$$

with the initial conditions

$$
\begin{equation*}
u_{1}(a)=c_{1}, \quad u_{2}(a)=c_{2}, \tag{1.2}
\end{equation*}
$$

where $\ell_{i k}: C([a, b] ; \mathbb{R}) \rightarrow L([a, b] ; \mathbb{R})$ are linear nondecreasing operators, $\sigma_{i k} \in$ $\{-1,1\}, q_{i} \in L([a, b] ; \mathbb{R})$, and $c_{i} \in \mathbb{R}(i, k=1,2)$. Under a solution of the problem (1.1), (1.2) is understood an absolutely continuous vector function $u=\left(u_{1}, u_{2}\right)^{T}$: $[a, b] \rightarrow \mathbb{R}^{2}$ satisfying (1.1) almost everywhere on $[a, b]$ and verifying also the initial conditions (1.2).

The problem on the solvability of the Cauchy problem for linear functional differential equations and their systems has been studied by many authors (see, e.g., $[1,7,9,10,12,17]$ and references therein). There are a lot of interested results but only a few efficient conditions is known at present. Furthermore, most them is available for the one-dimmensional case only or for the systems with the so-called Volterra operators (see, e.g., $[3-5,7,9,12]$). Let us mention that the efficient conditions guaranteeing the unique solvability of the initial value problem for n-dimensional systems of linear functional difefrential equations are given, e.g., in $[2,10,11,13,14]$.

In this paper, we establish new efficient condition sufficient for the unique solvability of the problem (1.1), (1.2) for any disposition of the numbers $\sigma_{i j} \in\{-1,1\}$ $(i, j=1,2)$. The integral conditions given in Theorems 2.1-2.11 are optimal in a certain sense which is shown by counter-examples constructed in the last part of the paper.

2 The Cauchy problem for two-dimensional systems of linear FDEs ...
The following notation is used throughout the paper:

1. \mathbb{R} is the set of all real numbers, $\mathbb{R}_{+}=[0,+\infty[$.
2. $C([a, b] ; \mathbb{R})$ is the Banach space of continuous functions $u:[a, b] \rightarrow \mathbb{R}$ equipped with the norm

$$
\|u\|_{C}=\max \{|u(t)|: t \in[a, b]\} .
$$

3. $L([a, b] ; \mathbb{R})$ is the Banach space of Lebesgue integrable functions $h:[a, b] \rightarrow \mathbb{R}$ equipped with the norm

$$
\|h\|_{L}=\int_{a}^{b}|h(s)| d s
$$

4. $L\left([a, b] ; \mathbb{R}_{+}\right)=\{h \in L([a, b] ; \mathbb{R}): h(t) \geq 0$ for a.a. $t \in[a, b]\}$.
5. An operator $\ell: C([a, b] ; \mathbb{R}) \rightarrow L([a, b] ; \mathbb{R})$ is said to be nondecreasing if the inequality

$$
\ell\left(u_{1}\right)(t) \leq \ell\left(u_{2}\right)(t) \quad \text { for a.a. } \quad t \in[a, b]
$$

holds for every functions $u_{1}, u_{2} \in C([a, b] ; \mathbb{R})$ such that

$$
u_{1}(t) \leq u_{2}(t) \quad \text { for } \quad t \in[a, b] .
$$

6. $\mathcal{P}_{a b}$ is the set of linear nondecreasing operators $\ell: C([a, b] ; \mathbb{R}) \rightarrow L([a, b] ; \mathbb{R})$.

In what follows, the equalities and inequalities with integrable functions are understood to hold almost everywhere.

2. Main Results

In this section, we present the main results of the paper. The proofs are given later, in Section 3. Theorems formulated in Subsections 2.1-2.6 contain the efficient conditions sufficient for the unique solvability of the problem (1.1), (1.2) for any disposition of the numbers $\sigma_{i j} \in\{-1,1\} \quad(i, j=1,2)$. Recall that the operators $\ell_{i j}$ are supposed to be linear and nondecreasing, i.e., such that $\ell_{i j} \in \mathcal{P}_{a b}$ for $i, j=1,2$.

Put

$$
\begin{equation*}
A_{i j}=\int_{a}^{b} \ell_{i j}(1)(s) d s \quad \text { for } \quad i, j=1,2 \tag{2.1}
\end{equation*}
$$

and

$$
\varphi(s)=\left\{\begin{array}{lll}
1 & \text { for } & s \in[0,1[\tag{2.2}\\
1-\frac{1}{4}(s-1)^{2} & \text { for } & s \in[1,3[
\end{array}\right.
$$

2.1. The case $\sigma_{11}=1, \sigma_{22}=1, \sigma_{12} \sigma_{21}>0$

Theorem 2.1. Let $\sigma_{11}=1, \sigma_{22}=1$, and $\sigma_{12} \sigma_{21}>0$. Let, moreover,

$$
\begin{equation*}
A_{i i}<1 \quad \text { for } \quad i=1,2 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{12} A_{21}<\left(1-A_{11}\right)\left(1-A_{22}\right), \tag{2.4}
\end{equation*}
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.1. Neither one of the strict inequalities (2.3) and (2.4) can be replaced by the nonstrict one (see Examples 4.1 and 4.3).

Remark 2.2. Let H_{1} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<1, \quad y<1, \quad z<(1-x)(1-y)
$$

(see Fig. 2.1). According to Theorem 2.1, the problem (1.1), (1.2) is uniquely solvable

Fig. 2.1.
if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in H_{1}
$$

Remark 2.3. It should be noted that Theorem 2.1 can be derived as a consequence of Corollary 1.3 .1 given in [10]. However, we shall prove this theorem using the technique common for all the statements of this paper.

4 The Cauchy problem for two-dimensional systems of linear FDEs ...
Remark 2.4. According to Corollary 3.2 of [16], if $\sigma_{11}=1, \sigma_{22}=1, \sigma_{12} \sigma_{21}>0$, and

$$
\begin{equation*}
A_{11}+A_{12}<1, \quad A_{21}+A_{22}<1 \tag{2.5}
\end{equation*}
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1), then the problem (1.1), (1.2) has a unique solution $\left(u_{1}, u_{2}\right)^{T}$. Moreover, this solution satisfies

$$
u_{1}(t) \geq 0, \quad \sigma_{12} u_{2}(t) \geq 0 \quad \text { for } \quad t \in[a, b]
$$

provided that $c_{1} \geq 0, \sigma_{12} c_{2} \geq 0$, and

$$
q_{1}(t) \geq 0, \quad \sigma_{12} q_{2}(t) \geq 0 \quad \text { for } \quad t \in[a, b] .
$$

If the assumption (2.5) is weakened to the assumptions (2.3), (2.4) then the problem (1.1), (1.2) has still a unique solution but no information about sign of this solution is guaranteed in general.

2.2. The case $\sigma_{11}=1, \sigma_{22}=1, \sigma_{12} \sigma_{21}<0$

Theorem 2.2. Let $\sigma_{11}=1, \sigma_{22}=1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.3) be satisfied and

$$
\begin{equation*}
A_{12} A_{21}<4 \sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}+\left(\sqrt{1-A_{11}}+\sqrt{1-A_{22}}\right)^{2} \tag{2.6}
\end{equation*}
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.5. The strict inequalities (2.3) in Theorem 2.2 cannot be replaced by the nonstrict ones (see Example 4.1). Furthermore, the strict inequality (2.6) cannot be replaced by the nonstrict one provided $A_{11}=A_{22}$ (see Example 4.4).

Remark 2.6. Let H_{2} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<1, \quad y<1, \quad z<4 \sqrt{(1-x)(1-y)}+(\sqrt{1-x}+\sqrt{1-y})^{2}
$$

(see Fig. 2.2). According to Theorem 2.2, the problem (1.1), (1.2) is uniquely solvable if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in H_{2} .
$$

2.3. The case $\sigma_{11} \sigma_{22}<0, \sigma_{12} \sigma_{21}>0$

At first, we consider the case, where $\sigma_{11}=1$ and $\sigma_{22}=-1$.

Fig. 2.2.

Theorem 2.3. Let $\sigma_{11}=1, \sigma_{22}=-1$, and $\sigma_{12} \sigma_{21}>0$. Let, moreover,

$$
\begin{equation*}
A_{11}<1, \quad A_{22}<3 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{12} A_{21}<\left(1-A_{11}\right) \varphi\left(A_{22}\right), \tag{2.8}
\end{equation*}
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1) and the function φ is given by (2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.7. Neither one of the strict inequalities (2.7) and (2.8) can be replaced by the nonstrict one (see Examples 4.1, 4.2, 4.5, and 4.6).
Remark 2.8. Let H_{3} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<1, \quad y<3, \quad z<(1-x) \varphi(y)
$$

(see Fig. 2.3). According to Theorem 2.3, the problem (1.1), (1.2) is uniquely solvable if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in H_{3} .
$$

6 The Cauchy problem for two-dimensional systems of linear FDEs ...

Fig. 2.3.

The next statement concerning the case, where $\sigma_{11}=-1$ and $\sigma_{22}=1$, follows immediately from Theorem 2.3.

Theorem 2.4. Let $\sigma_{11}=-1, \sigma_{22}=1$, and $\sigma_{12} \sigma_{21}>0$. Let, moreover,

$$
\begin{equation*}
A_{11}<3, \quad A_{22}<1, \tag{2.9}
\end{equation*}
$$

and

$$
A_{12} A_{21}<\left(1-A_{22}\right) \varphi\left(A_{11}\right)
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1) and the function φ is given by (2.2). Then the problem (1.1), (1.2) has a unique solution.

2.4. The case $\sigma_{11} \sigma_{22}<0, \sigma_{12} \sigma_{21}<0$

At first, we consider the case, where $\sigma_{11}=1$ and $\sigma_{22}=-1$.
Theorem 2.5. Let $\sigma_{11}=1, \sigma_{22}=-1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.7) be satisfied and

$$
\begin{equation*}
A_{12} A_{21}<\left(1-A_{11}\right)\left(3-A_{22}\right), \tag{2.10}
\end{equation*}
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.9. The strict inequalities (2.7) cannot be replaced by the nonstrict ones (see Examples 4.1 and 4.2). Furthermore, the strict inequality (2.10) cannot be replaced by the nonstrict one provided $1<A_{22}<3$ (see Example 4.7).

Remark 2.10. Let H_{4} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<1, \quad y<3, \quad z<(1-x)(3-y)
$$

(see Fig. 2.4). According to Theorem 2.5, the problem (1.1), (1.2) is uniquely solvable

Fig. 2.4.
if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in H_{4} .
$$

Example 4.7 shows that Theorem 2.5 is optimal whenever $1<A_{22}<3$. If $A_{22} \leq 1$ then the theorem mentioned can be improved. For example, the next theorem improves Theorem 2.5 if A_{22} is close to zero.
Theorem 2.6. Let $\sigma_{11}=1, \sigma_{22}=-1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.3) be satisfied and

$$
\begin{equation*}
A_{12} A_{21}<\frac{\omega\left(1-A_{11}\right)\left[1+A_{22}\left(1-A_{22}\right)\right]}{1-A_{11}+\omega A_{22}}, \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=4 \sqrt{1-A_{11}}+\left(1+\sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}\right)^{2} \tag{2.12}
\end{equation*}
$$

and the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.
Remark 2.11. If $A_{22}=0$ then the inequality (2.11) can be rewritten as

$$
A_{12} A_{21}<4 \sqrt{1-A_{11}}+\left(1+\sqrt{1-A_{11}}\right)^{2}
$$

which coincides with the assumption (2.6) of Theorem 2.2.

8 The Cauchy problem for two-dimensional systems of linear FDEs ..
Remark 2.12. Let \widetilde{H}_{4} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<1, \quad y<1, \quad z<\frac{\widetilde{\omega}(1-x)[1+y(1-y)]}{1-x+\widetilde{\omega} y},
$$

where

$$
\widetilde{\omega}=4 \sqrt{1-x}+(1+\sqrt{(1-x)(1-y)})^{2}
$$

(see Fig. 2.5). According to Theorem 2.6, the problem (1.1), (1.2) is uniquely solvable

Fig. 2.5.
if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in \widetilde{H}_{4} .
$$

The next statements concerning the case, where $\sigma_{11}=-1$ and $\sigma_{22}=1$, follow immediately from Theorems 2.5 and 2.6.

Theorem 2.7. Let $\sigma_{11}=-1, \sigma_{22}=1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.9) be satisfied and

$$
A_{12} A_{21}<\left(1-A_{22}\right)\left(3-A_{11}\right),
$$

where the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.

Theorem 2.8. Let $\sigma_{11}=-1, \sigma_{22}=1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.3) be satisfied and

$$
A_{12} A_{21}<\frac{\omega_{0}\left(1-A_{22}\right)\left[1+A_{11}\left(1-A_{11}\right)\right]}{1-A_{22}+\omega_{0} A_{11}},
$$

where

$$
\omega_{0}=4 \sqrt{1-A_{22}}+\left(1+\sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}\right)^{2}
$$

and the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.

2.5. The case $\sigma_{11}=-1, \sigma_{22}=-1, \sigma_{12} \sigma_{21}>0$

Theorem 2.9. Let $\sigma_{11}=-1, \sigma_{22}=-1$, and $\sigma_{12} \sigma_{21}>0$. Let, moreover,

$$
\begin{equation*}
A_{i i}<3 \quad \text { for } \quad i=1,2 \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{12} A_{21}<\frac{1}{\omega} \varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega=\max \left\{1, A_{11}\left(A_{22}-1\right), A_{22}\left(A_{11}-1\right)\right\}, \tag{2.15}
\end{equation*}
$$

the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1) and the function φ is given by (2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.13. The strict inequalities (2.13) cannot be replaced by the nonstrict ones (see Example 4.2). Furthermore, the strict inequality (2.14) cannot be replaced by the nonstrict one provided $\omega=1$ (see Examples 4.8-4.10).

Remark 2.14. Let H_{5} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<3, \quad y<3, \quad z<\frac{\varphi(x) \varphi(y)}{\max \{1, x(y-1), y(x-1)\}}
$$

(see Fig. 2.6). According to Theorem 2.9, the problem (1.1), (1.2) is uniquely solvable if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in H_{5} .
$$

2.6. The case $\sigma_{11}=-1, \sigma_{22}=-1, \sigma_{12} \sigma_{21}<0$

Theorem 2.10. Let $\sigma_{11}=-1, \sigma_{22}=-1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.13) be satisfied and

$$
\begin{equation*}
A_{12} A_{21}<\frac{1}{\omega}\left(3-\max \left\{A_{11}, A_{22}\right\}\right) \varphi\left(\min \left\{A_{11}, A_{22}\right\}\right) \tag{2.16}
\end{equation*}
$$

10 The Cauchy problem for two-dimensional systems of linear FDEs ..

Fig. 2.6.
where

$$
\begin{equation*}
\omega=\max \left\{1,3\left(A_{11}-1\right), 3\left(A_{22}-1\right)\right\}, \tag{2.17}
\end{equation*}
$$

the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1) and the function φ is given by (2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.15. The strict inequalities (2.13) cannot be replaced by the nonstrict ones (see Example 4.2). Futhermore, the strict inequality (2.16) cannot be replaced by the nonstrict one provided that $\omega=1$ and $\max \left\{A_{11}, A_{22}\right\}>1$ (see Examples 4.11 and 4.12).

Remark 2.16. Let H_{6} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<3, \quad y<3, \quad z<\frac{(3-\max \{x, y\}) \varphi(\min \{x, y\})}{\max \{1,3(x-1), 3(y-1)\}}
$$

(see Fig. 2.7). According to Theorem 2.10, the problem (1.1), (1.2) is uniquely solvable if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in H_{6} .
$$

If $\max \left\{A_{11}, A_{22}\right\} \leq 1$ then the assumption (2.16) of Theorem 2.10 can be improved. For example, the next theorem improves Theorem 2.10 if $\max \left\{A_{11}, A_{22}\right\}$ is close to zero.

Theorem 2.11. Let $\sigma_{11}=-1, \sigma_{22}=-1$, and $\sigma_{12} \sigma_{21}<0$. Let, moreover, the condition (2.3) be satisfied and

$$
\begin{equation*}
A_{12} A_{21}<\frac{\omega_{0}}{\omega_{0}\left(A_{11}+A_{22}-A_{11} A_{22}\right)+A_{11} A_{22}+1} \tag{2.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{0}=4+\left(\sqrt{1-A_{11}}+\sqrt{1-A_{22}}\right)^{2} \tag{2.19}
\end{equation*}
$$

Fig. 2.7.
and the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.17. If $A_{11}=A_{22}=0$ then the inequality (2.18) can be rewritten as

$$
A_{12} A_{21}<8
$$

which coincides with the assumption (2.6) of Theorem 2.2.
Remark 2.18. Let \widetilde{H}_{6} be the set of triplets $(x, y, z) \in \mathbb{R}_{+}^{3}$ satisfying

$$
x<1, \quad y<1, \quad z<\frac{\widetilde{\omega}_{0}}{\widetilde{\omega}_{0}(x+y-x y)+x y+1},
$$

where

$$
\widetilde{\omega}_{0}=4+(\sqrt{1-x}+\sqrt{1-y})^{2}
$$

(see Fig. 2.8). According to Theorem 2.11, the problem (1.1), (1.2) is uniquely solvable if $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ are such that

$$
\left(\int_{a}^{b} \ell_{11}(1)(s) d s, \int_{a}^{b} \ell_{22}(1)(s) d s, \int_{a}^{b} \ell_{12}(1)(s) d s \int_{a}^{b} \ell_{21}(1)(s) d s\right) \in \widetilde{H}_{6} .
$$

Fig. 2.8.

3. Proofs of the Main Results

In this section, we shall prove all the statements formulated above. Recall that the numbers $A_{i j}(i, j=1,2)$ are defined by (2.1) and the function φ is given by (2.2).

It is well-known from the general theory of boundary value problems for functional differential equations (see, e.g., $[8,10,11,15]$) that the following lemma is true.

Lemma 3.1. The problem (1.1), (1.2) is uniquely solvable if and only if the corresponding homogeneous problem

$$
\begin{gather*}
u_{i}^{\prime}(t)=\sigma_{i 1} \ell_{i 1}\left(u_{1}\right)(t)+\sigma_{i 2} \ell_{i 2}\left(u_{2}\right)(t) \quad(i=1,2), \tag{3.1}\\
u_{1}(a)=0, \quad u_{2}(a)=0 \tag{3.2}
\end{gather*}
$$

has only the trivial solution.
In order to simplify the discussion in the proofs below, we formulate the following obvious lemma.

Lemma 3.2. $\left(u_{1}, u_{2}\right)^{T}$ is a solution of the problem (3.1), (3.2) if and only if $\left(u_{1},-u_{2}\right)^{T}$ is a solution of the problem

$$
\begin{gather*}
v_{i}^{\prime}(t)=(-1)^{i-1} \sigma_{i 1} \ell_{i 1}\left(v_{1}\right)(t)+(-1)^{i} \sigma_{i 2} \ell_{i 2}\left(v_{2}\right)(t) \quad(i=1,2), \tag{3.3}\\
v_{1}(a)=0, \quad v_{2}(a)=0 . \tag{3.4}
\end{gather*}
$$

Lemma 3.3 (Remark 1.1 in [6]). Let $\ell \in \mathcal{P}_{a b}$ be such that

$$
\int_{a}^{b} \ell(1)(s) d s<1
$$

Then every absolutely continuous function $u:[a, b] \rightarrow \mathbb{R}$ such that

$$
u^{\prime}(t) \geq \ell(u)(t) \quad \text { for } \quad t \in[a, b], \quad u(a) \geq 0
$$

satisfies $u(t) \geq 0$ for $t \in[a, b]$.
Now we are in position to prove Theorems 2.1-2.11.
Proof of Theorem 2.1. According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the system

$$
\begin{equation*}
u_{i}^{\prime}(t)=\ell_{i 1}\left(u_{1}\right)(t)+\ell_{i 2}\left(u_{2}\right)(t) \quad(i=1,2) \tag{3.5}
\end{equation*}
$$

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (3.5), (3.2). If the inequality

$$
\begin{equation*}
u_{i}(t) \geq 0 \quad \text { for } \quad t \in[a, b] \tag{3.6}
\end{equation*}
$$

holds for some $i \in\{1,2\}$ then, by virtue of (2.3), the assumption $\ell_{3-i i} \in \mathcal{P}_{a b}$, and Lemma 3.3, we get

$$
\begin{equation*}
u_{3-i}(t) \geq 0 \quad \text { for } \quad t \in[a, b] . \tag{3.7}
\end{equation*}
$$

Consequently, the functions u_{1} and u_{2} satisfy one of the following cases.
(a) Both functions u_{1} and u_{2} do not change their signs. Then, without loss of generality, we can assume that (3.6) holds for $i=1,2$.
(b) Both functions u_{1} and u_{2} change their signs.

Put

$$
\begin{equation*}
M_{i}=\max \left\{u_{i}(t): t \in[a, b]\right\} \quad(i=1,2) \tag{3.8}
\end{equation*}
$$

and choose $\alpha_{i} \in[a, b](i=1,2)$ such that

$$
\begin{equation*}
u_{i}\left(\alpha_{i}\right)=M_{i} \quad \text { for } \quad i=1,2 . \tag{3.9}
\end{equation*}
$$

Obviously, in both cases (a) and (b), we have

$$
\begin{equation*}
M_{1} \geq 0, \quad M_{2} \geq 0, \quad M_{1}+M_{2}>0 \tag{3.10}
\end{equation*}
$$

The integration of (3.5) from a to α_{i}, in view of (3.8)-(3.10), and the assumptions $\ell_{i 1}, \ell_{i 2} \in \mathcal{P}_{a b}$, yields

$$
M_{i}=\int_{a}^{\alpha_{i}} \ell_{i 1}\left(u_{1}\right)(s) d s+\int_{a}^{\alpha_{i}} \ell_{i 2}\left(u_{2}\right)(s) d s \leq
$$

14 The Cauchy problem for two-dimensional systems of linear FDEs ..

$$
\begin{equation*}
\leq M_{1} \int_{a}^{\alpha_{i}} \ell_{i 1}(1)(s) d s+M_{2} \int_{a}^{\alpha_{i}} \ell_{i 2}(1)(s) d s \leq M_{1} A_{i 1}+M_{2} A_{i 2} \quad(i=1,2) \tag{3.11}
\end{equation*}
$$

By virtue of (2.3) and (3.10), we get from (3.11) that

$$
\begin{equation*}
0 \leq M_{i}\left(1-A_{i i}\right) \leq M_{3-i} A_{i 3-i} \quad(i=1,2) \tag{3.12}
\end{equation*}
$$

Using (2.3) and (3.10) once again, (3.12) implies $M_{1}>0, M_{2}>0$, and

$$
\left(1-A_{11}\right)\left(1-A_{22}\right) \leq A_{12} A_{21},
$$

which contradicts (2.4).
The contradiction obtained proves that the problem (3.5), (3.2) has only the trivial solution.

Proof of Theorem 2.2. According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the system

$$
\begin{align*}
u_{1}^{\prime}(t) & =\ell_{11}\left(u_{1}\right)(t)+\ell_{12}\left(u_{2}\right)(t) \tag{1}\\
u_{2}^{\prime}(t) & =-\ell_{21}\left(u_{1}\right)(t)+\ell_{22}\left(u_{2}\right)(t) \tag{2}
\end{align*}
$$

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.13_{1}\right),\left(3.13_{2}\right),(3.2)$. It is clear that u_{1} and u_{2} satisfy one of the following items.
(a) One of the functions u_{1} and u_{2} is of a constant sign. According to Lemma 3.2, we can assume without loss of generality that $u_{1}(t) \geq 0$ for $t \in[a, b]$.
(b) Both functions u_{1} and u_{2} change their signs.

Case (a): $u_{1}(t) \geq 0$ for $t \in[a, b]$. In view of (2.3) and the assumption $\ell_{21} \in \mathcal{P}_{a b}$, Lemma 3.3 yields $u_{2}(t) \leq 0$ for $t \in[a, b]$. Now, by virtue of (2.3) and the assumption $\ell_{12} \in \mathcal{P}_{a b}$, Lemma 3.3 again implies $u_{1}(t) \leq 0$ for $t \in[a, b]$. Consequently, $u_{1} \equiv 0$ and Lemma 3.3 once again results in $u_{2} \equiv 0$, a contradiction.

Case (b): u_{1} and u_{2} change their signs. Put

$$
\begin{equation*}
M_{i}=\max \left\{u_{i}(t): t \in[a, b]\right\}, \quad m_{i}=-\min \left\{u_{i}(t): t \in[a, b]\right\} \quad(i=1,2) \tag{3.14}
\end{equation*}
$$

and choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities

$$
\begin{equation*}
u_{i}\left(\alpha_{i}\right)=M_{i}, \quad u_{i}\left(\beta_{i}\right)=-m_{i} \tag{i}
\end{equation*}
$$

are satisfied for $i=1,2$. Obviously,

$$
\begin{equation*}
M_{i}>0, \quad m_{i}>0 \quad \text { for } \quad i=1,2 . \tag{3.16}
\end{equation*}
$$

Furthermore, we denote

$$
\begin{equation*}
B_{i j}=\int_{a}^{\min \left\{\alpha_{i}, \beta_{i}\right\}} \ell_{i j}(1)(s) d s, \quad D_{i j}=\int_{\min \left\{\alpha_{i}, \beta_{i}\right\}}^{\max \left\{\alpha_{i}, \beta_{i}\right\}} \ell_{i j}(1)(s) d s \quad(i, j=1,2) . \tag{3.17}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
B_{i j}+D_{i j} \leq A_{i j} \quad \text { for } \quad i, j=1,2 . \tag{3.18}
\end{equation*}
$$

According to Lemma 3.2, we can assume without loss of generality that $\alpha_{1}<\beta_{1}$ and $\alpha_{2}<\beta_{2}$. The integrations of $\left(3.13_{1}\right)$ from a to α_{1} and from α_{1} to β_{1}, in view of (3.14), (3.151), (3.17), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, result in

$$
\begin{aligned}
M_{1}=\int_{a}^{\alpha_{1}} \ell_{11}\left(u_{1}\right)(s) d s & +\int_{a}^{\alpha_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{a}^{\alpha_{1}} \ell_{11}(1)(s) d s+M_{2} \int_{a}^{\alpha_{1}} \ell_{12}(1)(s) d s=M_{1} B_{11}+M_{2} B_{12}
\end{aligned}
$$

and

$$
\begin{aligned}
& M_{1}+m_{1}=-\int_{\alpha_{1}}^{\beta_{1}} \ell_{11}\left(u_{1}\right)(s) d s-\int_{\alpha_{1}}^{\beta_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \quad \leq m_{1} \int_{\alpha_{1}}^{\beta_{1}} \ell_{11}(1)(s) d s+m_{2} \int_{\alpha_{1}}^{\beta_{1}} \ell_{12}(1)(s) d s=m_{1} D_{11}+m_{2} D_{12} .
\end{aligned}
$$

The last relations, by virtue of (2.3) and (3.16), imply

$$
\begin{equation*}
0<\frac{M_{1}}{M_{2}}\left(1-B_{11}\right)+\frac{m_{1}}{m_{2}}\left(1-D_{11}\right)+\frac{M_{1}}{m_{2}} \leq B_{12}+D_{12} \leq A_{12} . \tag{3.19}
\end{equation*}
$$

On the other hand, the integrations of $\left(3.13_{2}\right)$ from a to α_{2} and from α_{2} to β_{2}, on account of (3.14), (3.152), (3.17), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, arrive at

$$
\begin{aligned}
& M_{2}=-\int_{a}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s+\int_{a}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq m_{1} \int_{a}^{\alpha_{2}} \ell_{21}(1)(s) d s+M_{2} \int_{a}^{\alpha_{2}} \ell_{22}(1)(s) d s=m_{1} B_{21}+M_{2} B_{22}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{2}+m_{2}= & \int_{\alpha_{2}}^{\beta_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{\alpha_{2}}^{\beta_{2}} \ell_{22}\left(u_{2}\right)(s) d s \\
& \leq \\
& \leq M_{1} \int_{\alpha_{2}}^{\beta_{2}} \ell_{21}(1)(s) d s+m_{2} \int_{\alpha_{2}}^{\beta_{2}} \ell_{22}(1)(s) d s=M_{1} D_{21}+m_{2} D_{22}
\end{aligned}
$$

16 The Cauchy problem for two-dimensional systems of linear FDEs ...
The last relations, by virtue of (2.3) and (3.16), yield

$$
\begin{equation*}
0<\frac{M_{2}}{m_{1}}\left(1-B_{22}\right)+\frac{m_{2}}{M_{1}}\left(1-D_{22}\right)+\frac{M_{2}}{M_{1}} \leq B_{21}+D_{21} \leq A_{21} . \tag{3.20}
\end{equation*}
$$

Now, it follows from (3.19) and (3.20) that

$$
\begin{align*}
& A_{12} A_{21} \geq \frac{M_{1}}{m_{1}}\left(1-B_{11}\right)\left(1-B_{22}\right)+ \frac{m_{2}}{M_{2}}\left(1-B_{11}\right)\left(1-D_{22}\right)+1-B_{11}+ \\
&+\frac{M_{2}}{m_{2}}\left(1-D_{11}\right)\left(1-B_{22}\right)+\frac{m_{1}}{M_{1}}\left(1-D_{11}\right)\left(1-D_{22}\right)+\frac{m_{1} M_{2}}{m_{2} M_{1}}\left(1-D_{11}\right)+ \\
& \quad+\frac{M_{2} M_{1}}{m_{1} m_{2}}\left(1-B_{22}\right)+1-D_{22}+\frac{M_{2}}{m_{2}} \tag{3.21}
\end{align*}
$$

Using the relation

$$
\begin{equation*}
x+y \geq 2 \sqrt{x y} \quad \text { for } \quad x \geq 0, y \geq 0 \tag{3.22}
\end{equation*}
$$

it is easy to verify that

$$
\begin{gather*}
\frac{M_{1}}{m_{1}}\left(1-B_{11}\right)\left(1-B_{22}\right)+\frac{m_{1}}{M_{1}}\left(1-D_{11}\right)\left(1-D_{22}\right) \geq \\
\geq 2 \sqrt{\left(1-B_{11}\right)\left(1-B_{22}\right)\left(1-D_{11}\right)\left(1-D_{22}\right)} \geq \\
\geq 2 \sqrt{\left(1-B_{11}-D_{11}\right)\left(1-B_{22}-D_{22}\right)} \geq 2 \sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}, \tag{3.23}\\
\frac{m_{1} M_{2}}{m_{2} M_{1}}\left(1-D_{11}\right)+\frac{M_{2} M_{1}}{m_{1} m_{2}}\left(1-B_{22}\right) \geq 2 \frac{M_{2}}{m_{2}} \sqrt{\left(1-D_{11}\right)\left(1-B_{22}\right)} \tag{3.24}\\
\frac{M_{2}}{m_{2}}\left(1-D_{11}\right)\left(1-B_{22}\right)+2 \frac{M_{2}}{m_{2}} \sqrt{\left(1-D_{11}\right)\left(1-B_{22}\right)}+\frac{M_{2}}{m_{2}}= \\
\quad=\frac{M_{2}}{m_{2}}\left(\sqrt{\left(1-D_{11}\right)\left(1-B_{22}\right)}+1\right)^{2}, \tag{3.25}
\end{gather*}
$$

and

$$
\begin{align*}
& \frac{m_{2}}{M_{2}}\left(1-B_{11}\right)\left(1-D_{22}\right)+\frac{M_{2}}{m_{2}}\left(\sqrt{\left(1-D_{11}\right)\left(1-B_{22}\right)}+1\right)^{2} \geq \\
& \geq 2 \sqrt{\left(1-B_{11}\right)\left(1-D_{22}\right)}\left(\sqrt{\left(1-D_{11}\right)\left(1-B_{22}\right)}+1\right) \geq \\
& \geq 2 \sqrt{\left(1-B_{11}-D_{11}\right)\left(1-B_{22}-D_{22}\right)}+2 \sqrt{\left(1-B_{11}\right)\left(1-D_{22}\right)} \geq \\
& \geq 2 \sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}+2 \sqrt{\left(1-B_{11}\right)\left(1-D_{22}\right)} \tag{3.26}
\end{align*}
$$

Therefore, by virtue of (3.23)-(3.26), (3.21) implies

$$
\begin{aligned}
& A_{12} A_{21} \geq \\
& \quad \geq 4 \sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}+1-B_{11}+2 \sqrt{\left(1-B_{11}\right)\left(1-D_{22}\right)}+1-D_{22} \geq
\end{aligned}
$$

$$
\geq 4 \sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}+\left(\sqrt{1-A_{11}}+\sqrt{1-A_{22}}\right)^{2}
$$

which contradicts (2.6).
The contradictions obtained in (a) and (b) prove that the problem (3.13 $)$, $\left(3.13_{2}\right)$, (3.2) has only the trivial solution.

Proof of Theorem 2.3. According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the system

$$
\begin{align*}
u_{1}^{\prime}(t) & =\ell_{11}\left(u_{1}\right)(t)+\ell_{12}\left(u_{2}\right)(t) \tag{1}\\
u_{2}^{\prime}(t) & =\ell_{21}\left(u_{1}\right)(t)-\ell_{22}\left(u_{2}\right)(t) \tag{2}
\end{align*}
$$

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.27_{1}\right),\left(3.27_{2}\right),(3.2)$. Define the numbers $M_{i}, m_{i}(i=1,2)$ by (3.14) and choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities $\left(3.15_{i}\right)$ are satisfied for $i=1,2$. Furthermore, let the numbers $B_{i j}, D_{i j}(i, j=1,2)$ be given by (3.17). It is clear that (3.2) guarantees

$$
M_{i} \geq 0, \quad m_{i} \geq 0 \quad \text { for } \quad i=1,2
$$

The integrations of (3.27 $)$ from a to α_{1} and from a to β_{1}, in view of (3.14), (3.151), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yield

$$
\begin{align*}
& M_{1}=\int_{a}^{\alpha_{1}} \ell_{11}\left(u_{1}\right)(s) d s+\int_{a}^{\alpha_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{a}^{\alpha_{1}} \ell_{11}(1)(s) d s+M_{2} \int_{a}^{\alpha_{1}} \ell_{12}(1)(s) d s \leq M_{1} A_{11}+M_{2} A_{12} \tag{3.28}
\end{align*}
$$

and

$$
\begin{align*}
& m_{1}=-\int_{a}^{\beta_{1}} \ell_{11}\left(u_{1}\right)(s) d s-\int_{a}^{\beta_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \quad \leq m_{1} \int_{a}^{\beta_{1}} \ell_{11}(1)(s) d s+m_{2} \int_{a}^{\beta_{1}} \ell_{12}(1)(s) d s \leq m_{1} A_{11}+m_{2} A_{12} \tag{3.29}
\end{align*}
$$

Now we shall divide the discussion into the following two cases.
(a) The function u_{2} is of a constant sign. Then, without loss of generality we can assume that $u_{2}(t) \geq 0$ for $t \in[a, b]$.
(b) The function u_{2} changes its sign.

18 The Cauchy problem for two-dimensional systems of linear FDEs ...
Case (a): $u_{2}(t) \geq 0$ for $t \in[a, b]$. In view of (2.7) and the assumption $\ell_{12} \in \mathcal{P}_{a b}$, Lemma 3.3 implies $u_{1}(t) \geq 0$ for $t \in[a, b]$. Consequently, (3.10) is true. The integration of $\left(3.27_{2}\right)$ from a to α_{2}, on account of (3.14), (3.152), and the assumption $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, yields

$$
\begin{equation*}
M_{2}=\int_{a}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{a}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq M_{1} \int_{a}^{\alpha_{2}} \ell_{21}(1)(s) d s \leq M_{1} A_{21} . \tag{3.30}
\end{equation*}
$$

According to (2.7) and (3.10), it follows from (3.28) and (3.30) that

$$
\begin{equation*}
0 \leq M_{1}\left(1-A_{11}\right) \leq M_{2} A_{12}, \quad 0 \leq M_{2} \leq M_{1} A_{21} \tag{3.31}
\end{equation*}
$$

Using (2.7) and (3.10) once again, the last relations imply $M_{1}>0, M_{2}>0$, and

$$
A_{12} A_{21} \geq 1-A_{11} \geq\left(1-A_{11}\right) \varphi\left(A_{22}\right)
$$

which contradicts (2.8).
Case (b): u_{2} changes its sign. It is clear that

$$
\begin{equation*}
M_{2}>0, \quad m_{2}>0 . \tag{3.32}
\end{equation*}
$$

We can assume without loss of generality that $\beta_{2}<\alpha_{2}$. The integrations of (3.272) from a to β_{2} and from β_{2} to α_{2}, in view of (3.14), (3.152), (3.17), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, result in

$$
\begin{align*}
& m_{2}=-\int_{a}^{\beta_{2}} \ell_{21}\left(u_{1}\right)(s) d s+\int_{a}^{\beta_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq m_{1} \int_{a}^{\beta_{2}} \ell_{21}(1)(s) d s+M_{2} \int_{a}^{\beta_{2}} \ell_{22}(1)(s) d s=m_{1} B_{21}+M_{2} B_{22} \tag{3.33}
\end{align*}
$$

and

$$
\begin{align*}
M_{2}+m_{2}= & \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{\beta_{2}}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}(1)(s) d s+m_{2} \int_{\beta_{2}}^{\alpha_{2}} \ell_{22}(1)(s) d s=M_{1} D_{21}+m_{2} D_{22} . \tag{3.34}
\end{align*}
$$

On the other hand, using (2.7) and (3.32), from (3.28) and (3.29) we get

$$
\begin{equation*}
\frac{M_{1}}{M_{2}} \leq \frac{A_{12}}{1-A_{11}}, \quad \frac{m_{1}}{m_{2}} \leq \frac{A_{12}}{1-A_{11}} . \tag{3.35}
\end{equation*}
$$

If we take the assumption (2.8) into account, (3.35) yields

$$
\frac{m_{1}}{m_{2}} B_{21} \leq \frac{A_{12} A_{21}}{1-A_{11}}<1, \quad \frac{M_{1}}{M_{2}} D_{21} \leq \frac{A_{12} A_{21}}{1-A_{11}}<1 .
$$

Consequently, it follows from (3.33) and (3.34) that

$$
0<1-\frac{m_{1}}{m_{2}} B_{21} \leq \frac{M_{2}}{m_{2}} B_{22}, \quad 0<1-\frac{M_{1}}{M_{2}} D_{21} \leq \frac{m_{2}}{M_{2}}\left(D_{22}-1\right),
$$

whence we get $D_{22}>1$ and

$$
\left(1-\frac{m_{1}}{m_{2}} B_{21}\right)\left(1-\frac{M_{1}}{M_{2}} D_{21}\right) \leq B_{22}\left(D_{22}-1\right) .
$$

Therefore,

$$
1-\frac{m_{1}}{m_{2}} B_{21}-\frac{M_{1}}{M_{2}} D_{21} \leq \frac{1}{4}\left(B_{22}+D_{22}-1\right)^{2} \leq \frac{1}{4}\left(A_{22}-1\right)^{2},
$$

which, together with (3.35), results in

$$
\begin{aligned}
\varphi\left(A_{22}\right)=1-\frac{1}{4}\left(A_{22}-1\right)^{2} & \leq \frac{m_{1}}{m_{2}} B_{21}+\frac{M_{1}}{M_{2}} D_{21} \leq \\
& \leq \frac{A_{12}}{1-A_{11}}\left(B_{21}+D_{21}\right) \leq \frac{A_{12} A_{21}}{1-A_{11}}
\end{aligned}
$$

But this contradicts (2.8).
The contradictions obtained in (a) and (b) prove that the problem (3.27 $)$, $\left(3.27_{2}\right)$, (3.2) has only the trivial solution.

Proof of Theorem 2.4. The validity of the theorem follows immediately from Theorem 2.3.

Proof of Theorem 2.5. According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the system

$$
\begin{align*}
u_{1}^{\prime}(t) & =\ell_{11}\left(u_{1}\right)(t)+\ell_{12}\left(u_{2}\right)(t) \tag{1}\\
u_{2}^{\prime}(t) & =-\ell_{21}\left(u_{1}\right)(t)-\ell_{22}\left(u_{2}\right)(t) \tag{2}
\end{align*}
$$

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.36_{1}\right),\left(3.36_{2}\right),(3.2)$. It is clear that one of the following items is satisfied.
(a) The function u_{2} is of a constant sign. Then, without loss of generality, we can assume that $u_{2}(t) \geq 0$ for $t \in[a, b]$.
(b) The function u_{2} changes its sign.

Case (a): $u_{2}(t) \geq 0$ for $t \in[a, b]$. In view of (2.7) and the assumption $\ell_{12} \in \mathcal{P}_{a b}$, Lemma 3.3 implies $u_{1}(t) \geq 0$ for $t \in[a, b]$. Therefore, by virtue of the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b},\left(3.36_{2}\right)$ yields $u_{2}^{\prime}(t) \leq 0$ for $t \in[a, b]$. Consequently, $u_{2} \equiv 0$ and Lemma 3.3 once again results in $u_{1} \equiv 0$, which is a contradiction.

Case (b): u_{2} changes its sign. Define the numbers $M_{i}, m_{i}(i=1,2)$ by (3.14) and

20 The Cauchy problem for two-dimensional systems of linear FDEs ...
choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities (3.15 $)$ are satisfied for $i=1,2$. Furthermore, let the numbers $B_{i j}, D_{i j}(i, j=1,2)$ be given by (3.17). It is clear that

$$
M_{1} \geq 0, \quad m_{1} \geq 0, \quad M_{2}>0, \quad m_{2}>0 .
$$

We can assume without loss of generality that $\beta_{2}<\alpha_{2}$. The integrations of (3.362) from a to β_{2} and from β_{2} to α_{2}, in view of (3.14), (3.152), (3.17), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, yield

$$
\begin{align*}
& m_{2}=\int_{a}^{\beta_{2}} \ell_{21}\left(u_{1}\right)(s) d s+\int_{a}^{\beta_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{a}^{\beta_{2}} \ell_{21}(1)(s) d s+M_{2} \int_{a}^{\beta_{2}} \ell_{22}(1)(s) d s=M_{1} B_{21}+M_{2} B_{22} \tag{3.37}
\end{align*}
$$

and

$$
\begin{align*}
M_{2}+m_{2}= & -\int_{\beta_{2}}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{\beta_{2}}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq m_{1} \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}(1)(s) d s+m_{2} \int_{\beta_{2}}^{\alpha_{2}} \ell_{22}(1)(s) d s=m_{1} D_{21}+m_{2} D_{22} \tag{3.38}
\end{align*}
$$

By virtue of (3.18) and (3.32), it follows from (3.37) and (3.38) that

$$
\begin{equation*}
3-A_{22} \leq 1+\frac{m_{2}}{M_{2}}+\frac{M_{2}}{m_{2}}-B_{22}-D_{22} \leq \frac{M_{1}}{M_{2}} B_{21}+\frac{m_{1}}{m_{2}} D_{21} . \tag{3.39}
\end{equation*}
$$

On the other hand, the integrations of (3.361) from a to α_{1} and from a to β_{1}, on account of (3.14), (3.151), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yield (3.28) and (3.29), respectively. Using (2.7) and (3.32), from (3.28) and (3.29) we get (3.35). Consequently, (3.39) implies

$$
3-A_{22} \leq \frac{A_{12}}{1-A_{11}}\left(B_{21}+D_{21}\right) \leq \frac{A_{12} A_{21}}{1-A_{11}}
$$

which contradicts (2.10).
The contradictions obtained in (a) and (b) prove that the problem (3.36 $)$, (3.362), (3.2) has only the trivial solution.

Proof of Theorem 2.6. If $A_{12} A_{21}<\left(1-A_{11}\right)\left(1-A_{22}\right)$ then the validity of the theorem follows immediately from Theorem 2.5. Therefore, suppose that

$$
\begin{equation*}
A_{12} A_{21} \geq\left(1-A_{11}\right)\left(1-A_{22}\right) . \tag{3.40}
\end{equation*}
$$

According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the problem $\left(3.36_{1}\right),\left(3.36_{2}\right),(3.2)$ has only the trivial solution.

Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.36_{1}\right),\left(3.36_{2}\right),(3.2)$. Define the numbers $M_{i}, m_{i}(i=1,2)$ by (3.14) and choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities $\left(3.15_{i}\right)$ are satisfied for $i=1,2$. Furthermore, let the numbers $B_{i j}, D_{i j}(i, j=1,2)$ be given by (3.17). It is clear that (3.2) guarantees

$$
M_{i} \geq 0, \quad m_{i} \geq 0 \quad \text { for } \quad i=1,2
$$

For the sake of clarity we shall devide the discussion into the following cases.
(a) The function u_{2} is of a constant sign. Then, without loss of generality, we can assume that $u_{2}(t) \geq 0$ for $t \in[a, b]$.
(b) The function u_{2} changes its sign. Then, without loss of generality, we can assume that $\beta_{2}<\alpha_{2}$. It is clear that one of the following items is satisfied.
(b1) $u_{1}(t) \geq 0$ for $t \in[a, b]$.
(b2) $u_{1}(t) \leq 0$ for $t \in[a, b]$.
(b3) The function u_{1} changes its sign.
Case (a): $u_{2}(t) \geq 0$ for $t \in[a, b]$. In view of (2.3) and the assumption $\ell_{12} \in \mathcal{P}_{a b}$, Lemma 3.3 implies $u_{1}(t) \geq 0$ for $t \in[a, b]$. Therefore, by virtue of the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, $\left(3.36_{2}\right)$ yields $u_{2}^{\prime}(t) \leq 0$ for $t \in[a, b]$. Consequently, $u_{2} \equiv 0$ and Lemma 3.3 once again results in $u_{1} \equiv 0$, which is a contradiction.

Case (b): u_{2} changes its sign and $\beta_{2}<\alpha_{2}$. Obviously, (3.32) is true. The integrations of $\left(3.36_{2}\right)$ from a to β_{2} and from β_{2} to α_{2}, in view of (3.14), (3.152), (3.17), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, yield (3.37) and (3.38), respectively. At first we note that, by virtue of (2.3), the assumption (2.11) implies

$$
\begin{equation*}
A_{22}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right]<1-A_{11} . \tag{3.41}
\end{equation*}
$$

Now we are in position to discuss the cases (b1)-(b3).
Case (b1): $u_{1}(t) \geq 0$ for $t \in[a, b]$. This means that $m_{1}=0$. Consequently, (3.38) implies

$$
M_{2} \leq m_{2}\left(D_{22}-1\right) \leq m_{2}\left(A_{22}-1\right)
$$

which, together with (2.3), contradicts (3.32).
Case (b2): $u_{1}(t) \leq 0$ for $t \in[a, b]$. This means that $M_{1}=0$. Consequently, (3.37) and (3.38) yield

$$
\begin{equation*}
M_{2} \leq m_{1} A_{21}-m_{2}\left(1-A_{22}\right), \quad m_{2} \leq M_{2} A_{22} . \tag{3.42}
\end{equation*}
$$

On the other hand, the integration of $\left(3.36_{1}\right)$ from a to β_{1}, in view of (3.14), (3.151), and the assumption $\ell_{11}, \ell_{21} \in \mathcal{P}_{a b}$, results in (3.29). If we take now (2.3) into account, it follows from (3.29) and (3.42) that

$$
m_{2}\left(1-A_{11}\right) \leq M_{2} A_{22}\left(1-A_{11}\right) \leq
$$

The Cauchy problem for two-dimensional systems of linear FDEs ...

$$
\begin{aligned}
& \leq m_{1} A_{21} A_{22}\left(1-A_{11}\right)-m_{2} A_{22}\left(1-A_{11}\right)\left(1-A_{22}\right) \leq \\
& \leq m_{2} A_{12} A_{21} A_{22}-m_{2} A_{22}\left(1-A_{11}\right)\left(1-A_{22}\right)
\end{aligned}
$$

Since $m_{2}>0$, we get from the last relations that

$$
1-A_{11} \leq A_{22}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right]
$$

which contradicts (3.41).
Case (b3): u_{1} changes its sign. Suppose that $\alpha_{1}<\beta_{1}$ (the case, where $\alpha_{1}>\beta_{1}$, can be proved analogously). Obviously, (3.16) is true. The integrations of (3.36 $)$ from a to α_{1} and from α_{1} to β_{1}, on account of (3.14), (3.151), (3.17), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yield

$$
\begin{align*}
& M_{1}=\int_{a}^{\alpha_{1}} \ell_{11}\left(u_{1}\right)(s) d s+\int_{a}^{\alpha_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \quad \leq M_{1} \int_{a}^{\alpha_{1}} \ell_{11}(1)(s) d s+M_{2} \int_{a}^{\alpha_{1}} \ell_{12}(1)(s) d s=M_{1} B_{11}+M_{2} B_{12} \tag{3.43}
\end{align*}
$$

and

$$
\begin{align*}
M_{1}+m_{1}= & -\int_{\alpha_{1}}^{\beta_{1}} \ell_{11}\left(u_{1}\right)(s) d s-\int_{\alpha_{1}}^{\beta_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \leq m_{1} \int_{\alpha_{1}}^{\beta_{1}} \ell_{11}(1)(s) d s+m_{2} \int_{\alpha_{1}}^{\beta_{1}} \ell_{12}(1)(s) d s=m_{1} D_{11}+m_{2} D_{12} \tag{3.44}
\end{align*}
$$

respectively. By virtue of (2.3), (3.16), and (3.18), combining the inequalities (3.37), (3.38) and (3.43), (3.44), we get

$$
\begin{equation*}
0<\frac{m_{2}}{M_{1}}+\frac{M_{2}}{m_{1}}+\frac{m_{2}}{m_{1}}\left(1-D_{22}\right) \leq A_{21}+\frac{M_{2}}{M_{1}} B_{22} \tag{3.45}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\frac{M_{1}}{M_{2}}\left(1-B_{11}\right)+\frac{m_{1}}{m_{2}}\left(1-D_{11}\right)+\frac{M_{1}}{m_{2}} \leq A_{12}, \tag{3.46}
\end{equation*}
$$

respectively.
On the other hand, in view of (2.3), the relations (3.38) and (3.44) imply

$$
M_{2}\left(1-A_{11}\right) \leq m_{2}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right] .
$$

Using (3.37) and (3.40) in the last inequality, we get

$$
M_{2}\left(1-A_{11}-A_{22}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right]\right) \leq M_{1} A_{21}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right] .
$$

Consequently,

$$
\begin{equation*}
A_{21}+\frac{M_{2}}{M_{1}} B_{22} \leq \frac{\left(1-A_{11}\right) A_{21}}{1-A_{11}-A_{22}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right]}, \tag{3.47}
\end{equation*}
$$

because the inequality (3.41) is true.
Now, it follows from (3.45)-(3.47) that

$$
\begin{align*}
& \frac{\left(1-A_{11}\right) A_{12} A_{21}}{1-A_{11}-A_{22}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right]} \geq \frac{m_{2}}{M_{2}}\left(1-B_{11}\right)+ \\
& \quad+\frac{m_{1}}{M_{1}}\left(1-D_{11}\right)+1+\frac{M_{1}}{m_{1}}\left(1-B_{11}\right)+\frac{M_{2}}{m_{2}}\left(1-D_{11}\right)+\frac{M_{1} M_{2}}{m_{1} m_{2}}+ \\
& +\frac{M_{1} m_{2}}{M_{2} m_{1}}\left(1-B_{11}\right)\left(1-D_{22}\right)+\left(1-D_{11}\right)\left(1-D_{22}\right)+\frac{M_{1}}{m_{1}}\left(1-D_{22}\right) . \tag{3.48}
\end{align*}
$$

Using the realition (3.22), we get

$$
\begin{equation*}
\frac{M_{1} M_{2}}{m_{1} m_{2}}+\frac{M_{1} m_{2}}{M_{2} m_{1}}\left(1-B_{11}\right)\left(1-D_{22}\right) \geq 2 \frac{M_{1}}{m_{1}} \sqrt{\left(1-B_{11}\right)\left(1-D_{22}\right)}, \tag{3.49}
\end{equation*}
$$

$$
\begin{align*}
\frac{M_{1}}{m_{1}}\left(1-B_{11}\right)+2 \frac{M_{1}}{m_{1}} \sqrt{\left(1-B_{11}\right)\left(1-D_{22}\right)} & +\frac{M_{1}}{m_{1}}\left(1-D_{22}\right)= \\
= & \frac{M_{1}}{m_{1}}\left(\sqrt{1-B_{11}}+\sqrt{1-D_{22}}\right)^{2} \tag{3.50}
\end{align*}
$$

$$
\begin{align*}
& \frac{M_{1}}{m_{1}}\left(\sqrt{1-B_{11}}+\sqrt{1-D_{22}}\right)^{2}+\frac{m_{1}}{M_{1}}\left(1-D_{11}\right) \geq \\
& \geq 2 \sqrt{1-D_{11}}\left(\sqrt{1-B_{11}}+\sqrt{1-D_{22}}\right) \geq \\
& \geq 2 \sqrt{1-B_{11}-D_{11}}+2 \sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)} \geq \\
& \quad \geq 2 \sqrt{1-A_{11}}+2 \sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)} \tag{3.51}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{m_{2}}{M_{2}}\left(1-B_{11}\right)+\frac{M_{2}}{m_{2}}\left(1-D_{11}\right) \geq 2 \sqrt{\left(1-B_{11}\right)\left(1-D_{11}\right)} \geq 2 \sqrt{1-A_{11}} . \tag{3.52}
\end{equation*}
$$

Finaly, in view (3.49)-(3.52), (3.48) implies

$$
\begin{aligned}
& \frac{\left(1-A_{11}\right) A_{12} A_{21}}{1-A_{11}-A_{22}\left[A_{12} A_{21}-\left(1-A_{11}\right)\left(1-A_{22}\right)\right]} \geq \\
& \geq 4 \sqrt{1-A_{11}}+1+2 \sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}+\left(1-D_{11}\right)\left(1-D_{22}\right) \geq \\
& \quad \geq 4 \sqrt{1-A_{11}}+\left(1+\sqrt{\left(1-A_{11}\right)\left(1-A_{22}\right)}\right)^{2}=\omega
\end{aligned}
$$

which contradicts (2.11).
The contradictions obtained in (a) and (b) prove that the problem (3.36 $)$, $\left(3.36_{2}\right)$, (3.2) has only the trivial solution.

Proof of Theorem 2.7. The validity of the theorem follows immediately from Theorem 2.5.

Proof of Theorem 2.8. The validity of the theorem follows immediately from Theorem 2.6.

Proof of Theorem 2.9. According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the system

$$
\begin{align*}
u_{1}^{\prime}(t) & =-\ell_{11}\left(u_{1}\right)(t)+\ell_{12}\left(u_{2}\right)(t), \tag{1}\\
u_{2}^{\prime}(t) & =\ell_{21}\left(u_{1}\right)(t)-\ell_{22}\left(u_{2}\right)(t) \tag{2}
\end{align*}
$$

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.53_{1}\right),\left(3.53_{2}\right),(3.2)$. Define the numbers $M_{i}, m_{i}(i=1,2)$ by (3.14) and choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities $\left(3.15_{i}\right)$ are satisfied for $i=1,2$. Furthermore, let the numbers $B_{i j}, D_{i j}(i, j=1,2)$ be given by (3.17). It is clear that (3.2) guarantees

$$
M_{i} \geq 0, \quad m_{i} \geq 0 \quad \text { for } \quad i=1,2 .
$$

For the sake of clarity we shall devide the discussion into the following cases.
(a) Both functions u_{1} and u_{2} do not change their signs and $u_{1}(t) u_{2}(t) \geq 0$ for $t \in[a, b]$. Then, without loss of generality, we can assume that

$$
u_{1}(t) \geq 0, \quad u_{2}(t) \geq 0 \quad \text { for } \quad t \in[a, b] .
$$

(b) Both functions u_{1} and u_{2} do not change their signs and $u_{1}(t) u_{2}(t) \leq 0$ for $t \in[a, b]$. Then, without loss of generality, we can assume that

$$
u_{1}(t) \geq 0, \quad u_{2}(t) \leq 0 \quad \text { for } \quad t \in[a, b] .
$$

(c) One of the functions u_{1} and u_{2} is of a constant sign and the other one changes its sign. Then, without loss of generality, we can assume that $u_{1}(t) \geq 0$ for $t \in[a, b]$.
(d) Both functions u_{1} and u_{2} change their signs. Then, without loss of generality, we can assume that $\alpha_{1}<\beta_{1}$. Obviously, one of the following items is satisfied.
(d1) $\beta_{2}<\alpha_{2}$ and $D_{i i} \geq 1$ for some $i \in\{1,2\}$.
(d2) $\beta_{2}<\alpha_{2}$ and $D_{i i}<1$ for $i=1,2$.
(d3) $\beta_{2}>\alpha_{2}$ and $D_{i i} \geq 1$ for some $i \in\{1,2\}$.
(d4) $\beta_{2}>\alpha_{2}$ and $D_{i i}<1$ for $i=1,2$.

At first we note that the function φ satisfies

$$
\begin{equation*}
\varphi\left(A_{i i}\right) \leq 1-B_{i i}\left(D_{i i}-1\right) \quad \text { for } \quad i=1,2 . \tag{3.54}
\end{equation*}
$$

Case (a): $u_{1}(t) \geq 0$ and $u_{2}(t) \geq 0$ for $t \in[a, b]$. Obviuously, (3.10) is true. The integration of $\left(3.53_{i}\right)$ from a to α_{i}, in view of (3.14), (3.15 $)$, and the assumptions $\ell_{i 1}, \ell_{i 2} \in \mathcal{P}_{a b}$, yields

$$
\begin{align*}
M_{i}=(-1)^{i} \int_{a}^{\alpha_{i}} \ell_{i 1}\left(u_{1}\right)(s) d s+(-1)^{i-1} \int_{a}^{\alpha_{i}} \ell_{i 2}\left(u_{2}\right)(s) d s \leq \\
\leq M_{3-i} \int_{a}^{\alpha_{i}} \ell_{i 3-i}(1)(s) d s \leq M_{3-i} A_{i 3-i} \quad(i=1,2) \tag{3.55}
\end{align*}
$$

By virtue of (3.10), (3.55) implies $M_{1}>0, M_{2}>0$, and $A_{12} A_{21} \geq 1$, which contradicts (2.14), because $\omega \geq 1$ and $0<\varphi\left(A_{i i}\right) \leq 1$ for $i=1,2$.
Case (b): $u_{1}(t) \geq 0$ and $u_{2}(t) \leq 0$ for $t \in[a, b]$. In view of the assumptions $\ell_{i j} \in \mathcal{P}_{a b}$ $(i, j=1,2),\left(3.53_{1}\right)$ and $\left(3.53_{2}\right)$ arrive at $u_{1}^{\prime}(t) \leq 0$ for $t \in[a, b]$ and $u_{2}^{\prime}(t) \geq 0$ for $t \in[a, b]$, respectively. Consequently, $u_{1} \equiv 0$ and $u_{2} \equiv 0$, a contradiction.

Case (c): $u_{1}(t) \geq 0$ for $t \in[a, b]$ and u_{2} changes its sign. Obviously, $m_{1}=0$ and (3.32) is true. Suppose that $\beta_{2}<\alpha_{2}$ (the case, where $\beta_{2}>\alpha_{2}$, can be proved analogously). The integration of (3.53) from a to α_{1}, on account of (3.14), (3.151), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yields

$$
\begin{equation*}
M_{1}=-\int_{a}^{\alpha_{1}} \ell_{11}\left(u_{1}\right)(s) d s+\int_{a}^{\alpha_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq M_{2} \int_{a}^{\alpha_{1}} \ell_{12}(1)(s) d s \leq M_{2} A_{12} \tag{3.56}
\end{equation*}
$$

On the other hand, the integrations of $\left(3.53_{2}\right)$ from a to β_{2} and from β_{2} to α_{2}, in view of (3.14), (3.152), (3.17), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, result in

$$
\begin{equation*}
m_{2}=-\int_{a}^{\beta_{2}} \ell_{21}\left(u_{1}\right)(s) d s+\int_{a}^{\beta_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq M_{2} \int_{a}^{\beta_{2}} \ell_{22}(1)(s) d s=M_{2} B_{22} \tag{3.57}
\end{equation*}
$$

and

$$
\begin{align*}
M_{2}+m_{2}= & \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{\beta_{2}}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}(1)(s) d s+m_{2} \int_{\beta_{2}}^{\alpha_{2}} \ell_{22}(1)(s) d s=M_{1} D_{21}+m_{2} D_{22}, \tag{3.58}
\end{align*}
$$

respectively.
It follows from (3.56) and (3.58) that

$$
\begin{equation*}
M_{2} \leq M_{2} A_{12} A_{21}+m_{2}\left(D_{22}-1\right) \tag{3.59}
\end{equation*}
$$

26 The Cauchy problem for two-dimensional systems of linear FDEs ..
Hence, by virtue of (2.14) and (3.32), (3.59) implies

$$
\begin{equation*}
0<M_{2}\left(1-A_{12} A_{21}\right) \leq m_{2}\left(D_{22}-1\right) . \tag{3.60}
\end{equation*}
$$

Using (3.54), the relations (3.57) and (3.60) result in

$$
\varphi\left(A_{22}\right) \leq 1-B_{22}\left(D_{22}-1\right) \leq A_{12} A_{21},
$$

which contradicts (2.14), because $\omega \geq 1$ and $0<\varphi\left(A_{11}\right) \leq 1$.
Case (d): u_{1} and u_{2} change their signs and $\alpha_{1}<\beta_{1}$. Obviously, (3.16) is true. The integrations of (3.53 $)$ from a to α_{1} and from α_{1} to β_{1}, in view of (3.14), (3.151), (3.17), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yield

$$
\begin{align*}
& M_{1}=-\int_{a}^{\alpha_{1}} \ell_{11}\left(u_{1}\right)(s) d s+\int_{a}^{\alpha_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \quad \leq m_{1} \int_{a}^{\alpha_{1}} \ell_{11}(1)(s) d s+M_{2} \int_{a}^{\alpha_{1}} \ell_{12}(1)(s) d s=m_{1} B_{11}+M_{2} B_{12} \tag{3.61}
\end{align*}
$$

and

$$
\begin{align*}
M_{1}+m_{1}= & \int_{\alpha_{1}}^{\beta_{1}} \ell_{11}\left(u_{1}\right)(s) d s-\int_{\alpha_{1}}^{\beta_{1}} \ell_{12}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{\alpha_{1}}^{\beta_{1}} \ell_{11}(1)(s) d s+m_{2} \int_{\alpha_{1}}^{\beta_{1}} \ell_{12}(1)(s) d s=M_{1} D_{11}+m_{2} D_{12} \tag{3.62}
\end{align*}
$$

Furthermore, under the assumption $\beta_{2}<\alpha_{2}$, the integrations of (3.532) from a to β_{2} and from β_{2} to α_{2}, in view of (3.14), (3.152), (3.17), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, result in

$$
\begin{align*}
& m_{2}=-\int_{a}^{\beta_{2}} \ell_{21}\left(u_{1}\right)(s) d s+\int_{a}^{\beta_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \quad \leq m_{1} \int_{a}^{\beta_{2}} \ell_{21}(1)(s) d s+M_{2} \int_{a}^{\beta_{2}} \ell_{22}(1)(s) d s=m_{1} B_{21}+M_{2} B_{22} \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
M_{2}+m_{2}= & \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{\beta_{2}}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{\beta_{2}}^{\alpha_{2}} \ell_{21}(1)(s) d s+m_{2} \int_{\beta_{2}}^{\alpha_{2}} \ell_{22}(1)(s) d s=M_{1} D_{21}+m_{2} D_{22} . \tag{1}
\end{align*}
$$

If $\beta_{2}>\alpha_{2}$, we obtain in a similar manner the inequalities

$$
\begin{gather*}
M_{2} \leq M_{1} B_{21}+m_{2} B_{22} \tag{2}\\
M_{2}+m_{2} \leq m_{1} D_{21}+M_{2} D_{22} . \tag{2}
\end{gather*}
$$

Now we are in position to discuss the cases (d1)-(d4).
Case (d1): $\beta_{2}<\alpha_{2}$ and $D_{i i} \geq 1$ for some $i \in\{1,2\}$. Suppose that $D_{22} \geq 1$ (the case, where $D_{11} \geq 1$, can be proved analogously). Using this assumption, from (3.63 $)$ and (3.64 $)$, we get

$$
m_{2} \leq m_{1} B_{21}+M_{1} B_{22} D_{21}+m_{2} B_{22}\left(D_{22}-1\right)
$$

and

$$
M_{2} \leq M_{1} D_{21}+m_{1} B_{21}\left(D_{22}-1\right)+M_{2} B_{22}\left(D_{22}-1\right) .
$$

Hence, in view of (3.54), the last two inequalities yield

$$
\begin{align*}
& m_{2} \varphi\left(A_{22}\right) \leq m_{1} B_{21}+M_{1} B_{22} D_{21} \tag{3.65}\\
& M_{2} \varphi\left(A_{22}\right) \leq M_{1} D_{21}+m_{1} B_{21}\left(D_{22}-1\right) \tag{3.66}
\end{align*}
$$

By virtue of (2.14) and (3.16), it follows from (3.61), (3.66) and (3.62), (3.65) that

$$
\begin{equation*}
0<M_{1}\left[\varphi\left(A_{22}\right)-B_{12} D_{21}\right] \leq m_{1}\left[\varphi\left(A_{22}\right) B_{11}+B_{12} B_{21}\left(D_{22}-1\right)\right] \tag{3.67}
\end{equation*}
$$

and

$$
\begin{equation*}
0<m_{1}\left[\varphi\left(A_{22}\right)-D_{12} B_{21}\right] \leq M_{1}\left[\varphi\left(A_{22}\right)\left(D_{11}-1\right)+D_{12} D_{21} B_{22}\right], \tag{3.68}
\end{equation*}
$$

respectively. Combining (3.67) and (3.68), we get

$$
\begin{align*}
& \varphi^{2}\left(A_{22}\right) \leq \varphi\left(A_{22}\right)\left[B_{12} D_{21}+D_{12} B_{21}\right]-B_{12} D_{12} B_{21} D_{21}\left(1-B_{22}\left(D_{22}-1\right)\right)+ \\
&+\varphi\left(A_{22}\right)\left[B_{12} B_{21}\left(D_{11}-1\right)\left(D_{22}-1\right)\right.\left.+D_{12} D_{21} B_{11} B_{22}\right]+ \\
&+\varphi^{2}\left(A_{22}\right) B_{11}\left(D_{11}-1\right) \tag{3.69}
\end{align*}
$$

Since $1-B_{i i}\left(D_{i i}-1\right) \geq \varphi\left(A_{i i}\right)>0$ for $i=1,2$ and

$$
\begin{equation*}
B_{12} D_{21}+D_{12} B_{21} \leq A_{12} A_{21}-B_{12} B_{21}-D_{12} D_{21} \tag{3.70}
\end{equation*}
$$

we obtain from (3.69) that

$$
\begin{align*}
& \varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq \\
& \quad \leq A_{12} A_{21}+B_{12} B_{21}\left[\left(D_{11}-1\right)\left(D_{22}-1\right)-1\right]+D_{12} D_{21}\left[B_{11} B_{22}-1\right] \tag{3.71}
\end{align*}
$$

If $\left(D_{11}-1\right)\left(D_{22}-1\right) \leq 1$ and $B_{11} B_{22} \leq 1$ then (3.71) implies

$$
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21},
$$

28 The Cauchy problem for two-dimensional systems of linear FDEs ..
which contradicts (2.14).
If $\left(D_{11}-1\right)\left(D_{22}-1\right) \leq 1$ and $B_{11} B_{22}>1$ then, in view of (3.18) and the assumption $D_{22} \geq 1$, we obtain from (3.71) that

$$
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21} B_{11} B_{22} \leq A_{12} A_{21} B_{11}\left(A_{22}-D_{22}\right) \leq A_{12} A_{21} A_{11}\left(A_{22}-1\right),
$$

which contradicts (2.14).
If $\left(D_{11}-1\right)\left(D_{22}-1\right)>1$ and $B_{11} B_{22} \leq 1$ then (3.71) arrives at

$$
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21}\left(D_{11}-1\right)\left(D_{22}-1\right) \leq A_{12} A_{21} A_{11}\left(A_{22}-1\right)
$$

which contradicts (2.14).

$$
\begin{aligned}
& \text { If }\left(D_{11}-1\right)\left(D_{22}-1\right)>1 \text { and } B_{11} B_{22}>1 \text { then (3.71) yields } \\
& \begin{array}{r}
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21}\left[\left(D_{11}-1\right)\left(D_{22}-1\right)+B_{11} B_{22}-1\right] \leq \\
\leq A_{12} A_{21}\left[A_{11}\left(D_{22}-1\right)+A_{11} B_{22}\right] \leq A_{12} A_{21} A_{11}\left(A_{22}-1\right)
\end{array}
\end{aligned}
$$

which contradicts (2.14).
Case (d2): $\beta_{2}<\alpha_{2}$ and $D_{i i}<1$ for $i=1,2$. We first note that

$$
\begin{equation*}
B_{11} B_{22} \leq\left(A_{i i}-D_{i i}\right) B_{3-i 3-i}=\left(A_{i i}-1\right) B_{3-i 3-i}+\left(1-D_{i i}\right) B_{3-i 3-i} \tag{i}
\end{equation*}
$$

for $i=1,2$. By virtue of (3.16), we get from the inequalities (3.62) and (3.64 $)$

$$
\begin{equation*}
m_{1} \leq m_{2} D_{12} \tag{3.73}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2} \leq M_{1} D_{21} . \tag{3.74}
\end{equation*}
$$

Therefore, in view of (2.14) and (3.16), the relations (3.62), (3.63 $)$, (3.74) and (3.61), (3.74) result in

$$
\begin{equation*}
0<m_{1}\left(1-D_{12} B_{21}\right) \leq M_{1}\left[D_{12} D_{21} B_{22}-\left(1-D_{11}\right)\right] \tag{3.75}
\end{equation*}
$$

and

$$
\begin{equation*}
0<M_{1}\left(1-B_{12} D_{21}\right) \leq m_{1} B_{11} \tag{3.76}
\end{equation*}
$$

respectively. Combining (3.72 $)$, (3.75), (3.76) and taking the inequality $D_{12} D_{21} \leq 1$ into account, we get

$$
\begin{equation*}
\left(1-B_{12} D_{21}\right)\left(1-D_{12} B_{21}\right) \leq D_{12} D_{21}\left(A_{11}-1\right) B_{22}+\left(B_{22}-B_{11}\right)\left(1-D_{11}\right) . \tag{3.77}
\end{equation*}
$$

On the other hand, by virtue of (2.14) and (3.16), the relations (3.61), (3.64 $)$, (3.73) and (3.63 $)$, (3.73) imply

$$
\begin{equation*}
0<M_{2}\left(1-B_{12} D_{21}\right) \leq m_{2}\left[D_{12} D_{21} B_{11}-\left(1-D_{22}\right)\right] \tag{3.78}
\end{equation*}
$$

and

$$
\begin{equation*}
0<m_{2}\left(1-D_{12} B_{21}\right) \leq M_{2} B_{22} \tag{3.79}
\end{equation*}
$$

respectively. Combining (3.72 $)$, (3.78), (3.79) and taking the inequality $D_{12} D_{21} \leq 1$ into account, we obtain

$$
\begin{equation*}
\left(1-B_{12} D_{21}\right)\left(1-D_{12} B_{21}\right) \leq D_{12} D_{21}\left(A_{22}-1\right) B_{11}+\left(B_{11}-B_{22}\right)\left(1-D_{22}\right) \tag{3.80}
\end{equation*}
$$

First suppose that $B_{22} \leq B_{11}$. Then, by virtue of (3.70), the inequality (3.77) arrives at

$$
\left.\begin{array}{rl}
1 \leq B_{12} D_{21}+D_{12} B_{21}+D_{12} D_{21} & \left(A_{11}-1\right) B_{22}
\end{array}\right) .
$$

If $\left(A_{11}-1\right) B_{22} \leq 1$ then (3.81) implies $1 \leq A_{12} A_{21}$, which contradicts (2.14), because $0<\varphi\left(A_{i i}\right) \leq 1$ for $i=1,2$.

If $\left(A_{11}-1\right) B_{22}>1$ then (3.81) yields

$$
1 \leq A_{12} A_{21}\left(A_{11}-1\right) B_{22} \leq A_{12} A_{21}\left(A_{11}-1\right) A_{22}
$$

which contradicts (2.14), because $0<\varphi\left(A_{i i}\right) \leq 1$ for $i=1,2$.
Now suppose that $B_{22}>B_{11}$. Then, by virtue of (3.70), the inequality (3.80) results in

$$
\left.\begin{array}{rl}
1 \leq B_{12} D_{21}+D_{12} B_{21}+D_{12} D_{21}(& \left.A_{22}-1\right) B_{11}
\end{array}\right)
$$

If $\left(A_{22}-1\right) B_{11} \leq 1$ then (3.82) implies $1 \leq A_{12} A_{21}$, which contradicts (2.14), because $0<\varphi\left(A_{i i}\right) \leq 1$ for $i=1,2$.

If $\left(A_{22}-1\right) B_{11}>1$ then (3.82) yields

$$
1 \leq A_{12} A_{21}\left(A_{22}-1\right) B_{11} \leq A_{12} A_{21}\left(A_{22}-1\right) A_{11},
$$

which contradicts (2.14), because $0<\varphi\left(A_{i i}\right) \leq 1$ for $i=1,2$.
Case (d3): $\beta_{2}>\alpha_{2}$ and $D_{i i} \geq 1$ for some $i \in\{1,2\}$. Suppose that $D_{22} \geq 1$ (the case, where $D_{11} \geq 1$, can be proved analogously). In a similar manner as in the case (d1), combining (3.61), (3.62) and (3.632), (3.642), we get

$$
\begin{align*}
& \varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq \\
& \quad \leq A_{12} A_{21}+D_{12} B_{21}\left[B_{11}\left(D_{22}-1\right)-1\right]+B_{12} D_{21}\left[B_{22}\left(D_{11}-1\right)-1\right] . \tag{3.83}
\end{align*}
$$

If $B_{11}\left(D_{22}-1\right) \leq 1$ and $B_{22}\left(D_{11}-1\right) \leq 1$ then (3.83) implies

$$
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21}
$$

30 The Cauchy problem for two-dimensional systems of linear FDEs ...
which contradicts (2.14).
If $B_{11}\left(D_{22}-1\right) \leq 1$ and $B_{22}\left(D_{11}-1\right)>1$ then we obtain from (3.83) that

$$
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21} B_{22}\left(D_{11}-1\right) \leq A_{12} A_{21} A_{22}\left(A_{11}-1\right),
$$

which contradicts (2.14).
If $B_{11}\left(D_{22}-1\right)>1$ and $B_{22}\left(D_{11}-1\right) \leq 1$ then (3.83) arrives at

$$
\varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21} B_{11}\left(D_{22}-1\right) \leq A_{12} A_{21} A_{11}\left(A_{22}-1\right)
$$

which contradicts (2.14).
If $B_{11}\left(D_{22}-1\right)>1$ and $B_{22}\left(D_{11}-1\right)>1$ then (3.83) yields

$$
\begin{aligned}
& \varphi\left(A_{11}\right) \varphi\left(A_{22}\right) \leq A_{12} A_{21}\left[B_{11}\left(D_{22}-1\right)+\left(D_{11}-1\right) B_{22}-1\right] \leq \\
& \leq A_{12} A_{21}\left[A_{11}\left(D_{22}-1\right)+A_{11} B_{22}\right] \leq A_{12} A_{21} A_{11}\left(A_{22}-1\right)
\end{aligned}
$$

which contradicts (2.14).
Case (d4): $\beta_{2}>\alpha_{2}$ and $D_{i i}<1$ for $i=1,2$. The inequalities (3.62) and (3.642) result in

$$
m_{1} \leq m_{2} D_{12}, \quad m_{2} \leq m_{1} D_{21}
$$

Hence, we get

$$
1 \leq D_{12} D_{21} \leq A_{12} A_{21}
$$

which contradicts (2.14), because $0<\varphi\left(A_{i i}\right) \leq 1$ for $i=1,2$.
The contradictions obtained in (a)-(d) prove that the problem $\left(3.53_{1}\right),\left(3.53_{2}\right)$, (3.2) has only the trivial solution.

Before we prove Theorem 2.10, we give the following lemma.
Lemma 3.4. Let the function φ be defined by (2.2). Then, for any $0 \leq x \leq y<3$, the inequality

$$
\begin{equation*}
(3-y) \varphi(x) \leq(3-x) \varphi(y) \tag{3.84}
\end{equation*}
$$

is satisfied.
Proof. Let $0 \leq x \leq y<3$ be arbitrary but fixed. It is clear that one of the following cases is satisfied:
(a) $0 \leq x \leq y \leq 1$ holds. Then

$$
(3-y) \varphi(x)=3-y \leq 3-x=(3-x) \varphi(y) .
$$

(b) $0 \leq x \leq 1$ and $1<y<3$ are satisfied. Then we get

$$
3-y \leq 2\left[1-\frac{1}{4}(y-1)^{2}\right] .
$$

Consequently,

$$
(3-y) \varphi(x)=3-y \leq 2\left[1-\frac{1}{4}(y-1)^{2}\right] \leq(3-x) \varphi(y)
$$

(c) $1<x \leq y<3$ is true. Then we obtain

$$
\begin{aligned}
(3-y)[4- & \left.(x-1)^{2}\right]=(3-y)[2+(x-1)][2-(x-1)]= \\
& =(3-y)(1+x)(3-x) \leq(3-x)(1+y)(3-y)= \\
& =(3-x)[2+(y-1)][2-(y-1)]=(3-x)\left[4-(y-1)^{2}\right]
\end{aligned}
$$

i.e., the inequality (3.84) holds.

Proof of Theorem 2.10. According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the system

$$
\begin{align*}
u_{1}^{\prime}(t) & =-\ell_{11}\left(u_{1}\right)(t)+\ell_{12}\left(u_{2}\right)(t), \tag{1}\\
u_{2}^{\prime}(t) & =-\ell_{21}\left(u_{1}\right)(t)-\ell_{22}\left(u_{2}\right)(t) \tag{2}
\end{align*}
$$

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.85_{1}\right),\left(3.85_{2}\right),(3.2)$. Define the numbers $M_{i}, m_{i}(i=1,2)$ by (3.14) and choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities $\left(3.15_{i}\right)$ are satisfied for $i=1,2$. Furthermore, let the numbers $B_{i j}, D_{i j}(i, j=1,2)$ be given by (3.17). It is clear that (3.2) guarantees

$$
M_{i} \geq 0, \quad m_{i} \geq 0 \quad \text { for } \quad i=1,2 .
$$

For the sake of clarity we shall devide the discussion into the following cases.
(a) Both functions u_{1} and u_{2} do not change their signs. According to Lemma 3.2, we can assume without loss of generality that

$$
u_{1}(t) \geq 0, \quad u_{2}(t) \geq 0 \quad \text { for } \quad t \in[a, b] .
$$

(b) One of the functions u_{1} and u_{2} is of a constant sign and the other one changes its sign. According to Lemma 3.2, we can assume without loss of generality that $u_{1}(t) \geq 0$ for $t \in[a, b]$.
(c) Both functions u_{1} and u_{2} change their signs. According to Lemma 3.2, we can assume without loss of generality that $\alpha_{1}<\beta_{1}$ and $\beta_{2}<\alpha_{2}$. Obviously, one of the following items is satisfied:
(c1) $D_{i i} \geq 1$ for some $i \in\{1,2\}$
(c2) $D_{i i}<1$ for $i=1,2$ and
(c2.1) $m_{1} D_{21} \leq m_{2} B_{22}$
(c2.2) $M_{1} \leq M_{2} D_{12}$
(c2.3) $m_{1} D_{21}>m_{2} B_{22}$ and $M_{1}>M_{2} D_{12}$

32 The Cauchy problem for two-dimensional systems of linear FDEs ..
At first we note that (3.54) is true and, by virtue of Lemma 3.4, the assumption (2.16) can be rewritten as

$$
\begin{equation*}
\omega A_{12} A_{21}<\left(3-A_{i i}\right) \varphi\left(A_{3-i 3-i}\right) \quad \text { for } \quad i=1,2 . \tag{3.86}
\end{equation*}
$$

Case (a): $u_{1}(t) \geq 0$ and $u_{2}(t) \geq 0$ for $t \in[a, b]$. In view of the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b},\left(3.85_{2}\right)$ implies $u_{2}^{\prime}(t) \leq 0$ for $t \in[a, b]$. Therefore, $u_{2} \equiv 0$ and, by virtue of the assumption $\ell_{11} \in \mathcal{P}_{a b},\left(3.85_{1}\right)$ arrives at $u_{1}^{\prime}(t) \leq 0$ for $t \in[a, b]$. Consequently, $u_{1} \equiv 0$ as well, which is a contradiction.

Case (b): $u_{1}(t) \geq 0$ for $t \in[a, b]$ and u_{2} changes its sign. Obviously, (3.32) is true, $M_{1} \geq 0$, and $m_{1}=0$. Suppose that $\alpha_{2}<\beta_{2}$ (the case, where $\alpha_{2}>\beta_{2}$, can be proved analogously). The integration of (3.85 $)$ from a to α_{1}, in view of (3.14), (3.15 $)$, and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yields (3.56).

On the other hand, the integrations of $\left(3.85_{2}\right)$ from a to α_{2} and from α_{2} to β_{2}, in view of (3.14), (3.152), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, result in

$$
\begin{equation*}
M_{2}=-\int_{a}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{a}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq m_{2} \int_{a}^{\alpha_{2}} \ell_{22}(1)(s) d s=m_{2} B_{22} \tag{3.87}
\end{equation*}
$$

and

$$
\begin{align*}
M_{2}+m_{2}= & \int_{\alpha_{2}}^{\beta_{2}} \ell_{21}\left(u_{1}\right)(s) d s+\int_{\alpha_{2}}^{\beta_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq \\
& \leq M_{1} \int_{\alpha_{2}}^{\beta_{2}} \ell_{21}(1)(s) d s+M_{2} \int_{\alpha_{2}}^{\beta_{2}} \ell_{22}(1)(s) d s=M_{1} D_{21}+M_{2} D_{22} \tag{3.88}
\end{align*}
$$

respectively. By virtue of (3.32), combining (3.56), (3.87), and (3.88), we get

$$
3-A_{22} \leq 1+\frac{M_{2}}{m_{2}}+\frac{m_{2}}{M_{2}}-B_{22}-D_{22} \leq \frac{M_{1}}{M_{2}} D_{21} \leq A_{12} A_{21},
$$

which contradicts (3.86), because $\omega \geq 1$ and $0<\varphi\left(A_{11}\right) \leq 1$.
Case (c): u_{1} and u_{2} change their signs, $\alpha_{1}<\beta_{1}$, and $\beta_{2}<\alpha_{2}$. Obviously, (3.16) is true. The integrations of $\left(3.85_{1}\right)$ from a to α_{1} and from α_{1} to β_{1}, in view of (3.14), (3.151), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, imply (3.61) and (3.62). On the other hand, the integrations of $\left(3.85_{2}\right)$ from a to β_{2} and from β_{2} to α_{2}, on account of (3.14), (3.152), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, result in (3.37) and (3.38).

By virtue of (3.16), the relations (3.61), (3.62) and (3.37), (3.38) arrive at

$$
\begin{equation*}
3-B_{11}-D_{11} \leq 1+\frac{M_{1}}{m_{1}}+\frac{m_{1}}{M_{1}}-B_{11}-D_{11} \leq \frac{M_{2}}{m_{1}} B_{12}+\frac{m_{2}}{M_{1}} D_{12} \tag{3.89}
\end{equation*}
$$

and

$$
\begin{equation*}
3-B_{22}-D_{22} \leq 1+\frac{M_{2}}{m_{2}}+\frac{m_{2}}{M_{2}}-B_{22}-D_{22} \leq \frac{M_{1}}{M_{2}} B_{21}+\frac{m_{1}}{m_{2}} D_{21}, \tag{3.90}
\end{equation*}
$$

respectively.
Case (c1): $D_{i i} \geq 1$ for some $i \in\{1,2\}$. Suppose that $D_{11} \geq 1$ (the case, where $D_{22} \geq 1$, can be proved analogously). Using this assumption and combining (3.61) and (3.62), we get

$$
M_{1} \leq M_{1} B_{11}\left(D_{11}-1\right)+m_{2} B_{11} D_{12}+M_{2} B_{12}
$$

and

$$
m_{1} \leq m_{1} B_{11}\left(D_{11}-1\right)+M_{2}\left(D_{11}-1\right) B_{12}+m_{2} D_{12}
$$

Hence, in view of (3.54), the last two inequalities yield

$$
\begin{align*}
& M_{1} \varphi\left(A_{11}\right) \leq m_{2} B_{11} D_{12}+M_{2} B_{12} \tag{3.91}\\
& m_{1} \varphi\left(A_{11}\right) \leq M_{2}\left(D_{11}-1\right) B_{12}+m_{2} D_{12} \tag{3.92}
\end{align*}
$$

By virtue of the assumption $D_{11} \geq 1$, it follows from (3.37), (3.91) and (3.38), (3.92) that

$$
\begin{equation*}
M_{1}\left[\varphi\left(A_{11}\right)-B_{11} D_{12} B_{21}\right] \leq M_{2}\left[B_{11} B_{22} D_{12}+B_{12}\right] \tag{3.93}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}\left[\varphi\left(A_{11}\right)-\left(D_{11}-1\right) B_{12} D_{21}\right] \leq m_{2}\left[\left(D_{11}-1\right)\left(D_{22}-1\right) B_{12}+D_{12}\right] \tag{3.94}
\end{equation*}
$$

respectively. Note that, in view of (3.18) and the condition $D_{11} \geq 1$, the assumption (3.86) guarantees

$$
\begin{gather*}
B_{11} D_{12} B_{21} \leq\left(A_{11}-1\right) A_{12} A_{21}<\frac{3-A_{22}}{3} \varphi\left(A_{11}\right) \leq \varphi\left(A_{11}\right), \tag{3.95}\\
\left(D_{11}-1\right) B_{12} D_{21} \leq\left(A_{11}-1\right) A_{12} A_{21}<\frac{3-A_{22}}{3} \varphi\left(A_{11}\right) \leq \varphi\left(A_{11}\right) .
\end{gather*}
$$

Consequently, we get from (3.90), (3.93), and (3.94) that

$$
\begin{align*}
&\left(3-B_{22}-\right.\left.D_{22}\right)\left[\varphi\left(A_{11}\right)-B_{11} D_{12} B_{21}\right]\left[\varphi\left(A_{11}\right)-\left(D_{11}-1\right) B_{12} D_{21}\right] \leq \\
& \leq {\left[B_{11} B_{22} D_{12} B_{21}+B_{12} B_{21}\right]\left[\varphi\left(A_{11}\right)-\left(D_{11}-1\right) B_{12} D_{21}\right]+} \\
&+ {\left[\left(D_{11}-1\right)\left(D_{22}-1\right) B_{12} D_{21}+D_{12} D_{21}\right]\left[\varphi\left(A_{11}\right)-B_{11} D_{12} B_{21}\right] \leq } \\
& \leq \varphi\left(A_{11}\right)\left[B_{12} B_{21}+D_{12} D_{21}+B_{11} B_{22} D_{12} B_{21}+\left(D_{11}-1\right)\left(D_{22}-1\right) B_{12} D_{21}\right] \tag{3.96}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \left(3-B_{22}-D_{22}\right)\left[\varphi\left(A_{11}\right)-B_{11} D_{12} B_{21}\right]\left[\varphi\left(A_{11}\right)-\left(D_{11}-1\right) B_{12} D_{21}\right] \geq \\
& \geq\left(3-A_{22}\right) \varphi\left(A_{11}\right)^{2}-\varphi\left(A_{11}\right)\left(3-B_{22}-D_{22}\right) B_{11} D_{12} B_{21}- \\
& -\varphi\left(A_{11}\right)\left(3-B_{22}-D_{22}\right)\left(D_{11}-1\right) B_{12} D_{21} \tag{3.97}
\end{align*}
$$

34 The Cauchy problem for two-dimensional systems of linear FDEs ..
By virtue of (3.18), the inequality

$$
\begin{equation*}
B_{12} B_{21}+D_{12} D_{21} \leq A_{12} A_{21}-D_{12} B_{21}-B_{12} D_{21} \tag{3.98}
\end{equation*}
$$

is true. Consequently, (3.96) and (3.97) imply

$$
\begin{align*}
& \left(3-A_{22}\right) \varphi\left(A_{11}\right) \leq A_{12} A_{21}+ \\
& \quad+D_{12} B_{21}\left[\left(3-D_{22}\right) B_{11}-1\right]+B_{12} D_{21}\left[\left(2-B_{22}\right)\left(D_{11}-1\right)-1\right] \tag{3.99}
\end{align*}
$$

If $\left(3-D_{22}\right) B_{11} \leq 1$ and $\left(2-B_{22}\right)\left(D_{11}-1\right) \leq 1$ then (3.99) yields

$$
\left(3-A_{22}\right) \varphi\left(A_{11}\right) \leq A_{12} A_{21},
$$

which contradicts (3.86).
If $\left(3-D_{22}\right) B_{11} \leq 1$ and $\left(2-B_{22}\right)\left(D_{11}-1\right)>1$ then (3.99) results in

$$
\left(3-A_{22}\right) \varphi\left(A_{11}\right) \leq A_{12} A_{21}\left(2-B_{22}\right)\left(D_{11}-1\right) \leq 3\left(A_{11}-1\right) A_{12} A_{21},
$$

which contradicts (3.86).
If $\left(3-D_{22}\right) B_{11}>1$ and $\left(2-B_{22}\right)\left(D_{11}-1\right) \leq 1$ then, in view of (3.18) and the assumption $D_{11} \geq 1$, we obtain from (3.99) that

$$
\begin{aligned}
\left(3-A_{22}\right) \varphi\left(A_{11}\right) \leq A_{12} A_{21}(3 & \left.-D_{22}\right) B_{11} \leq \\
& \leq 3 A_{12} A_{21}\left(A_{11}-D_{11}\right) \leq 3\left(A_{11}-1\right) A_{12} A_{21}
\end{aligned}
$$

which contradicts (3.86).
If $\left(3-D_{22}\right) B_{11}>1$ and $\left(2-B_{22}\right)\left(D_{11}-1\right)>1$ then (3.99) arrives at

$$
\begin{aligned}
\left(3-A_{22}\right) \varphi\left(A_{11}\right) \leq A_{12} A_{21} & {\left[\left(3-D_{22}\right) B_{11}+\left(2-B_{22}\right)\left(D_{11}-1\right)-1\right] \leq } \\
& \leq A_{12} A_{21}\left[3 B_{11}+3\left(D_{11}-1\right)\right] \leq 3\left(A_{11}-1\right) A_{12} A_{21},
\end{aligned}
$$

which contradicts (3.86).
Case (c2): $D_{i i}<1$ for $i=1,2$. By virtue of (3.16), the inequalities (3.62) and (3.38) result in

$$
\begin{equation*}
m_{1} \leq m_{2} D_{12} \tag{3.100}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2} \leq m_{1} D_{21}, \tag{3.101}
\end{equation*}
$$

respectively.
Case (c2.1): $m_{1} D_{21} \leq m_{2} B_{22}$. Combining (3.37), (3.38) and taking (3.18) into account, we get

$$
\begin{aligned}
m_{2} \leq M_{1} B_{21} & +m_{1} B_{22} D_{21}+m_{2} B_{22}\left(D_{22}-1\right) \leq \\
& \leq M_{1} B_{21}+m_{1}\left(A_{22}-D_{22}\right) D_{21}+m_{2} B_{22}\left(D_{22}-1\right)=
\end{aligned}
$$

$$
=M_{1} B_{21}+m_{1}\left(A_{22}-1\right) D_{21}+\left(1-D_{22}\right)\left[m_{1} D_{21}-m_{2} B_{22}\right]
$$

Consequently,

$$
\begin{equation*}
m_{2} \leq M_{1} B_{21}+m_{1}\left(A_{22}-1\right) D_{21} \tag{3.102}
\end{equation*}
$$

If $A_{22} \leq 1$ then (3.89), (3.101), and (3.102) arrive at

$$
3-A_{11} \leq 3-B_{11}-D_{11} \leq B_{12} D_{21}+D_{12} B_{21} \leq A_{12} A_{21}
$$

which contradicts (3.86), because $0<\varphi\left(A_{22}\right) \leq 1$.
Therefore, suppose that

$$
\begin{equation*}
A_{22}>1 \tag{3.103}
\end{equation*}
$$

Then, using (3.62) in (3.102), we obtain

$$
m_{2} \leq M_{1} B_{21}+M_{1}\left(A_{22}-1\right)\left(D_{11}-1\right) D_{21}+m_{2}\left(A_{22}-1\right) D_{12} D_{21}
$$

i.e.,

$$
\begin{equation*}
m_{2}\left[1-\left(A_{22}-1\right) D_{12} D_{21}\right] \leq M_{1}\left[B_{21}-\left(A_{22}-1\right)\left(1-D_{11}\right) D_{21}\right] \tag{3.104}
\end{equation*}
$$

Note that the assumption (3.86) guarantees

$$
\left(A_{22}-1\right) D_{12} D_{21} \leq\left(A_{22}-1\right) A_{12} A_{21}<\frac{3-A_{22}}{3} \varphi\left(A_{11}\right)<1
$$

Consequently, we get from (3.89), (3.101), and (3.104) that

$$
\begin{align*}
& \left(3-B_{11}-D_{11}\right)\left[1-\left(A_{22}-1\right) D_{12} D_{21}\right] \leq \\
& \leq\left[1-\left(A_{22}-1\right) D_{12} D_{21}\right] B_{12} D_{21}+D_{12} B_{21}-\left(A_{22}-1\right)\left(1-D_{11}\right) D_{12} D_{21} \leq \\
& \quad \leq B_{12} D_{21}+D_{12} B_{21}-\left(A_{22}-1\right)\left(1-D_{11}\right) D_{12} D_{21} \tag{3.105}
\end{align*}
$$

By virtue of the inequality

$$
\begin{equation*}
B_{12} D_{21}+D_{12} B_{21} \leq A_{12} A_{21}-B_{12} B_{21}-D_{12} D_{21} \tag{3.106}
\end{equation*}
$$

(3.105) implies

$$
\begin{equation*}
3-A_{11} \leq A_{12} A_{21}+D_{12} D_{21}\left[\left(A_{22}-1\right)\left(2-B_{11}\right)-1\right] \tag{3.107}
\end{equation*}
$$

If $\left(A_{22}-1\right)\left(2-B_{11}\right) \leq 1$ then (3.107) results in

$$
3-A_{11} \leq A_{12} A_{21}
$$

which contradicts (3.86), because $0<\varphi\left(A_{22}\right) \leq 1$.
If $\left(A_{22}-1\right)\left(2-B_{11}\right)>1$ then (3.107) yields

$$
3-A_{11} \leq A_{12} A_{21}\left(A_{22}-1\right)\left(2-B_{11}\right) \leq 3\left(A_{22}-1\right) A_{12} A_{21}
$$

which contradicts (3.86), because $0<\varphi\left(A_{22}\right) \leq 1$.

36 The Cauchy problem for two-dimensional systems of linear FDEs ..
Case (c2.2): $M_{1} \leq M_{2} D_{12}$. Using (3.100), we get from (3.90) that

$$
3-A_{22} \leq 3-B_{22}-D_{22} \leq D_{12} B_{21}+D_{12} D_{21}=D_{12}\left(B_{21}+D_{21}\right) \leq A_{12} A_{21},
$$

which contradicts (3.86), because $0<\varphi\left(A_{11}\right) \leq 1$.
Case (c2.3): $m_{1} D_{21}>m_{2} B_{22}$ and $M_{1}>M_{2} D_{12}$. We first note that, under the assumption $D_{12}=0,(3.89)$ and (3.101) yield

$$
3-A_{11} \leq 3-B_{11}-D_{11} \leq B_{12} D_{21} \leq A_{12} A_{21}
$$

which contradicts (3.86), because $0<\varphi\left(A_{22}\right) \leq 1$. Therefore, suppose that $D_{12}>0$. Then we have

$$
\begin{equation*}
\frac{M_{2}}{M_{1}}<\frac{1}{D_{12}} \tag{3.108}
\end{equation*}
$$

Note also that (3.100) and the assumption $m_{1} D_{21}>m_{2} B_{22}$ guarantee

$$
\begin{equation*}
D_{12} D_{21}>B_{22} \tag{3.109}
\end{equation*}
$$

It follows from (3.37) and (3.108) that

$$
\begin{equation*}
\frac{m_{2}}{M_{1}} \leq B_{21}+\frac{M_{2}}{M_{1}} B_{22} \leq B_{21}+\frac{B_{22}}{D_{12}} . \tag{3.110}
\end{equation*}
$$

Finally, (3.89), (3.101), and (3.110) result in

$$
3-A_{11} \leq 3-B_{11}-D_{11} \leq B_{12} D_{21}+D_{12} B_{21}+B_{22}
$$

Using (3.106) and (3.109) in the last inequality, we get

$$
3-A_{11} \leq A_{12} A_{21}-B_{12} B_{21}-D_{12} D_{21}+B_{22} \leq A_{12} A_{21},
$$

which contradicts (3.86), because $0<\varphi\left(A_{22}\right) \leq 1$.
The contradictions obtained in (a)-(c) prove that the problem (3.85 $)$, (3.852), (3.2) has only the trivial solution.

Proof of Theorem 2.11. If $A_{12} A_{21}<1$ then the validity of the theorem follows immediately from Theorem 2.10. Therefore, suppose in the sequel that

$$
\begin{equation*}
A_{12} A_{21} \geq 1 \tag{3.111}
\end{equation*}
$$

According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to show that the problem $\left(3.85_{1}\right),\left(3.85_{2}\right),(3.2)$ has only the trivial solution.

Suppose that, on the contrary, $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem $\left(3.85_{1}\right),\left(3.85_{2}\right),(3.2)$. Define the numbers $M_{i}, m_{i}(i=1,2)$ by (3.14) and choose $\alpha_{i}, \beta_{i} \in[a, b](i=1,2)$ such that the equalities $\left(3.15_{i}\right)$ are satisfied for $i=1,2$. Furthermore, let the numbers $B_{i j}, D_{i j}(i, j=1,2)$ be given by (3.17). It is clear that (3.2) guarantees

$$
M_{i} \geq 0, \quad m_{i} \geq 0 \quad \text { for } \quad i=1,2 .
$$

For the sake of clarity we shall devide the discussion into the following cases.
(a) Both functions u_{1} and u_{2} do not change their signs. According to Lemma 3.2, we can assume without loss of generality that

$$
u_{1}(t) \geq 0, \quad u_{2}(t) \geq 0 \quad \text { for } \quad t \in[a, b] .
$$

(b) One of the functions u_{1} and u_{2} is of a constant sign and the other one changes its sign. According to Lemma 3.2, we can assume without loss of generality that $u_{1}(t) \geq 0$ for $t \in[a, b]$. Obviously, one of the following items is satisfied:
(b1) $\alpha_{2}<\beta_{2}$
(b2) $\alpha_{2}>\beta_{2}$
(c) Both functions u_{1} and u_{2} change their signs. According to Lemma 3.2, we can assume without loss of generality that $\alpha_{1}<\beta_{1}$ and $\beta_{2}<\alpha_{2}$.

At first we note that, in view of (2.3), the inequality (2.18) guarantees

$$
\begin{align*}
A_{i i} A_{12} A_{21} \leq\left[A_{i i}+\right. & \left.\left(1-A_{i i}\right) A_{3-i 3-i}\right] A_{12} A_{21}= \\
& =\left(A_{11}+A_{22}-A_{11} A_{22}\right) A_{12} A_{21}<1 \quad \text { for } \quad i=1,2 \tag{3.112}
\end{align*}
$$

Now we are in position to discuss the cases (a)-(c).
Case (a): $u_{1}(t) \geq 0$ and $u_{2}(t) \geq 0$ for $t \in[a, b]$. In view of the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b},\left(3.85_{2}\right)$ implies $u_{2}^{\prime}(t) \leq 0$ for $t \in[a, b]$. Therefore, $u_{2} \equiv 0$ and, by virtue of the assumption $\ell_{11} \in \mathcal{P}_{a b},\left(3.85_{1}\right)$ arrives at $u_{1}^{\prime}(t) \leq 0$ for $t \in[a, b]$. Consequently, $u_{1} \equiv 0$ as well, which is a contradiction.

Case (b): $u_{1}(t) \geq 0$ for $t \in[a, b]$ and u_{2} changes its sign. Obviously, $m_{1}=0$ and (3.32) is true. The integration of $\left(3.85_{1}\right)$ from a to α_{1}, in view of (3.14), $\left(3.15_{1}\right)$, and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, yields (3.56).
Case (b1): $\alpha_{2}<\beta_{2}$. The integrations of (3.852) from a to α_{2} and from α_{2} to β_{2}, in view of (3.14), (3.152), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, arrive at (3.87) and (3.88), respectively. Using (2.3), (3.56), and (3.87) in the relation (3.88), we get

$$
0<m_{2} \leq M_{1} D_{21} \leq M_{2} A_{12} A_{21} \leq m_{2} B_{22} A_{12} A_{21}
$$

Hence we get $1 \leq A_{22} A_{12} A_{21}$, which contradicts (3.112).
Case (b2): $\alpha_{2}>\beta_{2}$. The integration of (3.852) from β_{2} to α_{2}, on account of (3.14), (3.152), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, yields

$$
\begin{equation*}
M_{2}+m_{2}=-\int_{\beta_{2}}^{\alpha_{2}} \ell_{21}\left(u_{1}\right)(s) d s-\int_{\beta_{2}}^{\alpha_{2}} \ell_{22}\left(u_{2}\right)(s) d s \leq m_{2} \int_{\beta_{2}}^{\alpha_{2}} \ell_{22}(1)(s) d s \leq m_{2} A_{22} . \tag{3.113}
\end{equation*}
$$

By virtue of (2.3) and (3.32), (3.113) implies

$$
0<M_{2} \leq m_{2}\left(A_{22}-1\right)<0,
$$

a contradiction.
Case (c): u_{1} and u_{2} change their signs, $\alpha_{1}<\beta_{1}$, and $\beta_{2}<\alpha_{2}$. Obviously, (3.16) is true. The integrations of $\left(3.85_{1}\right)$ from a to α_{1} and from α_{1} to β_{1}, in view of (3.14), (3.151), and the assumptions $\ell_{11}, \ell_{12} \in \mathcal{P}_{a b}$, imply (3.61) and (3.62). On the other hand, the integrations of $\left(3.85_{2}\right)$ from a to β_{2} and from β_{2} to α_{2}, on account of (3.14), (3.152), and the assumptions $\ell_{21}, \ell_{22} \in \mathcal{P}_{a b}$, result in (3.37) and (3.38).

By virtue of (2.3) and (3.16), from the inequalities (3.61), (3.62) and (3.37), (3.38) we get

$$
\begin{equation*}
0<\frac{M_{1}}{M_{2}}+\frac{M_{1}}{m_{2}}\left(1-D_{11}\right)+\frac{m_{1}}{m_{2}} \leq A_{12}+\frac{m_{1}}{M_{2}} B_{11} \tag{3.114}
\end{equation*}
$$

and

$$
\begin{equation*}
0<\frac{m_{2}}{M_{1}}+\frac{M_{2}}{m_{1}}+\frac{m_{2}}{m_{1}}\left(1-D_{22}\right) \leq A_{21}+\frac{M_{2}}{M_{1}} B_{22} \tag{3.115}
\end{equation*}
$$

respectively.
On the other hand, in view of (2.3), the inequalities (3.38) and (3.62) imply

$$
\begin{equation*}
m_{1} \leq m_{2} D_{12}, \quad M_{2} \leq m_{1} D_{21} \tag{3.116}
\end{equation*}
$$

Combining (3.116) and (3.37), we get

$$
M_{2} \leq m_{2} D_{12} D_{21} \leq M_{1} A_{12} A_{21}^{2}+M_{2} A_{22} A_{12} A_{21}
$$

i.e.,

$$
\begin{equation*}
M_{2}\left(1-A_{22} A_{12} A_{21}\right) \leq M_{1} A_{12} A_{21}^{2} \tag{3.117}
\end{equation*}
$$

Furthermore, combining (3.37), (3.61), and (3.116), we obtain

$$
\begin{aligned}
m_{1} \leq m_{2} D_{12} \leq M_{1} A_{12} A_{21}+M_{2} A_{22} & A_{12} \leq \\
& \leq m_{1} A_{11} A_{12} A_{21}+M_{2} A_{12}^{2} A_{21}+M_{2} A_{22} A_{12}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
m_{1}\left(1-A_{11} A_{12} A_{21}\right) \leq M_{2} A_{12}\left(A_{12} A_{21}+A_{22}\right) \tag{3.118}
\end{equation*}
$$

Now, (3.117) and (3.118) yield

$$
\begin{equation*}
A_{12}+\frac{m_{1}}{M_{2}} B_{11} \leq \frac{\left(1+A_{11} A_{22}\right) A_{12}}{1-A_{11} A_{12} A_{21}}, \quad A_{21}+\frac{M_{2}}{M_{1}} B_{22} \leq \frac{A_{21}}{1-A_{22} A_{12} A_{21}} \tag{3.119}
\end{equation*}
$$

because the condition (3.112) is true
It follows from (3.114), (3.115), and (3.119) that

$$
\begin{aligned}
& \frac{\left(1+A_{11} A_{22}\right) A_{12} A_{21}}{\left(1-A_{11} A_{12} A_{21}\right)\left(1-A_{22} A_{12} A_{21}\right)} \geq \\
& \quad \geq \frac{m_{2}}{M_{2}}+\frac{M_{1}}{m_{1}}+\frac{M_{1} m_{2}}{M_{2} m_{1}}\left(1-D_{22}\right)+1-D_{11}+\frac{M_{1} M_{2}}{m_{1} m_{2}}\left(1-D_{11}\right)+
\end{aligned}
$$

$$
\begin{equation*}
+\frac{M_{1}}{m_{1}}\left(1-D_{11}\right)\left(1-D_{22}\right)+\frac{m_{1}}{M_{1}}+\frac{M_{2}}{m_{2}}+1-D_{22} . \tag{3.120}
\end{equation*}
$$

Using the condition (3.22), we get

$$
\begin{align*}
& \frac{M_{1} m_{2}}{M_{2} m_{1}}\left(1-D_{22}\right)+\frac{M_{1} M_{2}}{m_{1} m_{2}}\left(1-D_{11}\right) \geq 2 \frac{M_{1}}{m_{1}} \sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}, \tag{3.121}\\
& \frac{M_{1}}{m_{1}}+2 \frac{M_{1}}{m_{1}} \sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}+ \frac{M_{1}}{m_{1}}\left(1-D_{11}\right)\left(1-D_{22}\right)= \\
&= \frac{M_{1}}{m_{1}}\left(1+\sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}\right)^{2}, \tag{3.122}\\
& \frac{M_{1}}{m_{1}}\left(1+\sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}\right)^{2}+\frac{m_{1}}{M_{1}} \geq 2\left(1+\sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}\right), \tag{3.123}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{m_{2}}{M_{2}}+\frac{M_{2}}{m_{2}} \geq 2 \tag{3.124}
\end{equation*}
$$

Now, in view of (3.121)-(3.124), (3.120) implies

$$
\begin{align*}
& \frac{\left(1+A_{11} A_{22}\right) A_{12} A_{21}}{\left(1-A_{11} A_{12} A_{21}\right)\left(1-A_{22} A_{12} A_{21}\right)} \geq \\
& \geq 2+2\left(1+\sqrt{\left(1-D_{11}\right)\left(1-D_{22}\right)}\right)+1-D_{11}+1-D_{22}= \\
& \quad=4+\left(\sqrt{1-D_{11}}+\sqrt{1-D_{22}}\right)^{2} \geq \\
& \geq 4+\left(\sqrt{1-A_{11}}+\sqrt{1-A_{22}}\right)^{2}=\omega_{0} \tag{3.125}
\end{align*}
$$

Therefore, using (3.112) and the inequality (3.111), we get

$$
\begin{aligned}
& \left(1+A_{11} A_{22}\right) A_{12} A_{21} \geq \\
& \qquad \begin{array}{l}
\geq \omega_{0}\left[1-\left(A_{11}+A_{22}\right) A_{12} A_{21}+A_{11} A_{22}\left(A_{12} A_{21}\right)^{2}\right] \geq \\
\\
\geq \omega_{0}\left[1-\left(A_{11}+A_{22}-A_{11} A_{22}\right) A_{12} A_{21}\right]
\end{array}
\end{aligned}
$$

which contradicts (2.18).
The contradictions obtained in (a)-(c) prove that the problem (3.85 $)$, (3.852), (3.2) has only the trivial solution.

4. Counter-examples

In this section, the counter-examples are constructed verifying that the results obtained above are optimal in a certain sense.

40 The Cauchy problem for two-dimensional systems of linear FDEs ..
Example 4.1. Let $\sigma_{i j} \in\{-1,1\}, h_{i j} \in L\left([a, b] ; \mathbb{R}_{+}\right)(i, j=1,2)$ be such that

$$
\sigma_{11}=1, \quad \int_{a}^{b} h_{11}(s) d s \geq 1
$$

It is clear that there exists $\left.\left.t_{0} \in\right] a, b\right]$ such that

$$
\int_{a}^{t_{0}} h_{11}(s) d s=1
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by

$$
\begin{equation*}
\ell_{i j}(v)(t) \stackrel{\text { def }}{=} h_{i j}(t) v\left(\tau_{i j}(t)\right) \quad \text { for } \quad t \in[a, b], v \in C([a, b] ; \mathbb{R}) \quad(i, j=1,2), \tag{4.1}
\end{equation*}
$$

where $\tau_{11}(t)=t_{0}, \tau_{12}(t)=a, \tau_{21}(t)=a$, and $\tau_{22}(t)=a$ for $t \in[a, b]$. Put

$$
u(t)=\int_{a}^{t} h_{11}(s) d s \quad \text { for } \quad t \in[a, b] .
$$

It is easy to verify that $(u, 0)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

An analogous example can be constructed for the case, where

$$
\sigma_{22}=1, \quad \int_{a}^{b} h_{22}(s) d s \geq 1 .
$$

This example shows that the constant 1 on the right-hand side of the inequalities in (2.3) and (2.7) is optimal and cannot be weakened.

Example 4.2. Let $\sigma_{i j} \in\{-1,1\}, h_{i j} \in L\left([a, b] ; \mathbb{R}_{+}\right)(i, j=1,2)$ be such that

$$
\sigma_{22}=-1, \quad \int_{a}^{b} h_{22}(s) d s \geq 3
$$

It is clear that there exist $\left.t_{0} \in\right] a, b\left[\right.$ and $\left.\left.t_{1} \in\right] t_{0}, b\right]$ such that

$$
\int_{a}^{t_{0}} h_{22}(s) d s=1, \quad \int_{t_{0}}^{t_{1}} h_{22}(s) d s=2 .
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=a$, $\tau_{12}(t)=a, \tau_{21}(t)=a$ for $t \in[a, b]$, and

$$
\tau_{22}(t)=\left\{\begin{array}{lll}
t_{1} & \text { for } & t \in\left[a, t_{0}[\right. \\
t_{0} & \text { for } & t \in\left[t_{0}, b\right]
\end{array} .\right.
$$

Put

$$
u(t)= \begin{cases}\int_{a}^{t} h_{22}(s) d s & \text { for } \\ t \in\left[a, t_{0}[\right. \\ 1-\int_{t_{0}}^{t} h_{22}(s) d s & \text { for } \\ t \in\left[t_{0}, b\right]\end{cases}
$$

It is easy to verify that $(0, u)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

An analogous example can be constructed for the case, where

$$
\sigma_{11}=-1, \quad \int_{a}^{b} h_{11}(s) d s \geq 3
$$

This example shows that the constant 3 on the right-hand side of the inequalities in (2.7) and (2.13) is optimal and cannot be weakened.

Example 4.3. Let $\sigma_{i j}=1$ for $i, j=1,2$ and let $h_{i j} \in L\left([a, b] ; \mathbb{R}_{+}\right)(i, j=1,2)$ be such that

$$
\begin{equation*}
\int_{a}^{b} h_{11}(s) d s<1, \quad \int_{a}^{b} h_{22}(s) d s<1 \tag{4.2}
\end{equation*}
$$

and

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq\left(1-\int_{a}^{b} h_{11}(s) d s\right)\left(1-\int_{a}^{b} h_{22}(s) d s\right) .
$$

It is clear that there exists $\left.\left.t_{0} \in\right] a, b\right]$ such that

$$
\int_{a}^{t_{0}} h_{12}(s) d s \int_{a}^{t_{0}} h_{21}(s) d s=\left(1-\int_{a}^{t_{0}} h_{11}(s) d s\right)\left(1-\int_{a}^{t_{0}} h_{22}(s) d s\right) .
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{i j}(t)=t_{0}$ for $t \in[a, b](i, j=1,2)$. Put

$$
\begin{aligned}
& u_{1}(t)=\int_{a}^{t} h_{11}(s) d s+\frac{1-\int_{a}^{t_{0}} h_{11}(s) d s}{\int_{a}^{t_{0}} h_{12}(s) d s} \int_{a}^{t} h_{12}(s) d s \quad \text { for } \quad t \in[a, b], \\
& u_{2}(t)=\int_{a}^{t} h_{21}(s) d s+\frac{\int_{a}^{t_{0}} h_{21}(s) d s}{1-\int_{a}^{t_{0}} h_{22}(s) d s} \int_{a}^{t} h_{22}(s) d s \quad \text { for } \quad t \in[a, b] .
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.4) in Theorem 2.1 cannot be replaced by the nonstrict one.

42 The Cauchy problem for two-dimensional systems of linear FDEs ..
Example 4.4. Let $\sigma_{11}=1, \sigma_{12}=1, \sigma_{21}=-1$, and $\sigma_{22}=1$. Let $\alpha \in[0,1[$ and $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$be such that

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq 8(1-\alpha) .
$$

It is clear that there exist $\left.\left.t_{0} \in\right] a, b\right]$ and $\left.t_{1}, t_{2} \in\right] a, t_{0}[$ such that

$$
\int_{a}^{t_{0}} h_{12}(s) d s \int_{a}^{t_{0}} h_{21}(s) d s=8(1-\alpha)
$$

and

$$
\int_{a}^{t_{1}} h_{12}(s) d s=\frac{1}{4} \int_{a}^{t_{0}} h_{12}(s) d s, \quad \int_{a}^{t_{2}} h_{21}(s) d s=\frac{1}{2} \int_{a}^{t_{0}} h_{21}(s) d s
$$

Furthermore, we choose $h_{11}, h_{22} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{11}(t)=0 \quad \text { for } \quad t \in\left[a, t_{1}\right] \cup\left[t_{0}, b\right], \quad h_{22}(t)=0 \quad \text { for } \quad t \in\left[t_{2}, b\right]
$$

and

$$
\int_{a}^{b} h_{11}(s) d s=\int_{a}^{b} h_{22}(s) d s=\alpha
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=t_{0}$, $\tau_{22}(t)=t_{2}$ for $t \in[a, b]$, and

$$
\tau_{12}(t)=\left\{\begin{array}{lll}
t_{0} & \text { for } & t \in\left[a, t_{1}[\right. \\
t_{2} & \text { for } & t \in\left[t_{1}, b\right]
\end{array}, \quad \tau_{21}(t)=\left\{\begin{array}{lll}
t_{1} & \text { for } & t \in\left[a, t_{2}[\right. \\
t_{0} & \text { for } & t \in\left[t_{2}, b\right]
\end{array} .\right.\right.
$$

Put

$$
\begin{aligned}
& u_{1}(t)= \begin{cases}\int_{t_{2}}^{t_{0}} h_{21}(s) d s \int_{a}^{t} h_{12}(s) d s & \text { for } t \in\left[a, t_{1}[\right. \\
1-\alpha-2 \int_{t_{1}}^{t} h_{11}(s) d s-\int_{t_{2}}^{t_{0}} h_{21}(s) d s \int_{t_{1}}^{t} h_{12}(s) d s & \text { for } t \in\left[t_{1}, b\right]\end{cases} \\
& u_{2}(t)= \begin{cases}-(1-\alpha) \int_{a}^{t} h_{21}(s) d s-\int_{t_{2}}^{t_{0}} h_{21}(s) d s \int_{a}^{t} h_{22}(s) d s & \text { for } t \in\left[a, t_{2}[\right. \\
-\int_{t_{2}}^{t_{0}} h_{21}(s) d s+2 \int_{t_{2}}^{t} h_{21}(s) d s & \text { for } t \in\left[t_{2}, b\right]\end{cases}
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.6) in Theorem 2.2 cannot be replaced by the nonstrict one provided $A_{11}=A_{22}$.

Example 4.5. Let $\sigma_{11}=1, \sigma_{12}=1, \sigma_{21}=1, \sigma_{22}=-1$ and let $h_{i j} \in L\left([a, b] ; \mathbb{R}_{+}\right)$ $(i, j=1,2)$ be such that

$$
\int_{a}^{b} h_{11}(s) d s<1, \quad \int_{a}^{b} h_{22}(s) d s \leq 1, \quad \int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq 1-\int_{a}^{b} h_{11}(s) d s
$$

It is clear that there exists $\left.\left.t_{0} \in\right] a, b\right]$ satisfying

$$
\int_{a}^{t_{0}} h_{12}(s) d s \int_{a}^{t_{0}} h_{21}(s) d s=1-\int_{a}^{t_{0}} h_{11}(s) d s
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=t_{0}$, $\tau_{12}(t)=t_{0}, \tau_{21}(t)=t_{0}$, and $\tau_{22}(t)=a$ for $t \in[a, b]$. Put

$$
\begin{aligned}
& u_{1}(t)=\int_{a}^{t} h_{11}(s) d s+\frac{1-\int_{a}^{t_{0}} h_{11}(s) d s}{\int_{a}^{t_{0}} h_{12}(s) d s} \int_{a}^{t} h_{12}(s) d s \quad \text { for } t \in[a, b], \\
& u_{2}(t)=\int_{a}^{t} h_{21}(s) d s \text { for } t \in[a, b] .
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.8) in Theorem 2.3 cannot be replaced by the nonstrict one provided $A_{22} \leq 1$.

Example 4.6. Let $\sigma_{11}=1, \sigma_{12}=1, \sigma_{21}=1, \sigma_{22}=-1$, and $h_{11}, h_{22} \in L\left([a, b] ; \mathbb{R}_{+}\right)$ be such that

$$
\begin{equation*}
\int_{a}^{b} h_{11}(s) d s<1, \quad 1<\int_{a}^{b} h_{22}(s) d s<3 \tag{4.3}
\end{equation*}
$$

Obviously, there exists $\left.t_{0} \in\right] a, b[$ satisfying

$$
\begin{equation*}
\int_{a}^{t_{0}} h_{22}(s) d s=\frac{\int_{a}^{b} h_{22}(s) d s-1}{2} . \tag{4.4}
\end{equation*}
$$

Furthermore, we choose $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{21}(t)=0 \quad \text { for } \quad t \in\left[t_{0}, b\right]
$$

and

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq\left(1-\int_{a}^{b} h_{11}(s) d s\right)\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}\right]
$$

It is clear that there exists $\left.\left.t_{1} \in\right] a, b\right]$ such that

$$
\int_{a}^{t_{1}} h_{12}(s) d s \int_{a}^{t_{0}} h_{21}(s) d s=\left(1-\int_{a}^{t_{1}} h_{11}(s) d s\right)\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}\right]
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=t_{1}$, $\tau_{12}(t)=t_{0}, \tau_{21}(t)=t_{1}$ for $t \in[a, b]$, and

$$
\tau_{22}(t)=\left\{\begin{array}{lll}
b & \text { for } & t \in\left[a, t_{0}[\right. \tag{4.5}\\
t_{0} & \text { for } & t \in\left[t_{0}, b\right]
\end{array} .\right.
$$

Put

$$
\begin{aligned}
& u_{1}(t)=\frac{\int_{a}^{t_{1}} h_{12}(s) d s}{1-\int_{a}^{t_{1}} h_{11}(s) d s} \int_{a}^{t} h_{11}(s) d s+\int_{a}^{t} h_{12}(s) d s \quad \text { for } t \in[a, b], \\
& u_{2}(t)=\left\{\begin{array}{lr}
\frac{\int_{a}^{t_{1}} h_{12}(s) d s}{t_{1}} \int_{a}^{t} h_{11}(s) d s \\
1-\int_{a}^{t} h_{22}(s) d s+\frac{\int_{a}^{b} h_{22}(s) d s-1}{2} \int_{a}^{t} h_{22}(s) d s \quad \text { for } t \in\left[a, t_{0}[\right.
\end{array} .\right.
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.8) in Theorem 2.3 cannot be replaced by the nonstrict one provided $A_{22}>1$.
Example 4.7. Let $\sigma_{1 i}=1, \sigma_{2 i}=-1$ for $i=1,2$ and let $h_{11}, h_{22} \in L\left([a, b] ; \mathbb{R}_{+}\right)$be such that (4.3) is true. Obviously, there exists $\left.t_{0} \in\right] a, b[$ satisfying

$$
\begin{equation*}
\int_{a}^{t_{0}} h_{22}(s) d s=1 . \tag{4.6}
\end{equation*}
$$

Furthermore, we choose $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{21}(t)=0 \quad \text { for } \quad t \in\left[a, t_{0}\right]
$$

and

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq\left(1-\int_{a}^{b} h_{11}(s) d s\right)\left(3-\int_{a}^{b} h_{22}(s) d s\right)
$$

It is clear that there exists $\left.\left.t_{1} \in\right] a, b\right]$ such that

$$
\int_{a}^{t_{1}} h_{12}(s) d s \int_{t_{0}}^{b} h_{21}(s) d s=\left(1-\int_{a}^{t_{1}} h_{11}(s) d s\right)\left(2-\int_{t_{0}}^{b} h_{22}(s) d s\right) .
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=t_{1}$, $\tau_{12}(t)=t_{0}, \tau_{21}(t)=t_{1}$ for $t \in[a, b]$, and τ_{22} is given by (4.5). Put

$$
\begin{aligned}
& u_{1}(t)=\frac{\int_{a}^{t_{1}} h_{12}(s) d s}{1-\int_{a}^{t_{1}} h_{11}(s) d s} \int_{a}^{t} h_{11}(s) d s+\int_{a}^{t} h_{12}(s) d s \quad \text { for } t \in[a, b], \\
& u_{2}(t)=\left\{\begin{array}{ll}
1-\int_{t}^{t_{0}} h_{22}(s) d s & \text { for } t \in\left[a, t_{0}[\right. \\
1-\frac{\int_{a}^{t_{1}} h_{12}(s) d s}{1-\int_{a}^{t_{1}} h_{11}(s) d s} \int_{t_{0}}^{t} h_{21}(s) d s-\int_{t_{0}}^{t} h_{22}(s) d s & \text { for } \quad t \in\left[t_{0}, b\right]
\end{array} .\right.
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.10) in Theorem 2.5 cannot be replaced by the nonstrict one provided $A_{22}>1$.

Example 4.8. Let $\sigma_{i i}=-1, \sigma_{i 3-i}=1$ for $i=1,2$ and let $h_{i j} \in L\left([a, b] ; \mathbb{R}_{+}\right)$ $(i=1,2)$ be such that

$$
\int_{a}^{b} h_{11}(s) d s \leq 1, \quad \int_{a}^{b} h_{22}(s) d s \leq 1, \quad \int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq 1
$$

It is clear that there exists $\left.\left.t_{0} \in\right] a, b\right]$ satisfying

$$
\int_{a}^{t_{0}} h_{12}(s) d s \int_{a}^{t_{0}} h_{21}(s) d s=1 .
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{i i}(t)=a$ and $\tau_{i 3-i}(t)=t_{0}$ for $t \in[a, b](i=1,2)$. Put

$$
u_{1}(t)=\int_{a}^{t} h_{12}(s) d s, \quad u_{2}(t)=\int_{a}^{t_{0}} h_{12}(s) d s \int_{a}^{t} h_{21}(s) d s \quad \text { for } \quad t \in[a, b] .
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.14) in Theorem 2.9 cannot be replaced by the nonstrict one provided $\max \left\{A_{11}, A_{22}\right\} \leq 1$.
Example 4.9. Let $\sigma_{i i}=-1, \sigma_{i 3-i}=1$ for $i=1,2$ and let $h_{11}, h_{22} \in L\left([a, b] ; \mathbb{R}_{+}\right)$ be such that

$$
\begin{equation*}
\int_{a}^{b} h_{11}(s) d s \leq 1, \quad 1<\int_{a}^{b} h_{22}(s) d s<3 . \tag{4.7}
\end{equation*}
$$

46 The Cauchy problem for two-dimensional systems of linear FDEs ..
Obviously, there exists $\left.t_{0} \in\right] a, b[$ such that (4.4) is true. Furthermore, we choose $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{21}(t)=0 \quad \text { for } \quad t \in\left[t_{0}, b\right]
$$

and

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq 1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}
$$

It is clear that there exists $\left.\left.t_{1} \in\right] a, b\right]$ satisfying

$$
\int_{a}^{t_{1}} h_{12}(s) d s \int_{a}^{t_{0}} h_{21}(s) d s=1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=a$, $\tau_{12}(t)=t_{0}, \tau_{21}(t)=t_{1}$ for $t \in[a, b]$, and τ_{22} is given by (4.5). Put

$$
\begin{aligned}
& u_{1}(t)=\int_{a}^{t} h_{12}(s) d s \quad \text { for } \quad t \in[a, b], \\
& u_{2}(t)=\left\{\begin{array}{ll}
\int_{a}^{t_{1}} h_{12}(s) d s \int_{a}^{t} h_{21}(s) d s+\frac{\int_{a}^{b} h_{22}(s) d s-1}{2} \int_{a}^{t} h_{22}(s) d s \\
1-\int_{t_{0}}^{t} h_{22}(s) d s & \text { for } t \in\left[a, t_{0}[\right.
\end{array} .\right.
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

An analogous example can be constructed for the case, where

$$
\begin{equation*}
1<\int_{a}^{b} h_{11}(s) d s<3, \quad \int_{a}^{b} h_{22}(s) d s \leq 1 \tag{4.8}
\end{equation*}
$$

This example shows that the strict inequality (2.14) in Theorem 2.9 cannot be replaced by the nonstrict one provided that $\min \left\{A_{11}, A_{22}\right\} \leq 1, \max \left\{A_{11}, A_{22}\right\}>1$, and $\omega=1$.

Example 4.10. Let $\sigma_{i i}=-1, \sigma_{i 3-i}=1$ for $i=1,2$ and let $h_{11}, h_{22} \in L\left([a, b] ; \mathbb{R}_{+}\right)$ be such that

$$
1<\int_{a}^{b} h_{i i}(s) d s<3 \quad \text { for } \quad i=1,2 .
$$

Obviously, there exist $\left.t_{1}, t_{2} \in\right] a, b[$ satisfying

$$
\int_{a}^{t_{i}} h_{i i}(s) d s=\frac{\int_{a}^{b} h_{i i}(s) d s-1}{2} \text { for } i=1,2
$$

Furthermore, we choose $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{12}(t)=0 \quad \text { for } \quad t \in\left[t_{1}, b\right], \quad h_{21}(t)=0 \quad \text { for } \quad t \in\left[a, t_{2}\right],
$$

and

$$
\begin{aligned}
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s & \geq \\
\geq & \geq\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{11}(s) d s-1\right)^{2}\right]\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}\right]
\end{aligned}
$$

It is clear that there exists $\alpha \in] 0,1]$ such that

$$
\begin{aligned}
& \alpha \int_{a}^{t_{1}} h_{12}(s) d s \int_{t_{2}}^{b} h_{21}(s) d s= \\
&=\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{11}(s) d s-1\right)^{2}\right]\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}\right]
\end{aligned}
$$

Put

$$
\begin{aligned}
& u_{1}(t)=\left\{\begin{array}{ll}
\frac{\int_{a}^{b} h_{11}(s) d s-1}{2} \int_{a}^{t} h_{11}(s) d s+\frac{\alpha \int_{t_{2}}^{b} h_{21}(s) d s}{1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}} \int_{a}^{t} h_{12}(s) d s & \text { for } t \in\left[a, t_{1}[\right. \\
1-\int_{t_{1}}^{t} h_{11}(s) d s & \text { for } t \in\left[t_{1}, b\right]
\end{array},\right. \\
& u_{2}(t)= \begin{cases}-\frac{\int_{t_{2}}^{b} h_{21}(s) d s}{1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}} \int_{a}^{t} h_{22}(s) d s & \text { for } t \in\left[a, t_{2}[\right. \\
\int_{t_{2}}^{t} h_{21}(s) d s+\frac{\int_{t_{2}}^{b} h_{21}(s) d s \int_{a}^{t_{2}} h_{22}(s) d s}{1-\frac{1}{4}\left(\int_{a}^{b} h_{22}(s) d s-1\right)^{2}}\left(\int_{t_{2}}^{t} h_{22}(s) d s-1\right)\end{cases}
\end{aligned}
$$

Since $u_{2}\left(t_{2}\right)<0$ and $u_{2}(b)>0$, there exists $\left.\left.t_{0} \in\right] t_{2}, b\right]$ satisfying $u_{2}\left(t_{0}\right)=\alpha u_{2}(b)$. Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{12}(t)=t_{0}$, $\tau_{21}(t)=t_{1}$ for $t \in[a, b]$, and

$$
\tau_{11}(t)=\left\{\begin{array}{lll}
b & \text { for } & t \in\left[a, t_{1}[\right. \tag{4.9}\\
t_{1} & \text { for } & t \in\left[t_{1}, b\right]
\end{array}, \quad \tau_{22}(t)=\left\{\begin{array}{lll}
b & \text { for } & t \in\left[a, t_{2}[\right. \\
t_{2} & \text { for } & t \in\left[t_{2}, b\right]
\end{array} .\right.\right.
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

This example shows that the strict inequality (2.14) in Theorem 2.9 cannot be replaced by the nonstrict one provided that $\min \left\{A_{11}, A_{22}\right\}>1$ and $\omega=1$.

The Cauchy problem for two-dimensional systems of linear FDEs ...
Example 4.11. Let $\sigma_{11}=-1, \sigma_{12}=1, \sigma_{21}=-1, \sigma_{22}=-1$ and let $h_{11}, h_{22} \in$ $L\left([a, b] ; \mathbb{R}_{+}\right)$be such that (4.7) holds. Obviously, there exists $\left.t_{0} \in\right] a, b[$ such that (4.6) is satisfied. Furthermore, we choose $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{21}(t)=0 \quad \text { for } \quad t \in\left[a, t_{0}\right]
$$

and

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq 3-\int_{a}^{b} h_{22}(s) d s
$$

It is clear that there exists $\left.\left.t_{1} \in\right] a, b\right]$ satisfying

$$
\int_{a}^{t_{1}} h_{12}(s) d s \int_{t_{0}}^{b} h_{21}(s) d s=2-\int_{t_{0}}^{b} h_{22}(s) d s
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{11}(t)=a$, $\tau_{12}(t)=t_{0}, \tau_{21}(t)=t_{1}$ for $t \in[a, b]$, and τ_{22} is given by (4.5). Put

$$
\begin{aligned}
& u_{1}(t)=\int_{a}^{t} h_{12}(s) d s \quad \text { for } \quad t \in[a, b], \\
& u_{2}(t)=\left\{\begin{array}{ll}
\int_{a}^{t} h_{22}(s) d s & \text { for } t \in\left[a, t_{0}[\right. \\
1-\int_{a}^{t_{1}} h_{12}(s) d s \int_{t_{0}}^{t} h_{21}(s) d s-\int_{t_{0}}^{t} h_{22}(s) d s & \text { for } t \in\left[t_{0}, b\right]
\end{array} .\right.
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

An analogous example can be constructed for the case, where the functions $h_{11}, h_{22} \in L\left([a, b] ; \mathbb{R}_{+}\right)$satisfy (4.8).

This example shows that the strict inequality (2.16) in Theorem 2.10 cannot be replaced by the nonstrict one provided that $\min \left\{A_{11}, A_{22}\right\} \leq 1, \max \left\{A_{11}, A_{22}\right\}>1$, and $\omega=1$.

Example 4.12. Let $\sigma_{11}=-1, \sigma_{12}=1, \sigma_{21}=-1, \sigma_{22}=-1$ and let $h_{11}, h_{22} \in$ $L\left([a, b] ; \mathbb{R}_{+}\right)$be such that

$$
1<\int_{a}^{b} h_{11}(s) d s \leq \int_{a}^{b} h_{22}(s) d s<3 .
$$

Obviously, there exist $\left.t_{1}, t_{2} \in\right] a, b[$ satisfying

$$
\int_{a}^{t_{1}} h_{11}(s) d s=\frac{\int_{a}^{b} h_{11}(s) d s-1}{2}, \quad \int_{a}^{t_{2}} h_{22}(s) d s=1
$$

Furthermore, we choose $h_{12}, h_{21} \in L\left([a, b] ; \mathbb{R}_{+}\right)$with the properties

$$
h_{12}(t)=0 \quad \text { for } \quad t \in\left[t_{1}, b\right], \quad h_{21}(t)=0 \quad \text { for } \quad t \in\left[a, t_{2}\right]
$$

and

$$
\int_{a}^{b} h_{12}(s) d s \int_{a}^{b} h_{21}(s) d s \geq\left(3-\int_{a}^{b} h_{22}(s) d s\right)\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{11}(s) d s-1\right)^{2}\right]
$$

It is clear that there exist $\alpha \in] 0,1]$ and $\left.\left.t_{0} \in\right] a, t_{2}\right]$ such that

$$
\alpha \int_{a}^{t_{1}} h_{12}(s) d s \int_{t_{2}}^{b} h_{21}(s) d s=\left(2-\int_{t_{2}}^{b} h_{22}(s) d s\right)\left[1-\frac{1}{4}\left(\int_{a}^{b} h_{11}(s) d s-1\right)^{2}\right]
$$

and

$$
\int_{a}^{t_{0}} h_{22}(s) d s=\alpha
$$

Let the operators $\ell_{i j} \in \mathcal{P}_{a b}(i, j=1,2)$ be defined by (4.1), where $\tau_{12}(t)=t_{0}$, $\tau_{21}(t)=t_{1}$ for $t \in[a, b]$, and τ_{11}, τ_{22} are given by (4.9). Put

$$
\begin{aligned}
& u_{1}(t)= \begin{cases}\frac{\left(2-\int_{t_{2}}^{b} h_{22}(s) d s\right)\left(\int_{a}^{b} h_{11}(s) d s-1\right)}{2 \int_{t_{2}}^{b} h_{21}(s) d s} \int_{a}^{t} h_{11}(s) d s+\alpha \int_{a}^{t} h_{12}(s) d s & \text { for } t \in\left[a, t_{1}[\right. \\
\frac{2-\int_{t_{2}}^{b} h_{22}(s) d s}{\int_{t_{2}}^{b} h_{21}(s) d s}\left(1-\int_{t_{1}}^{t} h_{11}(s) d s\right) & \text { for } t \in\left[t_{1}, b\right]\end{cases} \\
& u_{2}(t)= \begin{cases}\int_{a}^{t} h_{22}(s) d s & \text { for } \quad t \in\left[a, t_{2}[\right. \\
1-\frac{\alpha \int_{a}^{t_{1}} h_{12}(s) d s}{1-\frac{1}{4}\left(\int_{a}^{b} h_{11}(s) d s-1\right)^{2}} \int_{t_{2}}^{t} h_{21}(s) d s-\int_{t_{2}}^{t} h_{22}(s) d s & \text { for } t \in\left[t_{2}, b\right]\end{cases}
\end{aligned}
$$

It is easy to verify that $\left(u_{1}, u_{2}\right)^{T}$ is a nontrivial solution of the problem (1.1), (1.2) with $q_{i} \equiv 0$ and $c_{i}=0(i=1,2)$.

An analogous example can be constructed for the case, where

$$
1<\int_{a}^{b} h_{22}(s) d s \leq \int_{a}^{b} h_{11}(s) d s<3
$$

This example shows that the strict inequality (2.16) in Theorem 2.10 cannot be replaced by the nonstrict one provided that $\min \left\{A_{11}, A_{22}\right\}>1$ and $\omega=1$.

50 The Cauchy problem for two-dimensional systems of linear FDEs . .

Acknowledgement

The research was supported by the Grant Agency of the Czech Republic, Grant No. 201/04/P183, and by the Academy of Sciences of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

References

[1] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional differential equations, Nauka, Moscow, 1991, in Russian.
[2] N. Dilnaya, A. Rontó, Multistage iterations and solvability of linear Cauchy problems, Math. Notes (Miskolc) 4 (2003), No. 2, 89-102.
[3] R. Hakl, E. Bravyi, A. Lomtatidze, Optimal conditions on unique solvability of the Cauchy problem for the first order linear functional differential equations, Czechoslovak Math. J. 52 (2002), No. 3, 513-530.
[4] R. Hakl, A. Lomtatidze, B. Půža, New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations, Math. Bohem. 127 (2002), No. 4, 509-524.
[5] R. Hakl, A. Lomtatidze, B. Půža, On a boundary value problem for first order scalar functional differential equations, Nonlinear Anal. 53 (2003), No. 3-4, 391-405.
[6] R. Hakl, A. Lomtatidze, B. Půža, On nonnegative solutions of first order scalar functional differential equations, Mem. Differential Equations Math. Phys. 23 (2001), 51-84.
[7] R. Hakl, A. Lomtatidze, J. Šremr, Some boundary value problems for first order scalar functional differential equations, Folia Facult. Scien. Natur. Univ. Masar. Brunensis, Brno, 2002.
[8] R. Hakl, S. Mukhigulashvili, On a boundary value problem for n-th order linear functional differential systems, Georgian Math. J. 12 (2005), No. 2, 229-236.
[9] J. Hale, Theory of functional differential equations, Springer-Verlag, New York-Heidelberg-Berlin, 1977.
[10] I. Kiguradze, B. Půža, Boundary value problems for systems of linear functional differential equations, Folia Facult. Scien. Natur. Univ. Masar. Brunensis, Brno, 2003.
[11] I. Kiguradze, B. Půža, On boundary value problems for systems of linear functional differential equations, Czechoslovak Math. J. 47 (1997), 341-373.
[12] V. Kolmanovskii, A. Myshkis, Introduction to the theory and applications of functional differential equations, Kluwer Acad. Publ., Dordrecht-Boston-London, 1999.
[13] A. Rontó, On the initial value problem for systems of linear differential equations with argument deviations, Math. Notes (Miskolc) 6 (2005), No. 1, 105-127.
[14] A. N. Ronto, Tochnye uslovija razreshimosti zadachi Koshi dlja sistem linejnych funkcional'no-differentsial'nych uravnenij pervogo porjadka, zadavaemych $\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n} ; \tau\right)$-polozhitel'nymi operatorami, Ukrain. Mat. Zh., 53 (2001), No. 1, 94-112, in Russian.
[15] Š. Schwabik, M. Tvrdý, O. Vejvoda, Differential and integral equations: boundary value problems and adjoints, Academia, Praha, 1979.
[16] J. Šremr, On systems of linear functional differential inequalities, Boundary Value Problems, submitted.
[17] W. Walter, Differential and integral inequalities, Springer-Verlag, Berlin, Heidelberg, New York, 1970.

Mathematical Institute, Academy of Sciences of the Czech Republic, Žižkova 22, 61662 Brno, Czech Republic

E-mail address: sremr@ipm.cz

ACADEMY OF SCIENCES
 OF THE CZECH REPUBLIC MATHEMATICAL INSTITUTE

The preprint series was founded in 1982. Its purpose is to present manuscripts of submitted or unpublished papers and reports of members of the Mathematical Institute of the Academy of Sciences of the Czech Republic. The authors are fully responsible for the content of the preprints.

Mail address: Mathematical Institute, Academy of Sciences of the Czech Republic
Žitná 25,
CZ-115 67 Praha 1
Czech Republic

phone: +420 222090711
fax: +420222211638
e-mail: mathinst math.cas.cz
http: //www.math.cas.cz

Latest preprints of the series:

2005

161 Jiř̌̌ Šremr: On the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type
160 A. Lomtatidze, S. Mukhigulashvili, and J. Šremr: Nonnegative solutions of the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type
159 Andrej Rontó: Upper bounds for the eigenvalues of compact linear operators in a preordered Banach space
158 Martin Markl: Cohomology operators and the Deligne conjecture

2004

157 J. Eisner, M. Kučera, L. Recke: A global bifurcation result for variational inequalities
156 Irena Rachůnková, Milan Tvrdý: Second order periodic problem with 8-Laplacian and impulses-part II
155 Irena Rachůnková, Milan Tvrdý: Second order periodic problem with 8-Laplacian and impulses-part I
2003
154 J. Eisner, M. Kučera, L. Recke: Direction and stability of bifurcation branches for variational inequalities
153 Irena Rachůnková, Milan Tvrdý: Periodic boundary value problems for nonlinear second order differential equations with impulses-part III
152 Pavel Krutitskii, Dagmar Medková: Neumann and Robin problem in a cracked domain with jump conditions on cracks

2002
151 Irena Rachůnková, Milan Tvrdý: Periodic boundary value problems for nonlinear second order differential equations with impulses-part II
150 Miroslav Šilhavý: An $O(n)$ invariant rank 1 convex function that is not polyconvex
149 Šárka Nečasová: Asymptotic properties of the steady fall of a body in viscous fluids
148 Irena Rachůnková, Milan Tvrdý: Periodic boundary value problems for nonlinear second order differential equations with impulses-part I
147 Pavel Krutitskii, Dagmar Medková: The harmonic Dirichlet problem for cracked domain with jump conditions on cracks
146 Dagmar Medková: Boundedness of the solution of the third problem for the Laplace equation
145 George V. Jaiani, Alois Kufner: Oscillation of cusped Euler-Bernoulli beams and Kirchhoff-love plates
144 Emil Vitásek: Obyčejné diferenciální rovnice (Elementární metody přibližného řešení okrajových úloh)

