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Abstract

This contribution presents a general numerical method for computing lower and

upper bound of the optimal constant in Friedrichs’ inequality. The standard Rayleigh-

Ritz method is used for the lower bound and the method of a priori-a posteriori

inequalities is employed for the upper bound. Several numerical experiments show

applicability and accuracy of this approach.

1. Introduction

From the numerical point of view, the guaranteed and fully computable two-
sided bounds always provide a strong information about the computed quantity.
Their difference is a reliable bound on the approximation error and in applications
they allow to stay on the safe side by using properly either the lower or the upper
bound as the approximation.

In this contribution, we concentrate on the optimal constant in Friedrichs’ in-
equality. The presented two-sided bounds are guaranteed up to round-off errors.
The chosen approach is quite general and theoretically it can be used in arbitrary
dimension, for any domain, and for different variants of Friedrichs’ inequality. Practi-
cally, we are limited by particular choices of discretization methods. For instance, the
presented numerical examples are limited to polygonal domains in two dimensions.

The optimal constant in Friedrichs’ inequality is called Friedrichs’ constant and
its value is connected with the smallest eigenvalue of the corresponding differential
operator. The classical Rayleigh-Ritz method provides an upper bound on the exact
eigenvalue and consequently a lower bound for Friedrichs’ constant.

Computing a lower bound of the smallest eigenvalue and hence computing the
upper bound of Friedrichs’ constant is considerably more difficult task. We use
the method of a priori-a posteriori inequalities [5, 9]. The original idea relies on
C2-smooth test and trial functions, which are technically difficult to work with.
Therefore, we proposed in [11] an alternative approach based on complementarity
and standard Raviart-Thomas finite element method.

We briefly review this approach in Sections 2–4 and provide several numerical
experiments in Sections 5–7.
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2. Friedrichs’ inequality

Let us consider a domain Ω ⊂ R
d with Lipschitz boundary. Further, let ΓD and ΓN

be two relatively open and disjoint subsets of the boundary ∂Ω such that ∂Ω =
ΓD ∪ ΓN. Let the (d − 1)-dimensional measure of ΓD be positive. We will refer ΓD

and ΓN to as Dirichlet and Neumann parts of the boundary, respectively. Further,
we consider Sobolev space H1(Ω) = {v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]d} and its subspace
V = {v ∈ H1(Ω) : v|ΓD

= 0} of functions with vanishing traces on ΓD.
In this contribution, we will assume the following variant of Friedrichs’ inequality:

‖v‖0,Ω ≤ CF‖∇v‖0,Ω ∀v ∈ V, (1)

where ‖ · ‖0,Ω stands for the L2(Ω)-norm. Let us note that this inequality is named
after Kurt O. Friedrichs [3]. The optimal (smallest) possible value of the constant CF

such that inequality (1) holds is called Friedrichs’ constant and the symbol CF will
denote this optimal value throughout the paper. The particular value of CF depends
on the domain Ω and on the Dirichlet part of the boundary ΓD.

Friedrichs’ constant scales naturally with the size of Ω. Namely, if Ω̃ = kΩ,
Γ̃D = kΓD, and Γ̃N = kΓN for some k ∈ R then Friedrichs’ constants C̃F and CF

corresponding to Ω̃ and Ω, respectively, satisfy C̃F = kCF.
In special cases, Friedrichs’ constant can be computed analytically. For example,

it was computed for a rectangle, circle, and a circular wedge in [6] for ΓD = ∂Ω.
Result [8] can be used for analytic computation of CF for equilateral and right-
angle triangles. In certain simple cases (e.g. rectangle) it can be computed even if
ΓD 6= ∂Ω. In less special cases there are analytic upper bounds for Friedrichs’ con-
stant. The Faber-Kran inequality [2, 4] yields upper bound CF ≤

√
|Ω|/(j0,1

√
2π),

where |Ω| is the area of the two-dimensional domain Ω and j0,1
.
= 2.404826 is the

first positive root of the Bessel function J0. Similarly, in [7] we can find an esti-

mate CF ≤ π−1 (|a1|−2 + · · ·+ |ad|−2)
−1/2

, where |a1|, . . . , |ad| are lengths of sides
of a d-dimensional box in which the domain Ω is contained. Note that both these
estimates require ΓD = ∂Ω. However, in more general cases the value of Friedrichs’
constant has to be computed numerically.

3. Lower bound on Friedrichs’ constant

Friedrichs’ constant CF from (1) is connect with the smallest eigenvalue of the
Laplace eigenvalue problem that can be formulated in a weak sense as: find λi ∈ R

and ui ∈ V , ui 6= 0, i = 1, 2, . . . , such that

(∇ui,∇v) = λi(ui, v) ∀v ∈ V, (2)

where the parenthesis denote the L2(Ω) inner product. If λ1 = mini λi stands for the
smallest eigenvalue of (2) then it can be easily shown, see e.g. [10, 11], that

CF = 1/
√

λ1. (3)
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A standard method for computing approximations of the eigenvalues λi is the
Rayleigh-Ritz method. In this method we consider a finite dimensional subspace
V h ⊂ V and seek λh

i ∈ R and uh
i ∈ V h, uh

i 6= 0 such that

(∇uh
i ,∇vh) = λh

i (u
h
i , v

h) ∀vh ∈ V h.

This is equivalent to the generalized eigenvalue problem Axi = λh
i Mxi for the stiffness

and mass matrices A and M . If a standard finite element method is used then
matrices A and M are sparse and efficient methods of numerical linear algebra can
be used. The Rayleigh-Ritz method is well known for providing an upper bound
on the smallest eigenvalue. Indeed, since the differential operator in (2) and the
corresponding matrices A and M are symmetric, we can express λ1 and λh

1 as minima
of (generalized) Rayleigh quotients over V and V h, respectively, and we obtain

λ1 = min
v∈V
v 6=0

(∇v,∇v)

(v, v)
≤ min

vh∈V h

vh 6=0

(∇vh,∇vh)

(vh, vh)
= min

x∈Rn

x 6=0

xTAx

xTMx
= λh

1 ,

where n = dimV h. Consequently, the approximation C low
F = (λh

1)
−1/2 of Friedrichs’

constant, see (3), is a lower bound on the exact value CF, i.e.,

C low
F = (λh

1)
−1/2 ≤ CF.

4. Upper bound on Friedrichs’ constant

Computing an upper bound of Friedrichs’ constant is a more difficult task, be-
cause it corresponds to the computation of a lower bound of the smallest eigenvalue.
We employ the method of a priori-a posteriori inequalities [5, 9] enhanced by the
complementary approach. Mathematical details, relations, and derivations can be
found in [11]. Here, we just briefly describe the algorithm.

First, use the Rayleigh-Ritz method and compute approximations λh
1 ∈ R and

uh
1 ∈ V of the smallest eigenvalue λ1 and the corresponding eigenfunction u1. Second,

choose a flux reconstruction qh ∈ H(div,Ω) = {q ∈ [L2(Ω)]d : div q ∈ L2(Ω)}.
Third, compute

α =
‖∇uh

1 − qh‖0,Ω
‖uh

1‖0,Ω
, β =

‖λh
1u

h
1 + div qh‖0,Ω
‖uh

1‖0,Ω
, X2 =

1

2

√
α2 + 4(λh

1 − β)− α

2
.

The lower bound on the smallest eigenvalue and the corresponding upper bound on
Friedrichs’ constant are then given as

X2
2 ≤ λ1 and CF ≤ Cup

F = 1/X2.

Although any qh ∈ H(div,Ω) provides an upper bound on CF, an accurate ap-
proximation is obtained for an appropriate choice of qh, only. In this contribution,
we consider a Raviart-Thomas finite element subspace Wh ⊂ H(div,Ω) based on
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a triangulation of Ω and minimize α2 + β2 over Wh. This minimization is equivalent
to finding qh ∈ Wh such that

(div qh, divψh) + λh
1(qh,ψh) = λh

1(∇uh
1 ,ψh)− λh

1(u
h
1 , divψh) ∀ψh ∈ Wh.

This problem can be solved by standard finite element technology, see e.g. [1]. We
note that this particular flux reconstruction is a brute force solution and if the
efficiency is an issue then a local reconstruction based on ∇uh

1 has to be used.
Further, it is important to note that the method of a priori-a posteriori inequali-

ties is justified only if the approximation λh
1 is sufficiently accurate. In particular, the

closest eigenvalue to λh
1 must be λ1. If λ1 and the second smallest eigenvalues λ2 are

well separated then sufficiently accurate Rayleigh-Ritz approximations of λ1 and λ2

can provide good confidence about the validity of this assumption. In all numerical
experiments present below we experienced exactly this situation.

5. Example A: Friedrichs’ constant for triangles

Friedrichs’ constant CF depends on the size and shape of the domain Ω and on
the size, shape, and position of ΓD. The dependence on the size of Ω is well known,
see Section 2. Therefore, the following numerical experiments concentrate on the
dependence of CF on the shape of Ω (Examples A and B) and on ΓD (Example C).

In all experiments below, the Rayleigh-Ritz approximations λh
1 and uh

1 are com-
puted by linear finite elements on triangular meshes and the reconstructed fluxes qh
by quadratic Raviart-Thomas finite elements on the same triangular mesh.

Ω

a = 1

b

d

Figure 1: The shape of
triangle Ω is given by the
parameters b and d.
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Figure 2: Friedrichs’ constant for triangles with ver-
tices [0, 0], [1, 0], [d, b]. Solid and dashed lines corre-
spond to upper and lower bounds of CF, respectively.

First, we consider Ω to be a nonobtuse triangle and assume ΓD = ∂Ω. We inves-
tigate the dependence of CF on the shape of this triangle. In particular, we consider
triangles inscribed into a rectangle with lengths of sides a and b. The triangles have
vertices with coordinates (0, 0), (a, 0), (d, b), see Figure 1. In particular, we fix a = 1,
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consider four values of b ∈ (0, 1], namely b = 1, 1/2, 1/4, 1/8, and 20 equidistributed
values of d in [0, 1/2]. The two-sided bounds on CF for the resulting triangles are pre-
sented in Figure 2. These bounds were computed on uniform meshes obtained by six
successive uniform refinement steps of the original triangle. Thus, all these meshes
have 46 = 4096 triangles. We see that a fixed value of b yields triangles with the
same area and the parameter d then controls the shape only. However, the observed
dependence of CF on the shape is negligible. We see a considerable dependence of
CF on b, but it is connected with the size of Ω as mentioned in Section 2.

6. Example B: Friedrichs’ constant for regular stars

The value of Friedrichs’ constant is of interest especially for nonconvex domains.
Therefore, we consider Ω to be n-fold regular star with n = 3, 4, . . . , 30 and choose
ΓD = ∂Ω. We put the outer vertices of stars Ω on a circle with radius rout = 1 and
the inner vertices on a circle with radius rin = 1/3, see Figure 3. We use uniform
mesh with 46 · 2n triangles and compute both lower and upper bound on CF.

Figure 4 shows the dependence of CF on n. The value of CF decreases with n
and it seems that in the limit n → ∞ it converges to Friedrichs’ constant of a circle
with radius rin = 1/3, which is approximately 0.138610. We note that Friedrichs’
constant for a circle with radius rout = 1 is approximately 0.415831. The increasing
gap between the lower and upper bound of CF is probably caused by singularities
of the eigenfunction u1 at the obtuse angles. The strength of these singularities
increases with the size of these angles, but the resolution of the used meshes stays
the same.

rin
rout

Figure 3: Illustration of 7-fold regular
star with inner and outer radii.
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Figure 4: Values of Friedrichs’ constant for
n-fold regular stars.

7. Example C: Dependence on the Dirichlet part

In the final example we investigate the dependence of CF on the Dirichlet part ΓD

of the boundary ∂Ω. We consider a fixed L-shaped domain Ω and vary the position
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and size of ΓD. The boundary ∂Ω is split into 16 segments of unit length. The part ΓD

is chosen as a connected curve of length |ΓD| = ℓ, i.e. it consists of ℓ segments. In
this experiment we consider |ΓD| = 1, 5, 11, and 15. For each length we compute the
lower and upper bound of CF for all 16 positions of ΓD on ∂Ω. The positions are
indexed by the number of the first segment of ΓD in the counterclockwise sense, see
Figure 5.

Figure 6 presents the dependence of CF on the position of ΓD for the four con-
sidered sizes |ΓD|. We observe strong dependence both on the position and size. We
also see similar values of CF for almost symmetric positions, for instance for |ΓD| = 1
and positions 4 and 11 or for |ΓD| = 11 and positions 7 and 14 (these positions
correspond to peeks in the graphs in both cases).
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Figure 5: The L-shaped domain and
enumeration of boundary segments
(left). An example of a position and
size of ΓD (right).
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Figure 6: Dependence of Friedrichs’ con-
stant on the position and size of ΓD. Upper
bounds are indicated by solid lines and
lower bounds by dashed lines.

8. Conclusions

In this contribution we present a method for computing guaranteed lower and
upper bounds of Friedrichs’ constant or equivalently for lower and upper bounds of
eigenvalues of the corresponding differential operator. The main output is a numer-
ical study of the value of Friedrichs’ constant CF in various cases including convex
and nonconvex domains. We observe the dependence of CF on the shape of the do-
main Ω and on the size and position of the Dirichlet part ΓD of the boundary ∂Ω.
While we observed negligible dependence of CF on the shape of nonobtuse triangles,
the dependence on the size and position of the Dirichlet part ΓD is significant in
majority of tested cases.

Let us conclude this contribution by a note that the presented method can be
easily generalized to compute two-sided bounds of the optimal constants in similar
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inequalities, like the trace inequalities, Poincaré inequality, and Korn’s inequality.
For all these inequalities the computation of the optimal constant reduces to the
computation of the smallest eigenvalue of a differential operator.
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und gleicher Spannung die kreisförmige den tiefsten Grundton gibt. Sitz. bayer.
Akad., Wiss. (1923), 169–172.

[3] Friedrichs, K.: Eine invariante Formulierung des Newtonschen Gravitationsge-
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