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UPPER BOUNDS FOR THE EIGENVALUES OF COMPACT LINEAR
OPERATORS IN A PREORDERED BANACH SPACE

ANDREI RONTÓ

A. We establish new efficient upper bounds for the spectral radius
of a completely continuous operator in a Banach space equipped by a
suitable preordering (e. g., that generated by a solid wedge). The operator
considered is assumed to admit a majorant preserving the preordering
and, generally speaking, may not leave the given wedge invariant.

1. I

Many concrete problems of various nature, where the question of unique-
ness of a solution is essential, as is well-known, lead one to the study of
regular values of a certain bounded linear operator. Since it is always nat-
ural to try to get some useful information on the base of as little initial data
as possible, is appears that estimates of the spectral radius of an operator
which are derived from certain relations involving its value on a single
element only, should be of the best imaginable efficiency.

There is a vast literature devoted to this kind of estimates of spectra of
linear operators that are positive with respect to a cone in a Banach space
(see, e. g., [1,2]). The main idea of such statements goes back to some results
of Perron, Jentzsch, Uryson, Collatz, and M. Krein (see, e. g., [1–4]).

The conditions imposed on the operator and the space where it acts vary
as well as the assumed properties of the chosen element do. For example, the
spectral radius of A admits the estimate r(A) ≥ γ, where γ is a given positive
constant, whenever A is a bounded linear operator leaving invariant a cone
K and such that A1 − γ1 ∈ K with some 1 ∈ (K − K) \ (−K). On the other
hand, r(A) satisfies the inequality

r(A) ≤ γ (1.1)

if A (K) ⊆ K, K is a solid normal cone, and the inclusion

γ1 − A1 ∈ K (1.2)

is true for some interior element 1 of K [1]. It is natural to find out that
obtaining the upper bounds for the spectral radius is more difficult, that a
relation of type (1.2) implies (1.1) only under additional conditions on A and
K, and that these additional conditions are stronger than those guaranteeing
a similar estimate from below.

Relation (1.2) is known to imply estimate (1.1) under various assumptions
on A and K (see, e. g., [1, §5.6]). The essential limitation, however, is that
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2 ANDREI RONTÓ

the given linear operator is almost always (with the exception for [1, The-
orem 5.3]; see Remark 4.7) assumed to preserve a certain cone, which means
that, in applications, certain functions related to the problem considered
(e. g., the coefficients of a differential equation or the kernel of an integ-
ral operator) should be sign-constant or monotone, or possess some other
similar property. Such conditions, in spite of their considerable generality,
are nevertheless not satisfied in many important cases. It is desirable to
have some techniques for estimating the spectra of linear operators in the
“non-positive” cases, in particular, when studying the integral equations
associated to boundary value problems determined by mappings which are
not monotone in any natural sense.

In this paper, we show that the aforementioned limitation can be over-
come in a certain way for linear mappings majorized by linear operators pre-
serving a preordering which may not be a partial ordering. More precisely,
we obtain an efficient upper bound for the spectral radius of a completely
continuous linear mapping A : X→ X representable in the form

A = A1 − A2, (1.3)

where X is a Banach space with a wedge K, and the operators A1 and A2
leave K invariant. The proof of the result mentioned (namely, Theorem 4.1)
uses an inequality satisfied by the so-called K-substantial eigenvalues of A
and established in Section 3. Note that the wedge K, generally speaking,
may not be a cone.

Our present study of completely continuous linear operators in a pre-
ordered Banach space is motivated mainly by the related problems arising
in the theory of functional differential equations. To a boundary value prob-
lem for a linear functional differential equation, a compact linear operator is
usually associated and, therefore, the compactness condition in this paper
appears to be rather natural from this point of view.

The paper is organised as follows. Section 2 contains some definitions,
both classical and new ones, and a number of preliminary results.In Sec-
tion 3, we establish an estimate for the so-called K-substantial eigenvalues
(see Definition 2.41) of a bounded linear operator in a Banach space with
a wedge K. The main Theorem 4.1 of Section 4 provides a convenient
upper bound for the spectral radius of a completely continuous linear op-
erator vanishing on the blade of the wedge K containing elements that are
strongly positive in the sense of Definition 2.12. Finally, in the last Section 7,
Theorem 4.1 is applied to obtain conditions sufficient for the solvability of
certain integro-functional equations.

2. W  B     

In this section, we recall the basic definitions related to wedges in Banach
spaces, introduce some notation and definitions, and establish a number of
statements relied upon in the subsequent sections. Throughout the rest of
this paper, X is a Banach space over the field R.
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2.1. Wedges and related preorderings. A closed subset K of X is said to be
a wedge (see, e. g., [2]) if

α1K + α2K ⊆ K (2.1)

for all {α1, α2} ⊂ [0,+∞), where, as usual, α1K+α2K :=
{
α1x1+α2x2 | {x1, x2} ⊂

K
}
.
In what follows, we assume implicitly that the wedge K is proper, i. e., is

different from both the singleton {0} and the entire space X, for there is no
meaningful theory in those two extreme cases.

Remark 2.1. In the original terminology introduced by M. Krein [4], a closed
set satisfying condition (2.1) is called a linear semigroup.

The following standard definition introduces a natural preordering in a
space X with a wedge K.

Definition 2.2. The relation x1 5K x2 is said to be satisfied if, and only if
x2 − x1 ∈ K.

We also write x1 =K x2 if, and only if x2 5K x1. Note that the relations
x1 5K x2 and x1 =K x2, generally speaking, do not imply the equality x1 = x2.

Definition 2.3. The set K ∩ (−K) is referred to as the blade [2] of the wedge
K.

For the sake of brevity, we shall denote the blade of the wedge K by the
symbol K^:

K^ := {x ∈ X | x =K 0 ∧ x 5K 0} . (2.2)

Remark 2.4. It is obvious from condition (2.1) and definition (2.2) that the
blade of an arbitrary wedge K is a closed linear subset of K. One can readily
show that K^ coincides with the maximal linear subspace contained in K.

Definition 2.5. We write x1 �K x2 if, and only if either x1 5K x2 or x1 =K x2.

The relation �K is obviously reflexive and symmetric.

2.2. Measurable elements of a Banach space. Let f be an element from X,
β be a real constant, and XK,β( f ) be the set defined as follows:

XK,β( f ) :=
{
x ∈ X | −β f 5K x 5K β f

}
. (2.3)

2.2.1. Basic properties of the sets XK,β( f ).

Lemma 2.6. Let β be a fixed real number. Then an element x from X belongs to
the set XK,β

(
f
)

if, and only if −x ∈ XK,β
(

f
)
.

Proof. Due to the symmetry of the left-hand and right-hand terms, the
inequality

−β f 5K x 5K β f (2.4)
is equivalent to the relation

−β f 5K −x 5K β f , (2.5)

whereas the latter means that −x ∈ XK,β
(

f
)
. �

Lemma 2.7. The following assertions are true:
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(i) XK,0( f ) = K^ for all f ∈ X;
(ii) XK,β(0) = K^ for any β ∈ R;

(iii) The set XK,β( f ), where β , 0 and f , 0, is non-empty if, and only if
β f =K 0;

(iv) If β f =K 0, then XK,β( f ) ⊇ K^;
(v) If f ∈ K^, then XK,β( f ) = K^ for all β ∈ R;

(vi) XK,β( f ) \ K^ , ∅ if, and only if β f =K 0 and β f < K^.

Proof. Assertions (i) and (ii) are obvious from (2.3). Let us verify asser-
tion (iii). Indeed, let x belong to XK,β( f ). This is true if, and only if (2.4)
holds or, which is the same (see Lemma 2.6), relation (2.5) is satisfied. Com-
bining (2.4) and (2.5) and using property (2.1) of K, we obtain

−2β f 5K 0 5K 2β f ,

i. e., β f =K 0. Conversely, if β f =K 0, then, in particular,

−β f 5K β f 5K β f .

This means that (2.4) is satisfied with x = β f , i. e., β f ∈ XK,β
(

f
)
.

To prove assertion (iv), it is sufficient to note that if β f =K 0, then (2.4) is
true for all elements x satisfying the relation 0 5K x 5K 0.

Let f ∈ K^ be arbitrary. By (iv), we have K^ ⊂ XK,β( f ) for all β ∈ R. On
the other hand, if x ∈ XK,β( f ), then, according to (2.4), we obtain x ∈ K^

because β f is also an element of K^. Thus, assertion (v) is true.
Finally, assertion (vi) is obvious from (iii), (iv), and (v). �

Assertions (i) and (ii) of Lemma 2.7 show that there is no much sense
to consider the sets XK,β( f ) with β f = 0 because, in that case, they consist
solely of those elements of X which are 0-measurable with respect to K in
the sense of Definition 2.8 given below.

2.2.2. The definition of f -measurability.

Definition 2.8. An element x from X is said to be f -measurable with respect
to K if there exists a real constant β such that x ∈ XK,β( f ).

In other words, x is f -measurable with respect to the wedge K whenever
(2.4) holds for some β.

Remark 2.9. Definition 2.8 differs from a similar notion introduced in [4]
because the negative values of β are allowed in (2.4). For the purposes of
this paper, the definition mentioned seems to be advantageous due to the
need to consider complexifications (see Section 2.5 below). Note also that,
according to Definition 2.8, the set of f -measurable elements is never empty
(see Proposition 2.11).

Definition 2.10. For every fixed f ∈ X, the set of all the elements of X that
are f -measurable with respect to K will be denoted by XK

(
f
)
.

Clearly, XK
(

f
)

:=
⋃
β∈R XK,β

(
f
)
. Moreover, it follows from Lemma 2.7

that, in fact,
XK

(
f
)

=
⋃

β∈R: β f=K0

XK,β
(

f
)

(2.6)

for any f ∈ X.
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Proposition 2.11. For any f ∈ X, the set XK( f ) is a linear manifold containing
K^. Furthermore, XK( f ) , K^ if, and only if the element f is such that f �K 0
and f < K^.

Proof. The set XK
(

f
)

obviously satisfies the condition

α1XK
(

f
)

+ α2XK
(

f
) ⊂ XK

(
f
)

for all {α1, α2} ⊂ [0,+∞) and, therefore, Lemma 2.6 guarantees that it is a
linear manifold.

According to Definition 2.10 and assertion (i) of Lemma 2.7, we have
XK( f ) ⊃ XK,0( f ) = K^. Furthermore, equality (2.6) yields

XK
(

f
) \ K^ =

⋃

β∈R: 0,β f=K0

XK,β
(

f
) \ K^. (2.7)

However, assertion (vi) of Lemma 2.7 guarantees that the condition f < K^

is necessary and sufficient for the union in the right-hand side of (2.7) to
contain non-empty sets. �

2.3. Strict inequalities. Given a wedge K ⊆ X and a linear manifold H in
X, we introduce the following binary relation on X.

Definition 2.12. For
{
f1, f2

} ⊂ X, we write f1 kK;H f2 if, and only if the
inclusion

XK
(

f2 − f1
) ⊇ H

is satisfied.

One can readily verify that the equality

XK(− f ) = XK( f )

holds for any f and, hence, the relation introduced by Definition 2.12 is
symmetric, i. e., f1 kK;H f2 if, and only if f2 kK;H f1. It is also easy to see that
f1 kK;H1 f2 implies f1 kK;H2 f2 whenever H1 ⊇ H2.

Lemma 2.13. For an arbitrary f from X, the relation

f kK;XK( f ) 0 (2.8)

is true.

Proof. By Proposition 2.11, the set XK( f ) is a linear manifold in X. According
to Definition 2.12, relation (2.8) is equivalent to the inclusion XK( f ) ⊇ XK( f )
and, hence, is always satisfied. �

In the case where H = X, we drop the corresponding subscript in the
above notation and, instead of f1 kK;X f2, we write f1 kK f2:

Definition 2.14. For
{
f1, f2

} ⊂ X, we write f1kK f2 if, and only if XK
(

f2 − f1
)

=
X.

The above definition allows one to introduce the following

Definition 2.15. Two elements f1 and f2 are said to be in the relation f1 �K;H
f2 (resp., f1 ≺K;H f2) if they satisfy the conditions f1 kK;H f2 and f1 =K f2
(resp., f1 5K f2).

By analogy with Definition 2.14, we introduce
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Definition 2.16. Two elements f1 and f2 are said to be in the relation f1 �K f2
(resp., f1 ≺K f2) if they satisfy the conditions f1 �K f2 and f1 =K f2 (resp.,
f1 5K f2).

The fulfilment of the relations described by Definition 2.16 is verified
most easily in the case of a solid wedge.

Definition 2.17. A wedge is said to be solid [4] if its interior is non-empty.

Following [4], we write x1 �K x2 (resp., x1 �K x2) if, and only if the
difference x2 − x1 (resp., x1 − x2) lies in the interior of K.

Lemma 2.18. If K is a solid wedge in X and an element f ∈ X is such that f �K 0,
then f satisfies the relation

f �K 0. (2.9)

Proof. A statement equivalent to equality (2.14) for f lying in the interior of
K is well-known, e. g., from [4, 5]. �

Remark 2.19. When K is a minihedral cone in X [4] (and, hence, the partial
ordering 5K makes X into a vector lattice [6]), an element u possessing the
property u �K 0 is called a strong unit [5, Definition XIII.1.5]. In this case, the
condition XK(u) = X means that the element u satisfies Axiom V from [7].

Remark 2.20. Relation (2.9), generally speaking, does not imply that f �K
0. For example, in the space L∞([0, 1]) of essentially bounded functions
endowed with the usual norm and partial ordering [5], relation (2.9) is true,
e. g., for f equal almost everywhere to 1. However, the set of functions
non-negative almost everywhere on [0, 1] has empty interior in L∞([0, 1]).

For suitable linear manifolds H, the condition

f �K;H 0

may be regarded as a certain “strong positivity” an element f =K 0. The
word “suitable” here means that, roughly speaking, there should not be too
many strongly positive elements. For instance, there is no much sense to
study the case where

H ⊆ K^ (2.10)

because, by virtue of Proposition 2.11, the inclusion
⋂

f∈X
XK( f ) ⊇ K^

is always true and, hence, under condition (2.10), the relation f �K;K^ 0 is
satisfied by an arbitrary element f from X. On the other hand, certain un-
desirable classes of vectors f (e. g., f = 0 or, more generally, f satisfying the
relation 0 5K f 5K 0), that are unlikely candidates for strongly positive ele-
ments, should also be excluded from consideration. These considerations
lead us to the following

Proposition 2.21. Let H be a linear manifold in X such that

H * K^ (2.11)
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and f be an element of X such that either the relation f �K 0 is not true or
0 5K f 5K 0. Then the relation

f kK;H 0 (2.12)
is not satisfied.

Proof. Indeed, let, on the contrary, relation (2.12) holds. According to Defin-
ition 2.12, this means that H ⊆ XK( f ) and, therefore, in view of condition
(2.11), the set XK( f ) contains some elements not belonging to K^. It then
follows from Proposition 2.11 that f should satisfy the relations f �K 0 and
f < K^, contrary to the assumption. �

In other words, Proposition 2.21 means that a strongly positive element
should always be comparable with zero and cannot be positive and neg-
ative simultaneously. This agrees well with the intuitive idea of the strict
inequality.

2.4. The mappings nK, f : XK( f ) → [0,+∞). Taking a glance at Defini-
tion 2.10, we see that the non-negative number

nK, f (x) := inf
{
|β| | β ∈ (−∞,+∞) and x ∈ XK,β( f )

}
(2.13)

is well-defined for an arbitrary x from XK
(

f
)
. It is also convenient to put

nK, f (x) := +∞ for all x ∈ X \ XK( f ). Thus, nK, f (x) < +∞ if, and only if x is
f -measurable with respect to K.

Remark 2.22. One can show that, for any f ∈ X, the mapping nK, f : XK( f )→
[0,+∞) is a seminorm on the linear manifold XK( f ). This seminorm is a
norm if, and only if K is a cone [4, 8], i. e., if the blade of K is trivial. The
mapping mentioned is defined on the entire space X if, and only if

XK( f ) = X, (2.14)

which property, in contrast to the poorest case where

XK( f ) = K^,

may be regarded as a reflection of a reasonable choice of an element f =K 0.
By Lemma 2.18, condition (2.14) is satisfied if f �K 0. It may happen,
however, that (2.14) does not hold for any f from X (e. g., if X is the Banach
space of the Lebesgue integrable functions on a bounded interval [a, b] and
K is the cone of integrable functions [a, b]→ R that are non-negative almost
everywhere on [a, b]).

In the case where K is a solid cone and f �K 0, formula (2.13) determines
the so-called f -norm [1, 4]

‖x‖ f = inf
{
β ∈ [0,+∞) | relation (2.4) is true

}
(2.15)

of an arbitrary element x from X. Functional (2.15) is also used in [7] in
studies of vector lattices.

It is clear from (2.13) that nK, f (0) = 0 independently of the choice of f .
Moreover, the following lemma holds.

Lemma 2.23. Let f ∈ X. Then an element x ∈ Xsatisfies the equality

nK, f (x) = 0 (2.16)

if, and only if x ∈ K^.
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Proof. Let f ∈ X and let x be an element from the corresponding (non-
empty) set XK

(
f
)
. In view of Proposition 2.11, we can suppose that f �K 0.

Then, clearly, σ f =K 0 for some σ ∈ {−1, 1}.
Let x ∈ K^. The element x belongs to the blade of K if, and only if

0 5K x 5K 0, (2.17)

which means that (2.4) is true with an arbitrary constant β such that sign β =
σ. In particular,

−σ
k

f 5K x 5K
σ
k

f

for all k ∈ N. Taking (2.13) into account, we conclude that 0 ≤ nK, f (x) ≤
infk∈N k−1 = 0, i. e., relation (2.16) holds.

Conversely, if x satisfies equality (2.16), then there exists a sequence
(βk)+∞

k=1 ⊂ (−∞,+∞) such that limk→+∞ βk = 0 and, for all k ≥ 1,

−βk f 5K x 5K βk f . (2.18)

Passing to the limit as k→ +∞ in relation (2.18) or, which is the same, in
the inclusion {

βk f − x, βk f + x
} ⊂ K

and taking into account the fact that K is a closed set, we arrive at relation
(2.17). �

2.5. Complexification of a wedge. In the sequel, the complex counterparts
of some of the notions defined above will be needed. Throughout this
section, where the related notions are introduced, we fix a real Banach
space X and wedge K in X.

2.5.1. Basic issues. The complexification (see, e. g., [9], Chapter XIII, §2) of
a real Banach space 〈X, ‖·‖〉 is convenient to be interpreted as the complex
Banach space X̂ of formal sums x + iy, {x, y} ⊂ X, i2 = −1, equipped with the
linear operations

(
x1 + iy1

)
+

(
x2 + iy2

)
:= x1 + x2 + i

(
y1 + y2

)
,(

ν + iµ
) (

x + iy
)

:= νx − µy + i
(
µx + νy

)
,

(2.19)

where {x1, x2, y1, y2, x, y} ⊂ X, {ν, µ} ⊂ R, and the norm

‖x + iy‖ := max
θ∈[−π,π]

‖x cosθ + y sinθ‖, {x, y} ⊂ X. (2.20)

The same technique allows one to define a natural complexification of an
arbitrary wedge in a real Banach space.

Definition 2.24. The set

K̂ := {x + iy | x ∈ K ∧ y ∈ K} (2.21)

will be referred to as the complexification of a wedge K in a Banach space X
over R.

It is easy to verify that the set K̂, represented alternatively as K̂ = K + iK,
is closed with respect to norm (2.20) and forms a wedge in X̂ in the sense
that

α1K̂ + α2K̂ ⊂ K̂ for all {α1, α2} ⊂ [0,+∞). (2.22)
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By analogy with Sections 2.1 and 2.3, one can extend the binary relations
5K and �K to X̂2 in a natural way. More precisely, given two elements
{z1, z2} ⊂ X̂, we shall write z1 =K̂ z2 (resp., z1 �K̂ z2) if, and only if z1−z2 ∈ K̂
(resp., z1−z2 is an interior element of K̂). Similarly, the relation�K̂ is natural
to be defined by putting z1 �K̂ z2 if, and only if the elements z1 and z2 satisfy
at least one of the relations z1 =K̂ z2 and z1 5K̂ z2. The blade (K̂)

^
of K̂ is

natural to be defined as the set of all those z from X̂ for which both relations
z =K̂ 0 and z 5K̂ 0 are true, i. e.,

(K̂)
^

= K̂ ∩ (−K̂).

It is obvious that
(K̂)

^
= K^ + iK^. (2.23)

The complexification K̂ of a real wedge K inherits its main characteristic
properties. For example, K̂ is solid if, and only if K possesses this property.

2.5.2. Measurability of complex elements. Let 1 ∈ X̂ and λ ∈ C. Similarly to
formula (2.3), one can define the set X̂K̂,λ(1) ⊂ X̂ by putting

X̂K̂,λ(1) :=
{
z ∈ X̂ | z =K̂ −λ1 ∧ z 5K̂ λ1

}
(2.24)

and introduce the following

Definition 2.25. An element z ∈ X̂ is said to be 1-measurable with respect to
the wedge K̂ if, and only if it belongs to the set

X̂K̂(1) :=
⋃

λ∈C
X̂K̂,λ(1). (2.25)

Definition 2.25 may be regarded as a natural extension of Definition 2.8
to the complex case. For example, analogues of Lemma 2.6 and Proposi-
tion 2.11 are true for sets (2.24) and, just as in the real case, zero belongs
to the set X̂K̂,λ(1) for arbitrary λ ∈ C and 1 ∈ X̂. Further properties of sets
(2.24) are described by Lemma 2.31 below.

Remark 2.26. Analogues of sets (2.24) and the related objects can also be
introduced in the case where K̂ is replaced by some other set possessing
property (2.22), not necessarily constructed according to formula (2.21).
Such more general complex wedges are however not needed for our pur-
poses.

A convenient characterisation of the property introduced in Definition 2.25
is provided by the following

Lemma 2.27. Let {x, y, f } ⊂ X. Then the element x + iy is f̂ -measurable with
respect to K̂ if, and only if there exist some r ∈ [0,+∞) and ω ∈ [−π, π] such that
the relations

−r f sinω 5K x 5K r f sinω, (2.26)
−r f cosω 5K y 5K r f cosω (2.27)

are satisfied.

Here and everywhere in the sequel, we write f̂ = f + i f for any f from X.
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Proof. By virtue of relations (2.24) and (2.25), the element x + iy is f̂ -
measurable if, and only if there exist some % ∈ [0,+∞) and θ ∈ [−π, π]
for which

−% eiθ f̂ 5K̂ x + iy 5K̂ % eiθ f̂ . (2.28)
According to (2.19), we have

eiθ f̂ = (cosθ + i sinθ)( f + i f ) = (cosθ − sinθ) f + i (sinθ + cosθ) f

=
√

2
[
sin

(
π
4
− θ

)
+ i cos

(
π
4
− θ

)]
f . (2.29)

Therefore, in view of definition (2.21) of the set K̂, the relation (2.28) is
equivalent to the system of order inequalities

−%
√

2 f sin
(
π
4
− θ

)
5K x 5K %

√
2 f sin

(
π
4
− θ

)
, (2.30)

−%
√

2 f cos
(
π
4
− θ

)
5K y 5K %

√
2 f cos

(
π
4
− θ

)
, (2.31)

which, obviously, has form (2.26), (2.27) with r := %
√

2 and

ω :=

π
4 − θ if −π ≤ θ ≤ − 3π

4 ,
−7π

4 − θ if −3π
4 < θ ≤ π.

It is clear that the above relation between the pairs (%, θ) and (r, ω) is one-
to-one. �

Remark 2.28. Definition 2.25 reduces to Definition 2.8 in the real case. In-
deed, let σ f ∈ K̂ with some σ ∈ {−1, 1}. Lemma 2.27 characterises the
f̂ -measurability of the element x = x + i0 with respect to K̂ in terms of the
existence of (r, ω) ∈ [0,+∞)× [−π, π] such that σ cosω ≥ 0 and relation (2.26)
is true. However, the property mentioned means that (2.4) is satisfied with
β := r sinω.

It is natural to find out that the f̂ -measurability of an element x + iy with
respect to K̂ is equivalent to the f -measurability of its real and imaginary
parts, x and y.

Lemma 2.29. Let {x, y, f } ⊂ X. Then the element x + iy is f̂ -measurable with
respect to K̂ if, and only if both x and y are f -measurable with respect to K.

Proof. The f -measurability of x and y, on the assumption that x + iy ∈
X̂K̂( f̂ ), is a consequence of Lemma 2.27. Conversely, if {x, y} ⊂ XK( f ), then,
according to Definition 2.8, there exist some real α and β such that

−α f 5K x 5K α f , (2.32)
−β f 5K y 5K β f . (2.33)

Let us put

ω :=

π
4 signα if β ≥ 0,
3π
4 signα if β < 0

and r :=
√

2 max {|α|, |β|}. Then, as is easy to see,

sinω =
signα√

2
, cosω =

sign β√
2
,
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and, therefore, relations (2.32) and (2.33) imply that (2.26) and (2.27) are
satisfied with the above values ofω and r. It remains to refer to Lemma 2.27.

�

It turns out that all the sets X̂K̂( f̂ ), where f̂ = f + i f , are invariant under
rotations. More precisely, the following statement is true.

Lemma 2.30. Let f ∈ X and {x, y} ⊂ XK( f ). Then, for an arbitrary φ ∈ [−π, π],
the element eiφ(x + iy) is f̂ -measurable with respect to K̂.

Proof. It will suffice to consider the case where f �K 0. By assumption,
{x, y} ⊂ XK( f ) and, hence, in view of Lemma 2.29, the element x + iy is f̂ -
measurable with respect to K̂, where f̂ = f + i f . Lemma 2.27 guarantees the
existence of an ω ∈ [−π, π] such that relations (2.26) and (2.27) are satisfied.
Multiplying both parts of (2.26) by |cosφ| and |sinφ| and taking Lemma 2.6
into account, we obtain, respectively, the relations

− f r|cosφ| sinω 5K ±x cosφ 5K f r|cosφ| sinω

and
− f r|sinφ| sinω 5K ±x sinφ 5K f r|sinφ| sinω,

where the symbol “±” means that the inequality is satisfied with both signs
of the corresponding term. Similarly, multiplying both parts of (2.27) by
|cosφ| and |sinφ|, we get

− f r|cosφ| cosω 5K ±y cosφ 5K f r|cosφ| cosω

and
− f r|sinφ| cosω 5K ±y sinφ 5K f r|sinφ| cosω.

Therefore, by choosing the appropriate signs in the relations above and
summing the corresponding terms, we obtain

x cosφ − y sinφ 5K r f [|cosφ| sinω + |sinφ| cosω],
x cosφ − y sinφ =K −r f [|cosφ| sinω + |sinφ| cosω]

(2.34)

and
y cosφ + x sinφ 5K r f [|cosφ| cosω + |sinφ| sinω],
y cosφ + x sinφ =K −r f [|cosφ| cosω + |sinφ| sinω].

(2.35)

It is supposed that f �K 0, and, therefore, σ f =K 0 for some σ ∈ {−1, 1}.
Since neither |cosφ| sinω + |sinφ| cosω nor |cosφ| cosω + |sinφ| sinω takes
values outside the interval [−2, 2], relations (2.34) and (2.35) yield

2σr f 5K x cosφ − y sinφ 5K 2σr f , (2.36)
2σr f 5K y cosφ + x sinφ 5K 2σr f . (2.37)

Let us put

θσ :=

π
4 if σ = 1,
−3π

4 if σ = −1.

Then sinθσ = cosθσ = σ2−
1
2 and, therefore, relations (2.36) and (2.37) can

be brought to the form

% f sinθσ 5K x cosφ − y sinφ 5K % f sinθσ,
% f cosθσ 5K y cosφ + x sinφ 5K % f cosθσ,
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where % := 2r
√

2. Applying now Lemma 2.27 and taking into account the
formula

eiφ(x + iy) = x cosφ − y sinφ + i(y cosφ + x sinφ), (2.38)

we conclude that the element eiφ(x + iy) is f̂ -measurable. �

The next lemma summarises several properties of sets (2.24) referred to
in the sequel.

Lemma 2.31. The following assertions are true:
(i) K̂, 0( f̂ ) = X̂K̂,λ(0) = K^ + iK^ for all f ∈ X and λ ∈ C;

(ii) X̂K̂,λ(1) = −X̂K̂,λ(1) for any 1 ∈ X̂;
(iii) α−1X̂K̂,|α|λ(1) = X̂K̂,λ(1) for any 1 ∈ X̂ and α ∈ R \ {0};
(iv) For λ , 0 and 1 , 0, the set X̂K̂,λ(1) is non-empty if, and only if λ1 ∈ K̂;
(v) If λ1 ∈ K̂, then X̂K̂,λ(1) ⊇ K^ + iK^;

(vi) X̂K̂,λ(1) \ (K^ + iK^) , ∅ if, and only if λ1 ∈ K̂ \ (K^ + iK^).
(vii)

⋂
1∈X̂ X̂K̂(1) ⊇ K^ + iK^;

(viii) X̂K̂(1) , K^ + iK^ if, and only if 1 ∈ [K̂ ∪ (−K̂)] \ (K^ + iK^).

Proof. This statement is established similarly to Lemmata 2.6 and 2.7 and
Propositions 2.11 and 2.11 from Section 2.2.

Let us prove, e. g., assertion (iii). Indeed, let α , 0. By virtue of (ii), an
element z belongs to the set X̂K̂,|α|λ if, and only if

−|α|λ1 5K̂ z signα 5K̂ |α|λ1,
or, which is the same,

−λ1 5K̂
z
α
5K̂ λ1. (2.39)

However, (2.39) means nothing but the inclusion α−1z ∈ X̂K̂,λ(1). �

2.5.3. The mappings nK̂,1 : X̂ → [0,+∞]. Similarly to the case of the original

real space X, the f̂ -measurability of elements of X̂ with respect to the com-
plexification K̂ of a wedge K in X can be characterised by a certain non-linear
functional. More precisely, given z ∈ X̂ and 1 ∈ X̂, we put

nK̂,1(z) :=
√

2 inf
{
|λ| | λ ∈ C ∧ z ∈ X̂K̂,λ(1)

}
(2.40)

if z is 1-measurable with respect to K̂, and nK̂,1(z) := +∞ for z < X̂K̂(1). Here,
we retain the same letter, n, as in the real case (cf. Section 2.2) in order not
to complicate the notation unnecessarily.

Lemma 2.32. For any 1 ∈ X̂, the functional nK̂,1 : X̂K̂(1)→ [0,+∞) is homogen-
eous in the sense that

nK̂,1(γz) = |γ|nK̂,1(z)

for all z ∈ X̂K̂(1) and γ ∈ R.

Proof. Let us fix some z ∈ X̂K̂(1) and γ ∈ R, γ , 0. According to formula
(2.40), we have

nK̂,1(γz) =
√

2 inf
{
|λ| | λ ∈ C ∧ γz ∈ X̂K̂,λ(1)

}
. (2.41)
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Applying assertion (iii) of Lemma 2.31 with α = 1/γ, we conclude that
an element γz belongs to X̂K̂,λ(1) if, and only if z ∈ X̂K̂,λ|γ|−1(1). Therefore,
equality (2.41) can be rewritten as

nK̂,1(γz) =
√

2 inf
{
|λ| | λ ∈ C ∧ γz ∈ X̂K̂,λ(1)

}

=
√

2 inf
{
|λ| | λ ∈ C ∧ z ∈ X̂K̂,λ/|γ|(1)

}

= |γ|
√

2 inf
{
λ
|γ|

∣∣∣ λ ∈ C ∧ z ∈ X̂K̂,λ/|γ|(1)
}

= |γ|
√

2 inf
{
|µ| | µ ∈ C ∧ z ∈ X̂K̂,µ(1)

}
= |γ|nK̂,1(z),

as required. �

We are interested mainly in elements of X̂ that are f̂ -measurable with
respect to K̂ for a suitably chosen f from X (actually, from [K ∪ (−K)] \ K^

because otherwise, by Proposition 2.11, there are no f -measurable elements
outside K^). In this case, it is convenient to use the following formulae for
computation of value (2.40).

Lemma 2.33. Let f ∈ X and let {x, y} ⊂ X be some elements f -measurable with
respect to K. Then the formulae

nK̂, f̂ (x + iy) =
√

2 inf
{
% ∈ [0,+∞) | ∃θ ∈ [−π, π] : (2.30) and (2.31) hold

}
(2.42)

and

nK̂, f̂ (x + iy) = inf {r ∈ [0,+∞) | ∃ω ∈ [−π, π] : (2.26) and (2.27) hold} (2.43)

are true.

Proof. By Lemma 2.29, the element x + iy is f̂ -measurable with respect to K̂
and, therefore, the value of nK̂,1(x + iy) is finite. In view of formula (2.29)
established in the proof of Lemma 2.27, the relation

−λ f̂ 5K̂ x + iy 5K̂ λ f̂

with λ = % eiθ is equivalent to the system of order inequalities (2.30), (2.31).
Therefore, definition (2.40) of the mapping nK̂, f̂ yields the required equality
(2.42).

Formula (2.43) is a consequence of (2.42). Indeed, as is shown in the proof
of Lemma 2.27, there is a one-to-one correspondence between systems (2.30),
(2.31) and (2.26), (2.27), with r/% =

√
2, and it suffices to use Lemma 2.32. �

The best constant r in relations (2.26) and (2.27) satisfied by the respective
components x and y of an f̂ -measurable element x + iy is determined by the
value of functional (2.40). More precisely, we have

Lemma 2.34. Let { f , x, y} ⊂ X and

nK̂, f̂ (x + iy) =: r < +∞.
Then there exists an ω ∈ [−π, π] such that relations (2.26) and (2.27) are satisfied.
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Proof. The definition of the functional nK̂, f̂ and Lemmata 2.27 and 2.33 yield
the existence of sequences (rk)+∞

k=1 ⊂ [0,+∞) and (ωk)+∞
k=1 ⊂ [−π, π] such that

limk→+∞ rk = r and the relations

−rk f sinωk 5K x 5K rk f sinωk, (2.44)
−rk f cosωk 5K y 5K rk f cosωk (2.45)

are true for all k ∈ N. The compact real sequence (ωk)+∞
k=1 contains a sub-

sequence (ωk j)
+∞
j=1 convergent to a number ω ∈ [−π, π]. Putting k = k j in

(2.44) and (2.45), passing to the limit as j → +∞, and taking into account
the fact that K is a closed subset of X, we arrive at relations (2.26) and
(2.27). �

The following statement is an extension of Lemma 2.23 to the complex
case.

Lemma 2.35. Let f ∈ X and z ∈ X̂. Then nK̂, f̂ (z) = 0 if, and only if z ∈ K^+ iK^.

Proof. Let z = x + iy, where {x, y} ⊂ K^. According to formula (2.43) of
Lemma 2.33, we have

nK̂, f̂ (x + iy) = inf {r ∈ [0,+∞) | ∃ω ∈ [−π, π] : (2.26) and (2.27) hold}
≤ inf

{
r ∈ [0,+∞) | ∃{σ, κ} ⊂ {−1, 1} : −σr f 5K x

√
2 5K σr f

and − κr f 5K y
√

2 5K κr f
}

≤ inf
{
r ∈ [0,+∞) | −σr f 5K x

√
2 5K σr f with some σ ∈ {−1, 1}

}

= inf
{
|α| | α ∈ R ∧ −α f 5K x

√
2 5K α f

}

= nK, f (x
√

2). (2.46)

By virtue of Lemma 2.32, we have nK, f (x
√

2) =
√

2 nK, f (x). However, in
view of Lemma 2.23, nK, f (x) = 0 and, therefore, by (2.46), the non-negative
number nK̂, f̂ (x + iy) is equal to 0.

Assume now that nK̂, f̂ (x + iy) = 0. By virtue of Lemma 2.34, there exists
an ω ∈ [−π, π] such that relations (2.26) and (2.27) are satisfied with r = 0,
i. e., 0 5K x 5K 0 and 0 5K y 5K 0. This means that {x, y} ⊂ K^. �

Formula (2.40) allows one to construct a natural extension nK̂, f̂ : X̂ →
[0,+∞] of the mapping X 3 x 7→ nK, f (x) given by relation (2.13). More
precisely, the following statement is true.

Proposition 2.36. Let f ∈ X. Then the equality

nK̂, f̂ (x) = nK, f (x) (2.47)

is true for all x ∈ X.

Proof. First of all, we note that it suffices to consider the case where f �K 0
because in the contrary case, by Proposition 2.11, we have XK( f ) = K^ and,
therefore, in view of Lemmata 2.23 and 2.35, both nK, f and nK̂, f̂ vanish on
the set XK( f ).
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For the sake of definiteness, we assume that f =K 0. Setting y = 0 in
formula (2.43) of Lemma 2.33, we obtain

nK̂, f̂ (x) = inf {r ∈ [0,+∞) | ∃ω ∈ [−π, π] : cosω ≥ 0 and (2.26) holds}

= inf
{
r ∈ [0,+∞)

∣∣∣ ∃ω ∈
[
−π

2
,
π
2

]
: (2.26) holds

}
. (2.48)

Since the mapping sin : [−π2 , π2 ] → [−1, 1] is a bijection, we see that (2.48)
can be rewritten in the form

nK̂, f̂ (x) = inf
{
r ∈ [0,+∞) | ∃h ∈ [−1, 1] : −rh f 5K x 5K rh f

}

= inf
{|α| ∈ [0,+∞) | −α f 5K x 5K α f

}
,

which, by virtue of (2.13), proves that equality (2.47) is true for all x from
XK( f ). In the case where x is not f -measurable with respect to K, by
Lemma 2.29, both values are equal to +∞. �

2.5.4. Measuring rotated elements. In the sequel, we need to compute the
values of the functional nK̂, f̂ on elements of the form eit(x + iy), where t ∈
[−π, π] is arbitrary and {x, y} ⊂ XK( f ) with some f satisfying the condition
f �K 0.

Definition 2.37. Given an f ∈ X, we put

RK̂, f̂ (x + iy) := inf
t∈[−π,π]

nK̂, f̂ (e
it(x + iy)) (2.49)

if {x, y} ⊂ X are f -measurable with respect to K, and set formally RK̂, f̂ (x +

iy) := +∞ in the contrary case.

It follows from Lemma 2.30 that the right-hand side of (2.49) is finite for
arbitrary {x, y} ⊂ XK( f ) and t ∈ [−π, π] and, thus, Definition 2.37 makes
sense.

Lemma 2.38. Let f ∈ X and {x, y} ⊂ XK( f ). Then, for an arbitrary φ ∈ [−π, π],
the equality

RK̂, f̂ (e
iφ(x + iy)) = RK̂, f̂ (x + iy) (2.50)

is true.

Proof. According to formula (2.49), we have

RK̂, f̂ (e
iφ(x + iy)) = inf

t∈[−π,π]
nK̂, f̂ (e

iφeit(x + iy))

= inf
t∈[−π,π]

nK̂, f̂ (e
i(t+φ)(x + iy)). (2.51)

Let us take an arbitrary φ ∈ [−π2 , π2 ] and put

φt :=



t + φ + π if t + φ < −π,
t + φ if − π ≤ t + φ ≤ π,
t + φ − π if t + φ > π
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for all t from [−π, π]. It is clear that {eiφt | t ∈ [−π, π]} = {λ ∈ C | |λ| = 1} for
any φ. Therefore, equality (2.51) yields

RK̂, f̂ (e
iφ(x + iy)) = inf

t∈[−π,π]
nK̂, f̂ (e

iφt(x + iy))

= inf
t∈[−π,π]

nK̂, f̂ (e
it(x + iy)) = RK̂, f̂ (x + iy).

Applying formula (2.50) sequentially, we prove that it is true with arbitrary
values of φ from [−π, π]. �

Together with Lemma 2.38, the next statement is a basic tool in the proof
of Theorem 3.1 from Section 3.

Lemma 2.39. Let f ∈ X, {x, y} ⊂ XK( f ), and

R := RK̂, f̂ (x + iy). (2.52)

Then there exist some {θ∗, ω∗} ⊂ [−π, π] such that the relations

−R f sinω∗ 5K x cosθ∗ − y sinθ∗ 5K R f sinω∗, (2.53)
−R f cosω∗ 5K x sinθ∗ + y cosθ∗ 5K R f cosω∗ (2.54)

are true. Moreover, if R > 0, then the inequalities

−(R − ε) f sin ω̃ 5K x cos θ̃ − y sin θ̃ 5K (R − ε) f sin ω̃, (2.55)

−(R − ε) f cos ω̃ 5K x sin θ̃ + y cos θ̃ 5K (R − ε) f cos ω̃ (2.56)

are not satisfied with any {θ̃, ω̃} ⊂ [−π, π] and ε ∈ (0,R).

Proof. Let us fix some {x, y} ⊂ XK( f ) and define R by (2.52). Then

R = inf
t∈[−π,π]

rt, (2.57)

where rt := nK̂, f̂ (e
it(x + iy)) for all t ∈ [−π, π]. By virtue of Lemma 2.30, we

have 0 ≤ R < +∞.
Taking Lemma 2.34 and formula (2.38) into account, we conclude that,

with any t ∈ [−π, π], one can associate an ωt ∈ [−π, π] for which

−rt f sinωt 5K x cos t − y sin t 5K rt f sinωt (2.58)

and

−rt f cosωt 5K y cos t + x sin t 5K rt f cosωt. (2.59)

By virtue of (2.57), there exists a sequence (tm)+∞
m=1 ⊂ [−π, π] such that

lim
m→+∞ rtm = R. (2.60)

Being bounded, this sequence contains a subsequence convergent to a cer-
tain θ∗ ∈ [−π, π]. We can assume, without loss of generality, that such a
subsequence has already been selected and, thus, in addition to (2.60), we
have

lim
m→+∞ tm = θ∗. (2.61)

On the other hand, the sequence (ωtm)+∞
m=1 ⊂ [−π, π] is also bounded and,

therefore, there exists a sequence (m j)+∞
j=1 ⊂ N such that lim j→+∞ωtmj

= ω∗
with a certainω∗ ∈ [−π, π]. Setting t = tm j in (2.58) and (2.59), passing to the
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limit as j tends to +∞, and using (2.60), (2.61), and the fact that K is a closed
set, we arrive at relations (2.53) and (2.54) with the above values of θ∗ and
ω∗.

Assume now that R > 0 and relations (2.55) and (2.56) are satisfied with
some ε, 0 ≤ ε < R, and {θ̃, ω̃} ⊂ [−π, π]. Due to formula (2.43) of Lemma 2.33
and equality (2.38) from the proof of Lemma 2.30, relations (2.55) and (2.56)
imply that rt ≤ R − ε for all t ∈ [−π, π], whence

inf
t∈[−π,π]

rt ≤ R − ε. (2.62)

However, by (2.57), inequality (2.62) yields R ≤ R − ε and, therefore, ε =
0. �

The property described by Lemma 2.35 is also true for functional (2.49).

Lemma 2.40. Let f ∈ X and z ∈ X̂. Then RK̂, f̂ (z) = 0 if, and only if z ∈ K^+ iK^.

Proof. The inclusion z ∈ K^ + iK^ means that the element z is 0-measurable
with respect to K̂. In this case, Lemma 2.30 guarantees that so does the
element eitz with any t from [−π, π] and, hence, by Lemma 2.35, nK̂, f̂ (e

itz) = 0
for all t ∈ [−π, π]. Relation (2.49) then yields RK̂, f̂ (z) = 0.

Conversely, if RK̂, f̂ (x + iy) = 0, then, by Lemma 2.39, there exists some θ
from [−π, π] such that

0 5K x cosθ − y sinθ 5K 0,
0 5K x sinθ + y cosθ 5K 0.

According to formula (2.38), this means that the element eiθ(x + iy) is 0-
measurable with respect to K̂ and, thus, by Lemma 2.30, so does the element
x + iy. �

2.6. Operators vanishing on the blade of a wedge. For the sake of brevity,
we introduce the following definition [10].

Definition 2.41. We say that an eigenvalue λ of a bounded linear oper-
ator A : X → X is substantial with respect to the wedge K (or, shortly,
K-substantial) if λ is non-zero and at least one eigenvector not belonging to
K^ + iK^ corresponds to it.

As usual (see, e. g., [8]), by a complex eigenvalue λ ∈ C of a bounded
linear operator A : X → X acting in a real Banach space X, the eigenvalue
of its complexification Â = A + iA : X̂→ X̂ is meant, where

Â(x + iy) := Ax + iAy (2.63)

for all {x, y} ⊂ X.

Example 2.42. All the eigenvalues of a bounded linear operator A : X → X
are substantial with respect to an arbitrary cone in X.

We devote our present study mostly to the linear operators A : X → X
vanishing on the blade of a proper wedge K, i. e., such that

K^ ⊆ ker A. (2.64)
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Example 2.43. If K is a cone, then condition (2.64) is satisfied in an obvious
way for every linear operator A : X→ X.

In the general case, the restrictiveness of condition (2.64) imposed on the
operator A grows with the “width” of K^ .

Example 2.44. Let us consider the set

CΩ,σ ([a, b],R) =
{
x ∈ C ([a, b],R) | σx ([a, b] \Ω) ⊆ [0,+∞)

}
,

where Ω is a certain subset of [a, b] such that [a, b]\Ω is closed, andσ ∈ {−1, 1}.
The set CΩ,σ ([a, b],R) is obviously a closed wedge in the Banach space
C ([a, b],R) of all the continuous scalar functions on the bounded interval
[a, b]. This wedge is solid because, as one can show, its interior is constituted
by the continuous functions x : [a, b]→ R such that σx ([a, b] \Ω) ⊆ (0,+∞).

Consider the operator A : C ([a, b],R)→ C ([a, b],R) given by the formula

(Ax) (t) =

∫ t

τ
k (t, s) x (ω(s)) ds, t ∈ [a, b], (2.65)

in which ω : [a, b]→ [a, b] is a measurable function, whereas the function k :
[a, b]× [a, b]→ R is continuous in the first variable and Lebesgue integrable
in the second one. The operator A vanishes on the blade of the wedge
CΩ,σ ([a, b],R) when ω satisfies the condition

ω ([a, b]) ⊆ [a, b] \Ω. (2.66)

Indeed, the blade of CΩ,σ ([a, b],R) consists of those continuous functions
x : [a, b]→ R such that

x(t) = 0 for all t ∈ [a, b] \ Ω. (2.67)

If ω is such that condition (2.66) holds, then Ax is equal identically to
zero for every function x satisfying condition (2.67), i. e., the relation x ∈(
CΩ,σ ([a, b],R)

)^ implies that Ax = 0. This means that (2.64) is true for
K = CΩ,σ ([a, b],R) and A given by (2.65).

Our interest to the property described by condition (2.64) is motivated
by the following statement.

Lemma 2.45. Assume that A : X→ X is a linear operator vanishing on the blade
of a wedge K ⊆ X. Then every non-zero eigenvalue of A is K-substantial.

Proof. Let λ be an arbitrary non-zero eigenvalue of A. Then there exists
some non-zero element w from X̂ such that

λw = Âw. (2.68)

Assume that, on the contrary, λ is not K-substantial and, therefore, ac-
cording to Definition 2.41, every eigenvector w in (2.68) belongs to K^+ iK^.
By virtue of inclusion (2.64), this yields Âw = 0, and, hence, by (2.68), w = 0,
which is impossible because w is an eigenvector of Â. The contradiction
obtained proves our lemma. �

Assumption (2.64) may seem to be unnecessarily strong because, in fact,
it guarantees that not only some eigenvectors corresponding to non-zero
eigenvalues of A do not belong to the blade of K̂ but all such eigenvectors
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possess this property. Note however that, in the theorems of Sections 3 and
4, condition (2.64) cannot be dropped even in the two-dimensional case (see
Example 2.43).

3. A    K- 

The following theorem provides an upper bound for K-substantial eigen-
values of a sufficiently wide class of linear operators in a real Banach space
X.

Theorem 3.1. Let K be a proper wedge in X and A1 : X → X, A2 : X → X be
bounded linear operators such that

A1 (K) ∪ A2 (K) ⊆ K. (3.1)

Assume also that the relation

A1 f + A2 f 5K α f (3.2)

is true with some α ∈ [0,+∞) and f ∈ X for which

f �K;H 0, (3.3)

where H is a certain linear manifold in X satisfying the inclusion

H ⊇ im (A1 − A2) . (3.4)

Then every K-substantial eigenvalue λ of the operator A1 − A2 admits the
estimate

|λ| ≤ α. (3.5)

In (3.1), (3.4), and similar relations, we use the standard notation A (M) :=
{Ax | x ∈M}, M ⊂ X.

Proof of Theorem 3.1. Let λ = % eiθ, % ∈ (0,+∞), be a K-substantial eigenvalue
of the complexification Â = Â1 − Â2 of the operator

A := A1 − A2. (3.6)

In view of Definition 2.41 and equality (2.23), there exists an element w =
x + iy such that {x, y} ⊂ X, {x, y} 1 K^, and equality (2.68) holds.

We divide the present proof into several parts.

C 1. The element w is f̂ -measurable with respect to K̂.
Indeed, equality (2.68) means that

%w = e−iθÂw. (3.7)

According to formulae (2.38) and (2.63), we have

e−iθÂw = Ax cosθ + Ay sinθ + i(Ay cosθ − Ax sinθ)

and, therefore, (3.7) can be rewritten as the system

%x = Ax cosθ + Ay sinθ, (3.8)
%y = Ay cosθ − Ax sinθ. (3.9)

By virtue of assumption (3.4), it follows from (3.8) and (3.9) that x and y both
lie in H (to prove this, it suffices to use the linearity of the set H). However,
according to Definition 2.12, condition (3.3) means that all the elements from
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H are f -measurable with respect to K and, hence, by Lemma 2.29, x + iy is
( f + i f )-measurable with respect to K̂.
C 2. The number

R := RK̂, f̂ (x + iy) (3.10)

is strictly positive.
Indeed, by Claim 1 and Lemma 2.38, the right-hand side of (3.10) is a

finite number. Since {x, y} 1 K^, Lemma 2.35 yields R > 0.
C 3. The elements x and y satisfy the equalities

Ax = %(x cosθ − y sinθ), (3.11)
Ay = %(x sinθ + y cosθ). (3.12)

According to formula (2.38), system (3.11), (3.12) is an equivalent form of
relation (2.68) satisfied by w.
C 4. There exist some ω∗ and t∗ from [−π, π] such that (2.53) and (2.54) are
true for x and y, and there do not exist any {ω̃, θ̃} ⊂ [−π, π] for which the relations

−r f sin ω̃ 5K x cos θ̃ − y sin θ̃ 5K r f sin ω̃, (3.13)

−r f cos ω̃ 5K x sin θ̃ + y cos θ̃ 5K r f cos ω̃ (3.14)

would be satisfied with r ∈ (0,R).
This statement is an immediate consequence of formula (3.10) and Lemma 2.39.

C 5. There is an Ω from [−π, π] such that the relations

−αR f sin Ω 5K Ax cosθ∗ − Ay sinθ∗ 5K αR f sin Ω, (3.15)
−αR f cos Ω 5K Ax sinθ∗ + Ay cosθ∗ 5K αR f cos Ω, (3.16)

are true, where A is given by (3.6).
In view of assumption (3.1), both operators A1 and A2 preserve order

inequalities. Therefore, relations (2.53) and (2.54), together with Lemma 2.6,
yield

−RA j f sinω∗ 5K σ[A jx cosθ∗ − A jy sinθ∗] 5K RA j f sinω∗, (3.17)
−RA j f cosω∗ 5K κ[A jx sinθ∗ + A jy cosθ∗] 5K RA j f cosω∗ (3.18)

for all j = 1, 2 and {σ,κ} ⊂ {−1, 1}. Summing the two relations obtained
from (3.17) with j = 1, σ = 1 and j = 2, σ = −1, respectively, we obtain

−R(A1+A2) f sinω∗ 5K (A1−A2)x cosθ∗−(A1−A2)y sinθ∗ 5K R(A1+A2) f sinω∗,

i. e.,

−R(A1 + A2) f sinω∗ 5K Ax cosθ∗ − Ay sinθ∗ 5K R(A1 + A2) f sinω∗. (3.19)

In a similar manner, putting in (3.18) j = 1, κ = 1 and j = 2, κ = −1 and
summing the resulting two relations, we get

−R(A1 + A2) f cosω∗ 5K Ax sinθ∗ + Ay cosθ∗ 5K R(A1 + A2) f cosω∗. (3.20)

Let us consider the following four cases.

Case 1. sinω∗ ≥ 0 and cosω∗ ≥ 0.

Using assumption (3.2) in relations (3.19), (3.20) and putting Ω := ω∗, we
arrive immediately at (3.15), (3.16).
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Case 2. sinω∗ ≥ 0 and cosω∗ < 0.

Recall that, by assumption, f =K 0 and, due to condition (3.1), A1 f +
A2 f =K 0. In view of assertion (iii) of Lemma 2.7, relation (3.20) and Claim
2 imply that, in this case,

0 5K Ax sinθ∗ + Ay cosθ∗ 5K 0. (3.21)

whereas the term (A1 + A2) f sinω∗, by virtue of (3.2), admits the estimate

(A1 + A2) f sinω∗ 5K α f .

Therefore, (3.15) and (3.16) are satisfied with Ω := π
2 .

Case 3. sinω∗ < 0 and cosω∗ ≥ 0.

Relation (3.19) now yields

0 5K Ax cosθ∗ − Ay sinθ∗ 5K 0 (3.22)

and, similarly to Case 2, we conclude that (3.15) and (3.16) hold with Ω := 0.

Case 4. sinω∗ < 0 and cosω∗ < 0.

A reasoning analogous to those presented above show that, in this case,
system (3.19), (3.20) has form (3.21), (3.22) and, therefore, relations (3.15)
and (3.16) are satisfied both with Ω = π

2 and Ω = 0. This proves our Claim 5.
Having established the facts above, we now turn to the proof of estimate

(3.5).
According to Claim 3, the components x and y of the eigenvector w of Â

satisfy equalities (3.11) and (3.12). Therefore,

Ax cosθ∗ − Ay sinθ∗ = %(x cosθ − y sinθ) cosθ∗ − %(x sinθ + y cosθ) sinθ∗
= %[cosθ sinθ∗ − sinθ sinθ∗]x
− %[sinθ cosθ∗ + cosθ sinθ∗]y

= %x cos(θ + θ∗) − %y sin(θ + θ∗)

and, similarly,

Ax sinθ∗ + Ay cosθ∗ = %(x cosθ − y sinθ) sinθ∗ + %(x sinθ + y cosθ) cosθ∗
= %[cosθ sinθ∗ + sinθ cosθ∗]x

+ %[cosθ cosθ∗ − sinθ sinθ∗]y
= %x sin(θ + θ∗) + %y cos(θ + θ∗).

Applying these formulae to the corresponding expressions in (3.15) and
(3.16) and taking the inequality % > 0 into account, we obtain

−αR
%

f sin Ω 5K x cos(θ + θ∗) − y sin(θ + θ∗) 5K
αR
%

f sin Ω, (3.23)

−αR
%

f cos Ω 5K x sin(θ + θ∗) + y cos(θ + θ∗) 5K
αR
%

f cos Ω. (3.24)

System (3.23), (3.24), obviously, has form (3.13), (3.14) with θ̃ := θ + θ∗,
ω̃ := Ω, and r := αR/%. In view of Claim 4, it now follows that

αR
%
≥ R,
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whence, by Claim 2, we arrive at the inequality % ≤ α. Recalling that % = |λ|,
we conclude that the required estimate (3.5) holds. �

The assumption that f should lie in K and be different from zero in
Theorem 3.1 is motivated by Proposition 2.21.

Remark 3.2. A linear operator A : X → X admits representation in form
(1.3), where A1 and A2 are linear mappings preserving K, if and only if there
exists a linear operator B : X→ X such that

B (K) ⊆ K (3.25)

and
Ax 5K Bx for all x ∈ K. (3.26)

Indeed, (1.3) implies that

Ax 5K A1x 5K A1x + A2x

for all x such that x =K 0 and, therefore, one can set B := A1+A2. Conversely,
it follows from (3.25) and (3.26) that the operator A2 := B − A preserves the
wedge K and, thus, it remains to put A1 := B in (1.3).

It should be noted that, in the case where the space X is infinite-dimensional,
one cannot claim that every bounded linear operator A : X→ X admits rep-
resentation (1.3) with bounded linear mappings A1 : X→ X and A2 : X→ X
preserving K. In particular, in the case where K is a cone which does not pos-
sess the property of normality, the classical Theorem 2 of [11] ensures the ex-
istence of a continuous (even finite-dimensional) linear operator A : X→ X
that cannot be represented in form (1.3) with bounded Ak : X→ X, k = 1, 2,
satisfying condition (3.1).

4. A     

The following statement appears to be rather useful in studies of the
solvability of various linear equations with compact operators.

Theorem 4.1. Let X be a Banach space over the fieldR, K be a proper wedge in X,
and A1 : X → X, A2 : X → X be completely continuous linear operators leaving
the wedge K invariant and satisfying the condition

K^ ⊆ ker (A1 − A2) . (4.1)

In addition, assume that relation (3.2) is satisfied with some constant α ∈ [0,+∞)
and element f ∈ X such that (3.3) holds with a certain linear manifold H ⊆ X for
which inclusion (3.4) is true.

Then the spectral radius of the operator A1 − A2 admits the estimate

r (A1 − A2) ≤ α (4.2)

Proof. It follows from the Riesz–Schauder theory (see, e. g., [12]) that, due
to the complete continuity of the operator A1 − A2, its spectrum consists of
countably many eigenvalues.

Assumption (4.1), by virtue of Lemma 2.45, implies that every non-zero
eigenvalue of A1 − A2 is K-substantial. Therefore, under the conditions
assumed, Theorem 3.1 can be applied.

Application of Theorem 3.1 guarantees that an arbitrary non-zero eigen-
value λ of the operator A1 −A2 admits estimate (3.5). Considering the least
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upper bound of |λ| in the left-hand side of relation (3.5) with respect to all
the non-zero eigenvalues λ of A1 −A2, we arrive immediately at inequality
(4.2). �

Remark 4.2. The complete continuity of A1 −A2 in the proof of Theorem 4.1
is used only to guarantee that this operator has discrete spectrum.

Condition (3.3), as follows from Lemma 2.18, is satisfied, in particular,
for an element f belonging to the interior of a solid wedge. In this case,
Theorem 4.1 implies the following statement:

Theorem 4.3. Let K ⊂ X be a solid wedge and A1 : X → X, A2 : X → X be
completely continuous linear operators leaving the wedge K invariant, satisfying
condition (4.1) and such that relation (3.2) is true with someα ∈ [0,+∞) and f ∈ X,
f �K 0. Then the spectral radius of the operator A1 − A2 admits estimate (4.2).

Proof. It suffices to take Lemma 2.18 into account and apply Theorem 4.1
with H := X. �

Remark 4.4. Condition (4.1) for the operator A : X→ X in Theorems 4.1 and
4.3 is automatically satisfied when K is a cone.

As a particular case, Theorem 4.3 contains the following statement.

Corollary 4.5. If A : X → X is a completely continuous linear operator leaving
invariant a solid wedge K, and, moreover, satisfying condition (2.64) and the
relation

A f 5K α f (4.3)
with some α ∈ [0,+∞) and f ∈ X such that f �K 0, then the estimate

r(A) ≤ α (4.4)

is true.

Proof. Corollary 4.5 is a consequence of Theorem 4.3 with A1 = A and
A2 = 0. �

Theorem 4.3 also implies an analogue of Corollary 4.5 for the “negative”
operators.

Corollary 4.6. Let A : X → X be a completely continuous linear operator such
that A (−K) ⊂ K and, moreover, the relation

A f =K −α f

be satisfied with some α ∈ [0,+∞) and f ∈ X possessing the property f �K 0.
Then the spectral radius of A admits estimate (4.4).

Proof. It suffices to put A1 = 0 and A2 = −A in Theorem 4.3. �

Remark 4.7. In the case where K is a solid and normal cone, the assertion of
Theorem 4.3 can also be proved by using Theorems 5.3 and 5.5 of [1].

Remark 4.8. In the case where A : X → X is a completely continuous linear
operator leaving invariant a normal and solid cone K, Corollary 4.5 contains,
in particular, assertions (a) and (b) of [1, Theorem 5.5].
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4.1. The case of an f -bounded operator. Corollary 4.11 established below
is an example of application of Theorem 4.1 with H different from X. Prior
to its formulation, we introduce a definition.

Definition 4.9. Let K be a wedge in X and f be an element from X. An
operator A : X → X is said to be f -bounded with respect to K if, for every
x ∈ X, there exists a constant β ∈ (−∞,+∞) such that

−β f 5K Ax 5K β f .

In other words, A is f -bounded if the element Ax is f -measurable for
all x. It follows from Proposition 2.11 that, in the pathological cases where
0 5K f 5K 0 or f is incomparable with zero, every operator A which is
f -bounded with respect to K has the property im A ⊆ K^.

Remark 4.10. An operator f -bounded with respect to K is, in particular, f -
bounded from above in the sense of the definition from [8, Chapter 2, §1].
The converse statement is not true.

Corollary 4.11. Let f =K 0 be a given element and Ak : X→ X, k = 1, 2, be com-
pletely continuous linear operators preserving the wedge K, satisfying condition
(4.1), and f -bounded with respect to K.

Then the existence of a non-negative constant α for which relation (3.2) is
satisfied implies estimate (4.2) for the spectral radius of the operator A1 − A2.

Proof. Setting H := XK( f ), we see that condition (3.4) is satisfied due to the
f -boundedness of A1 and A2 with respect to K. By Lemma 2.13, f satisfies
relation (2.8) and, hence,

f �K;XK( f ) 0.

Therefore, condition (3.3) holds with our choice of H, and it remains to
apply Theorem 4.1. �

5. A    (4.1)

As is seen from the proof of Theorem 4.1, the applicability of statements
on K-substantial eigenvalues is guaranteed by condition (4.1). It is natural
to expect that estimating the spectrum of an operator on the base of assump-
tions of type (3.2) is not possible any more if one admits the existence of a
non-zero eigenvalue which is not K-substantial, and imposes no additional
conditions on A.

The following example [10] shows that the assumption on the fulfilment
of condition (2.64) in Theorem 4.1 is essential and, generally speaking,
cannot be omitted.

Example 5.1. Let us consider the set

K =

{(
x1
x2

)
: x1 ≥ 0, x2 ∈ R

}
. (5.1)

Obviously, K is a solid wedge in X := R2, and the blade of K has the form

K^ =

{(
0
c

)
: c ∈ R

}
.
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It is not difficult to verify that the linear operator A given by the matrix
A =

( a11 a12
a21 a22

)
leaves invariant the set K given by (5.1) if, and only if

a11 ≥ 0, a12 = 0. (5.2)

Furthermore, one can show that, under condition (5.2), A vanishes on K^

if, and only if
a22 = 0. (5.3)

A vector f =
( f1

f2

)
belongs to the interior of K if, and only if

f1 > 0. (5.4)

whereas the corresponding condition (4.3) is equivalent to the inequality
α f1 ≥ a11 f1, which, in view of (5.4), means that

α ≥ a11. (5.5)

If condition (2.64) or, which is the same in our case, equality (5.3) is
violated, then assumption (4.3), generally speaking, cannot guarantee the
validity of the estimate r(A) ≤ α for the spectral radius of A. Indeed, it is
clear from (5.2) that r(A) = max {a11, |a22|} and, hence,

r(A) ≥ |a22|. (5.6)

However, if the inequalities

|a22| > α ≥ a11 ≥ 0 (5.7)

hold, then the assertion of Corollary 4.5 in the case considered would have
the form r(A) ≤ α, which is impossible in view of (5.6) and (5.7).

Thus, condition (2.64) Corollary 4.5 (and, therefore, condition (4.1) in
Theorem 4.1), generally speaking, cannot be dropped.

6. U    

Theorem 4.1 allows one to obtain efficient conditions under which the
linear equation

x = A1x − A2x + q, (6.1)
where A1 and A2 are linear operators, possesses a unique solution for an
arbitrary element q from X.

Corollary 6.1. Let X be a real Banach space, K ⊂ X be a wedge, and Ai : X →
X, i = 1, 2, be completely continuous linear operators leaving K invariant and
satisfying condition (4.1). In addition, assume that relation (3.2) is satisfied with
some constant α ∈ [0, 1) and element f ∈ X such that (3.3) holds with a certain
linear manifold H ⊆ X for which inclusion (3.4) is true.

Then equation (6.1) is uniquely solvable for arbitrary q ∈ X, and the solution x
of equation (6.1) is represented by the convergent Neumann series

x =

+∞∑

k=0

(A1 − A2)kq. (6.2)

Proof. It suffices to notice that, by virtue of Theorem 4.1, the conditions
assumed guarantee that the spectrum of the operator A1 − A2 is contained
in the interior of the unit disk in C. �
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In the cases where the fact of convergence of series (6.2) is unimportant,
one may prefer to use the following

Corollary 6.2. Let K be a proper wedge in a real Banach space X and Ai : X→ X,
i = 1, 2, be bounded linear operators leaving K invariant and satisfying condition
(4.1). Assume that relation (3.2) is true, where α ∈ [0, 1) and f ∈ X is an element
for which (3.3) holds with some linear manifold H ⊆ X satisfying inclusion (3.4).

Then the homogeneous equation

x = A1x − A2x (6.3)

has no non-trivial solutions. If, moreover, the operators A1 and A2 are such that

1X − A1 − A2 is a Fredholm operator of index 0, (6.4)

then equation (6.1) is uniquely solvable for an arbitrary q ∈ X.

The symbol 1X here stands for the identity operator in X.

Proof. In view of assumption (4.1) and Lemma 2.45, it follows from The-
orem 3.1 that operator (3.6) has no eigenvalues outside the open interval
(−1, 1) and, in particular, the number 1 is not an eigenvalue for the oper-
ator mentioned. Therefore, zero is the unique solution of the homogeneous
equation (6.3). The unique solvability of equation (6.1) for any q is guaran-
teed by condition (6.4). �

Corollary 6.2 allows one to obtain the following statement.

Corollary 6.3. Let K be a proper wedge in a real Banach space X and Ai : X→ X,
i = 1, 2, be bounded linear operators leaving K invariant, possessing property (6.4),
and satisfying the condition

K^ ⊆ ker A1 ∩ ker A2. (6.5)

Assume also that relation (3.2) is true, where α ∈ [0, 1) and f ∈ X is an element for
which inequality (3.3) holds with some linear manifold H ⊆ X satisfying inclusion
(3.4).

Then the equation
x = σ1A1x + σ2A2x + q, (6.6)

is uniquely solvable for arbitrary q ∈ X and {σ1, σ2} ⊂ {−1, 1}.
Proof. Let us define the operators Ãi : X→ X, i = 1, 2, by putting

Ã1 :=
1 + σ1

2
A1 +

1 + σ2

2
A2 (6.7)

and

Ã2 :=
1 − σ1

2
A1 +

1 − σ2

2
A2. (6.8)

One can verify that the relations

σ1A1 + σ2A2 = Ã1 − Ã2

and

A1 + A2 = Ã1 + Ã2 (6.9)
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are true. It is also easy to see from (6.7) and (6.8) that both operators Ã1 and
Ã2 leave invariant the wedge K.

Assumption (6.5) guarantees the fulfilment of the inclusion

K^ ⊆ ker (Ã1 − Ã2).

Moreover, by virtue of (6.9), condition (3.2) can be rewritten as

Ã1 f + Ã2 f 5K α f .

We have thus shown that Corollary 6.2 can be applied with A1 and A2
replaced by Ã1 and Ã2, respectively. �

7. A 

We illustrate the idea of the results above on an example. Let us consider
the problem on the continuous solutions of the equation

x(t) =

∫ 1

0
h(t, s) x(ω(s)) ds + q(t), t ∈ [0, 1], (7.1)

where q : [0, 1] → R is continuous, the function ω : [0, 1] → [0, 1] is meas-
urable, h(t, ·) : [0, 1] → R is Lebesgue integrable for all t ∈ [0, 1], and
h(·, s) : [0, 1]→ R is continuous for almost every s from [0, 1].

Theorem 7.1. Let there exist a non-negative continuous function ψ : [0, 1]→ R
such that

vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)| ds < +∞ (7.2)

and

vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)|ψ(ω(s)) ds < 1, (7.3)

where
Γψ,ω :=

{
t ∈ [0, 1] | ψ(ω(t)) = 0

}
. (7.4)

Then equation (7.1) has a unique solution for any continuous function q : [0, 1]→
R.

Proof. Equation (7.1) can obviously be rewritten in form (6.1), where the op-
erators Ai, i = 1, 2, in the Banach space X := C([0, 1],R) of all the continuous
scalar functions on [0, 1] are introduced by the formulae

(Aix)(t) :=
∫ 1

0
max {(−1)i+1h(t, s), 0} x(ω(s)) ds, t ∈ [0, 1], i = 1, 2, (7.5)

for any continuous x : [0, 1] → R. Clearly, each of these operators leaves
invariant the wedge

Kω := {u ∈ C([0, 1],R) | u(ω(t)) ≥ 0 for a. e. t ∈ [0, 1]} .
It is easy to show that operators (7.5) are completely continuous.

Let Cψ,ω be the set of all the continuous functions x : [0, 1]→ R satisfying
the condition

vrai max
t∈[0,1]\Γψ,ω

|x(ω(t))|
ψ(ω(t))

< +∞.
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It is easy to see that Cψ,ω is a linear manifold in C([0, 1],R). Assumption
(7.2) and formula (7.5) imply that, for any x from C([0, 1],R) and almost
every t ∈ [0, 1], the estimate

| (A1x) (ω(t)) − (A2x) (ω(t))| ≤ ψ(ω(t)) ∆ max
ξ∈[0,1]

|x(ξ)|

is true, where

∆ := vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)| ds.

This means that condition (3.4) is satisfied with the above definitions of A1
and A2 and H := Cψ,ω.

The function ψ satisfies the condition

ψ �Kω; Cψ,ω 0, (7.6)

which means that (3.3) holds with f := ψ and K := Kω. Indeed, according to
Definition 2.15, relation (7.6) means that, for any x from Cψ,ω, there exists a
constant β ≥ 0 such that

|x(ω(t))| ≤ βψ(ω(t))

at almost every point t from the interval [0, 1]. However, the above property
is an immediate consequence of the definition of the set Cψ,ω.

Finally, inequality (7.3) guarantees that
∫ 1

0
|h(ω(t), s)|ψ(ω(s)) ds ≤ αψ(ω(t)), t ∈ [0, 1], (7.7)

where the constant α equal to the value at the left-hand side of (7.3) is less
than 1. In view of (7.5), relation (7.7) can be rewritten in form (3.2) for
K := Kω. Applying Theorem 4.1, we conclude that 1 is a regular value for
the operator (3.6) corresponding to the given problem. �

The above theorem implies, for example, the following statement.

Corollary 7.2. Assume that, for certain τ ∈ [0, 1] and γ ≥ 0, the functions
h : [0, 1]2 → R and ω : [0, 1]→ [0, 1] satisfy the conditions

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|ω(s) − τ|γ |h(ω(t), s)| ds < 1 (7.8)

and

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|h(ω(t), s)| ds < +∞. (7.9)

Then equation (7.1) has a unique solution for any continuous function q : [0, 1]→
R.

Proof. It suffices to apply Theorem 7.1 with

ψ(t) := |t − τ|γ, t ∈ [0, 1],

in which case set (7.4) is given by the formula Γψ,ω = {t ∈ [0, 1] | ω(t) = τ} .
�
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Remark 7.3. If the function ω : [0, 1]→ [0, 1] possesses the property

vrai min
t∈[0,1]

|ω(t) − τ| > 0, (7.10)

then condition (7.9) of Corollary 7.2 is a consequence of assumption (7.8).
Indeed, it follows from (7.8) and (7.10) that

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|h(ω(t), s)| ds

≤ 1
εγ

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|ω(s) − τ|γ |h(ω(t), s)| ds <

1
εγ
,

where ε := vrai mint∈[0,1] |ω(t) − τ|, and, therefore, relation (7.9) is true.

For instance, in the case of the equation

x(t) =

∫ 1

0
h(t, s) x(sα) ds + q(t), t ∈ [0, 1], (7.11)

where α ∈ (0,+∞) and q : [0, 1]→ R is continuous, we have

Corollary 7.4. Assume that there exist some τ ∈ [0, 1] and γ ∈ [0,+∞) for which

sup
t∈[0,1]\{τ}

1
|t − τ|γ

∫ 1

0
|sα − τ|γ |h(t, s)| ds < 1. (7.12)

Then equation (7.11) is uniquely solvable for any continuous function q : [0, 1]→
R.

Proof. Obviously, assumption (7.12) implies that

sup
t∈[0,1]\{ α√τ}

1
|tα − τ|γ

∫ 1

0
|sα − τ|γ |h(tα, s)| ds < 1,

which means that condition (7.8) is satisfied with

ω(t) := tα, t ∈ [0, 1]. (7.13)

Moreover, in view of Remark 7.3, inequality (7.9) is also true in this case
because function (7.13) has property (7.10). Thus, Corollary 7.2 can be
applied. �

Remark 7.5. Condition (7.8) of Corollary 7.2 is unimprovable in the sense
that the corresponding non-strict inequality

sup
t∈[0,1]\{τ}

1
|t − τ|γ

∫ 1

0
|sα − τ|γ |h(t, s)| ds ≤ 1 (7.14)

does not guarantee the unique solvability of equation (7.11) for all con-
tinuous q. In order to show this, it is sufficient to consider the simplest
functional equation

x(t) = x(θ) + q(t), t ∈ [0, 1], (7.15)

where θ is a given point from [0, 1] and q : [0, 1] → R is a continuous
function. Obviously, equation (7.15) can be rewritten as (7.1) with ω(s) := θ
and h(t, s) := 1 for all t and almost every s from [0, 1]. Equation (7.15) has
no solutions continuous for any continuous q : [0, 1] → R satisfying the
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inequality q(θ) , 0.Nevertheless, the corresponding condition (7.14) is true
in the form of an equality with an arbitrary non-negative γ. Note that, for
γ = 1, one can also refer to the example of equation (7.20) from Remark 7.5.

The argument given above also shows that the strict inequality (7.8) in
Corollary 7.2 cannot be replaced by the inequality

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|ω(s) − τ|γ |h(ω(t), s)| ds ≤ 1.

The following statement gives somewhat simpler but more restrictive
conditions sufficient for the solvability of equation (7.11).

Corollary 7.6. Equation (7.11) has a unique continuous solution for any continu-
ous q, provided that the inequality

vrai max
s∈[0,1]

sup
t∈[0,1]\{τ}

∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ <
α + 1

2ατ1+ 1
α − (α + 1) τ + 1

(7.16)

is satisfied with some τ ∈ [0, 1].

Proof. In view of (7.16), there exists a δ ∈ [0, 1) such that
∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ ≤
δ (α + 1)

2ατ1+ 1
α − (α + 1) τ + 1

(7.17)

for almost every s ∈ [0, 1] and all t ∈ [0, 1] \ {τ}. Using estimate (7.17) and
taking into account the identity

∫ 1

0
|ξα − τ| dξ =

2ατ1+ 1
α + 1

α + 1
− τ, (7.18)

we conclude that

1
|t − τ|

∫ 1

0
|ξα − τ| |h(t, ξ)| dξ ≤

∫ 1

0
|ξα − τ| dξvrai max

s∈[0,1]

∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ ≤ δ < 1

for every t different from τ, i. e., condition (7.12) is satisfied with γ := 1.
Applying Corollary 7.4, we obtain the required assertion. �

Corollary 7.6 implies, in particular, that equation (7.11) is uniquely solv-
able if

vrai max
s∈[0,1]

sup
t∈(0,1]

t−1 |h(t, s)| < α + 1. (7.19)

It should be noted that (7.19) is weaker than the condition

vrai max
s∈[0,1]

sup
t∈(0,1]

t−1 |h(t, s)| < 1,

which is obtained by using the standard techniques (e. g., [1, Theorem 5.5]
with E = C([0, 1],R), K defined as the cone of non-negative functions, y0 ≡ 1,
and the operator A given by the expression in the right-hand side of (7.11)).

Remark 7.7. None of conditions (7.16) and (7.19) can be weakened. Indeed,
consider the equation

x(t) =
(α + 1) |t − τ|

2ατ1+ 1
α − τ (α + 1) + 1

∫ 1

0
x(sα) ds, t ∈ [0, 1], (7.20)
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whereα ∈ (0,+∞) and τ ∈ [0, 1] are arbitrary constants. Obviously, equation
(7.20) has form (7.11) with

h(t, s) :=
(α + 1) |t − τ|

2ατ1+ 1
α − τ (α + 1) + 1

(7.21)

for all t and almost every s from [0, 1]. Moreover, due to formulae (7.18)
and (7.21), we have

vrai max
s∈[0,1]

sup
t∈[0,1]\{τ}

∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ =
α + 1

2ατ1+ 1
α − (α + 1) τ + 1

.

However, the homogeneous equation (7.20) has the non-trivial solution

x(t) =
(α + 1) |t − τ|

2ατ1+ 1
α − τ (α + 1) + 1

, t ∈ [0, 1].

Thus, we see that condition (7.16) is unimprovable. In order to show the
optimality of condition (7.19), it is sufficient to put τ := 0 in (7.20).
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