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Periodic waves in unsaturated porous media
with hysteresis

Bettina Detmann, Pavel Krejčí and Elisabetta Rocca

Abstract. We consider a PDE system with degenerate hysteresis describing unsaturated
flow in 3D porous media. Assuming that a time periodic forcing is prescribed on the bound-
ary, we prove that a time periodic response exists as long as the amplitude of the forcing
terms is small enough to keep the solution within the convexity domain of the hysteresis
operator.

Introduction

Periodic waves of a given frequency are often used in non-destructive testing of
porous media. In particular, building materials, geomaterials, tissues, nanomaterials
etc. are examples of porous materials, in which non-destructive testing methods
are of central importance. The reason is not only that the sample does not have to
be destroyed or invaded, but another advantage in comparison with conventional
methods is that non-destructive testing is mostly cost-saving. For example, this is
the case of testing of soils, where procedures exploiting the properties of acoustic
waves are cheaper than drilling the boreholes.

There are many different techniques of non-destructive testing: ultrasonic meth-
ods, magnetic particle inspection, liquid penetrant inspection, electrical measure-
ments or radiography – for details see, e.g., [11, 24, 25]. For further information on
acoustic methods of non-destructive testing see, e.g., [16, 19].

In the geotechnical field, the wave analysis of both body and surface waves ([5])
may lead to the construction of several non-destructive testing methods. Body or
bulk waves travel through the interior of a medium, while surface waves propagate
along the surface of a body or along the interface of two media. The amplitudes of
surface waves decay in the direction perpendicular to the surface so fast that they
can be assumed to be zero in the depth of a few wavelengths. The analysis of surface
waves in saturated porous media ([1]) may help to develop a method for soil charac-
terization. By use of the SASW-technique (Spectral Analysis of Surface Waves), e.g.,
[15, 23], conclusions about building grounds can be drawn from the measurement of
sound wave speeds. In other words, expensive and invasive acoustic measurements
in boreholes or laboratory tests are not necessary to characterize the soil prior to a
building project. In SASW tests, two or more receivers are placed on the surface, and
a hammer (or a signal with a certain frequency) is used to generate surface waves
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whose speeds are recorded. Algorithms based on the Fast Fourier Transform applied
to the acquired data then produce a stiffness versus depth plot. While in the classi-
cal method the wave propagation in single-component media is analyzed, in [1] the
considerations are extended to two and three component modeling.

If the pores of a porous medium are filled with two (or more) immiscible fluids as,
for example, water and air, then they are called ‘partially saturated’. The pore fluids
possess different partial pressures, i.e., there exists a discontinuity in the pressure
across the interface. This difference is called the capillary pressure. It depends on
the geometry of the pore space, on the nature of the solids and on the degree of
saturation, i.e., the ratio of the volume occupied by one of the pore fluids over the
entire pore volume.

For the description of the propagation of sound waves in partially saturated soils
(three-component media) a linear macroscopic model is introduced in [5]. However,
experimental studies of wetting and dewetting curves in partially saturated porous
media exhibit strong capillary hysteresis effects, see [17], which are due to the sur-
face tension on the liquid-gas interface. Flynn et al. [13, 14] suggested to model
hysteresis phenomena in porous media by means of the Preisach operator originally
designed in [22] for magnetic hysteresis in ferromagnetics. Two models to describe
processes in partially saturated media are presented in [7]. The first model does not
explicitly contain a hysteresis operator and the effect of hysteresis in the capillary
pressure curve is accounted for by investigating the two processes drainage and im-
bibition separately, cf. also [3, 4]. The second model is a thermomechanical model
involving the Preisach operator, while plastic hysteresis is described in terms of the
Prandtl-Reuss model.

In the present paper, we study the mathematical problem of well posedness of
the porous medium model proposed in [6] under periodic mechanical forcing. We
assume that a time periodic force is prescribed on the boundary of the domain, and
look for time periodic mechanical waves in the system of balance equations. The
main difference with respect to [6] consists in the hypothesis that the solid matrix
material is elastic within the small deformation hypothesis, so that the momentum
balance equation is linear. The only nonlinearity in the problem is thus the degen-
erate Preisach hysteresis operator in the mass balance equation. On the other hand,
since viscosity is missing in the model, we lose the higher order a priori estimates,
which were used in [6] to control the degeneracy of the Preisach operator. Instead,
we make use of the second order energy inequality related to the convexity of small
amplitude hysteresis loops to prove that periodic solutions of the system exist pro-
vided the amplitude of the external forcing is sufficiently small. Note that for any
nonlinear pressure-saturation relation without hysteresis, such a result would be
much more difficult to obtain, since no counterpart of the second order energy in-
equality is available in this case.

The structure of the paper is as follows. In Section 1, we present the model situa-
tion, and in Section 2 we state Theorem 2.1 which is the main Existence Theorem of
the paper. Section 3 is devoted to a survey about Preisach hysteresis, and Section 4
contains the proof of Theorem 2.1.
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1 The model

The present paper deals with the following model for fluid flow in an unsaturated
porous solid

ρSutt + cut = div A∇su+∇p + f0 , (1.1)

G[p]t = divut +
µ
ρL
∆p . (1.2)

in a spatial domain Ω and time t ∈ R, for unknown functions u (displacement) and
p (capillary pressure), with a operator G characterizing the hysteresis dependence
between p and the relative air content A ∈ [−1,1], A = G[p] as in [6], see Figure 1,
and with constant coefficients ρS , ρL (mass densities of the solid and liquid, respec-
tively), and µ (permeability). By∇s we denote the symmetric gradient, A is a constant
fourth order elasticity tensor, and f0 is a given external volume force. Eq. (1.1) is the
momentum balance, (1.2) is the liquid mass balance.

On the boundary ∂Ω we prescribe boundary conditions

(u−u∗)
∣∣
∂Ω = 0 , ∇p ·n

∣∣
∂Ω = γ(x)(p∗ − p) , (1.3)

whereu∗ is a given displacement,n is the unit outward normal vector, p∗ = p∗(x, t)
is a given outer pressure, and γ(x) ≥ 0 is a given permeability of the boundary which
is positive on a set of positive measure.

A similar system was derived in [6] in the form

ρSutt = div (B∇sut + P[∇su])+∇p + f0 , (1.4)

G[p]t = divut +
1
ρL

div (µ(p)∇p) . (1.5)

as a model for isothermal flow in an unsaturated viscoelastoplastic porous solid,
where P is a constitutive operator of elastoplasticity, B is a constant viscosity tensor,
and µ(p) is a pressure dependent permeability coefficient. In reality, the coefficient
µ should depend on the saturation, that is, on G[p], but the analysis carried out
in [8, 9] shows that the presence of the hysteresis operator in the coefficient makes
the problem difficult, so that it cannot be solved without additional space or time
regularization.

1

G[p]

−1

p

Figure 1. The pressure-saturation hysteresis
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The main result of [6] was the proof of existence of a strong solution to the above
system with natural boundary conditions and given initial conditions. In particular,
it was shown that the solution remains bounded away from the degeneracy of the
hysteresis operator G.

The system (1.1)–(1.2) differs from (1.4)–(1.5) in several respects. Notice first that
the strong viscous dissipative term div B∇sut is replaced with a more realistic
weaker term cut corresponding to contact friction on the solid-liquid interface with
a constant friction parameter c > 0. The strong a priori estimates as in [6] resulting
from the viscous term are no longer available for (1.1)–(1.2), so that we need addi-
tional modeling hypotheses to prove the solvability of the system. More specifically,
the solid matrix is assumed elastic, that is, P[∇su] = A∇su, the permeability coeffi-
cient µ is a positive constant, and we consider time periodic boundary data u∗, p∗.
Typically, the bulk force f0 represents the gravity and can be therefore considered
for example constant in time.

The system is linear in u, so that we can replace u by u−u∗ if u∗ is sufficiently
regular, and reformulate (1.1)–(1.3) as

ρSutt + cut = div A∇su+∇p + f , (1.6)

G[p]t = divut +
µ
ρL
∆p + h , (1.7)

u
∣∣
∂Ω = 0 , ∇p ·n

∣∣
∂Ω = γ(x)(p∗ − p) , (1.8)

with functions f = f0 − ρSu∗tt − cu∗t + div A∇su∗ and h = divu∗t .

2 Statement of the problem

We state our hypotheses in terms of the functions f , h, and p∗, which are assumed
time periodic with the same period. The values of the physical constants are not
relevant for our analysis, so that for simplicity, we consider system (1.6)–(1.8) in the
form

utt +ut = div A∇su+∇p + f , (2.1)

G[p]t = divut +∆p + h , (2.2)

u
∣∣
∂Ω = 0 , ∇p ·n

∣∣
∂Ω = γ(x)(p∗ − p) (2.3)

with 2π -periodic data, and introduce the notation

Lq2π(Ω) =
{
y ∈ Lqloc(Ω ×R) : y(x, t + 2π) = y(x, t) a. e.

}
, (2.4)

and similarly for Lq2π(∂Ω) etc. The norm in Lq2π(Ω) is defined as

‖y‖q,Ω,2π =
(ˆ 4π

2π

ˆ
Ω
|y|q dx dt

)1/q

, (2.5)
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and in Lq2π(∂Ω) we introduce the seminorm

‖y‖q,∂Ω,2π,γ =
(ˆ 4π

2π

ˆ
∂Ω
γ(x)|y|q ds(x)dt

)1/q

. (2.6)

Theorem 2.1 Let Ω be a bounded domain with C1,1 boundary, let γ ∈ C1(∂Ω) be a
nonnegative function which does not identically vanish, and let the data f ,h,p∗ be
such that f , ft , h,ht ∈ L2

2π(Ω), p∗, p
∗
t ∈ L2

2π(∂Ω). Set

δ =max{‖f‖2,Ω,2π ,‖ft‖2,Ω,2π ,‖h‖2,Ω,2π ,‖ht‖2,Ω,2π ,‖p∗‖2,∂Ω,2π,γ ,‖p∗t ‖2,∂Ω,2π,γ}.

Then there exists δ∗ > 0 such that if δ < δ∗, then system (2.1)–(2.3) has a solution
u,p such that u,ut , utt ,∇su,∇sut , div A∇su,p,pt ,∇p,∇pt ,∆p ∈ L2

2π(Ω).

The reason why we have to assume that the data are small is related to the fact
that higher order a priori estimates, which are not available here due to the absence
of the viscosity term div B∇sut , can only be recovered as long as the input p of the
hysteresis operator G stays in the convexity domain of G. Details will be given in
Section 3. Indeed, there are other sources of energy dissipation in the system such
as friction and diffusion, so that it is difficult to predict whether resonance can occur
for large data or not. Similarly, if the permeability γ(x) of the boundary identically
vanishes, that is, if the body is completely insulated, it might become technically dif-
ficult to control the spatial average of p. These questions deserve further attention.

3 Hysteresis operators

We recall here the basic concepts of the theory of hysteresis operators that are
needed in the sequel. The construction of the operator G is based on the variational
inequality

∣∣p(t)− ξr (t)∣∣ ≤ r ∀t ∈ [0, T ] ,(
ξr (t)

)
t
(
p(t)− ξr (t)− z

)
≥ 0 a. e. ∀z ∈ [−r , r] ,

p(0)− ξr (0) =max
{
− r ,min{p(0), r}

}
.

(3.1)

It is well known ([18]) that for each given input function p ∈ W1,1(0, T ) for some
T > 0 and each parameter r > 0, there exists a unique solution ξr ∈ W1,1(0, T ) of
the variational inequality (3.1). The mapping pr : W1,1(0, T )→ W1,1(0, T ) which with
each p ∈ W1,1(0, T ) associates the solution ξr = pr [p] ∈ W1,1(0, T ) of (3.1) is called
the play operator , and the parameter r > 0 can be interpreted as a memory param-
eter . The proof of the following statements can be found, e.g., in [20, Chapter II].

Proposition 3.1 For each r > 0, the mapping pr : W1,1(0, T )→ W1,1(0, T ) is Lipschitz
continuous and admits a Lipschitz continuous extension to pr : C[0, T ] → C[0, T ] in
the sense that for every p1, p2 ∈ C[0, T ] and every t ∈ [0, T ] we have∣∣pr [p1](t)− pr [p2](t)

∣∣ ≤ ‖p1 − p2‖[0,t] := max
τ∈[0,t]

∣∣p1(τ)− p2(τ)
∣∣ . (3.2)
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Moreover, for each p ∈ W1,1(0, T ), the energy balance equation

pr [p]tp −
1
2

(
p2
r [p]

)
t
=
∣∣r pr [p]t

∣∣ (3.3)

and the identity
pr [p]tpt =

(
pr [p]t

)2
(3.4)

hold almost everywhere in (0, T ).

Similarly as above, we define the spaces of 2π -periodic functions of time

Lq2π =
{
z ∈ Lqloc(R) : z(t + 2π) = z(t) a. e.

}
,

C2π =
{
z ∈ C(R) : z(t + 2π) = z(t) ∀t ∈ R

}
,

endowed with the natural norms

|z|q,2π =
(ˆ 4π

2π
|z(t)|q dt

)1/q

and similarly for C2π ,W
k,q
2π for k ∈ N and q ≥ 1, etc.

Proposition 3.2 For every p ∈ C2π and every r > 0 we have pr [p](t + 2π) =
pr [p](t) for all t ≥ 2π . In particular, by extending pr [p] backward from the interval
[2π,∞) periodically to R, we can assume that pr maps C2π into C2π .

Given a nonnegative function ρ ∈ L1((0,∞) × R), we define the operator G as a
mapping that with each p ∈ C2π associates the integral

G[p](t) =
ˆ ∞

0

ˆ pr [p](t)

0
ρ(r , v)dv dr . (3.5)

Directly from the definition (3.1) of the play, we see with the notation of (3.2) that
the implication

r ≥ ‖p‖[0,t] =⇒ pr [p](t) = 0 (3.6)

holds for every p ∈ W1,1(0, T ) and every T > 0 (hence, for every p ∈ C2π ), so that
the integration domain in (3.5) is always bounded.

Definition (3.5) is equivalent to the Preisach model proposed in [22], see [21]. For
our purposes, we prescribe the following hypotheses on ρ.

Hypothesis 3.3 The function ρ ∈ W1,∞((0,∞)×R) is such that there exists a func-
tion ρ∗ ∈ L1(0,∞) such that for a. e. (r , v) ∈ (0,∞)×R we have 0 ≤ ρ(r , v) ≤ ρ∗(r),
and we put

Cρ =
ˆ ∞

0

ˆ ∞

−∞
ρ(r , v)dv dr , C∗ρ =

ˆ ∞

0
ρ∗(r)dr . (3.7)

Furthermore, there exists R > 0 for which the following condition holds:

AR := inf{ρ(r , v) : r + |v| ≤ R} > 0 . (3.8)
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Put CR := sup{
∣∣∣ ∂∂v ρ(r , v)∣∣∣ : r + |v| ≤ R}. Taking R > 0 smaller, if necessary, we

can assume that there exists KR > 0 such that

1
2
AR − RCR ≥ KR . (3.9)

From (3.3), (3.4), and (3.5) we immediately deduce the Preisach energy identity

G[p]tp − V[p]t =
∣∣D[p]t∣∣ a. e. (3.10)

with a Preisach potential V and dissipation operator D defined as

V[p](t) =
ˆ ∞

0

ˆ pr [p](t)

0
vρ(r , v)dv dr , D[p](t) =

ˆ ∞

0

ˆ pr [p](t)

0
rρ(r , v)dv dr .

(3.11)
A straightforward computation shows that G is Lipschitz continuous in C[0, T ]. In-
deed, using (3.2) and Hypothesis 3.3, we obtain for p1, p2 ∈ C[0, T ] and t ∈ [0, T ]
that

|G[p1](t)−G[p1](t)| =
∣∣∣∣∣
ˆ ∞

0

ˆ pr [p2](t)

pr [p1](t)
ρ(v, r)dv dr

∣∣∣∣∣ ≤ C∗ρ max
τ∈[0,t]

|p1(τ)− p2(τ)| .

(3.12)
Following [12], we define the convexified operator GR (see Figure 2) by a formula
similar to (3.5)

GR[p](t) =
ˆ ∞

0

ˆ pr [p](t)

0
ρR(r , v)dv dr , (3.13)

where

ρR(r , v) =



ρ(r , v) if r + |v| ≤ R,

ρ(r ,−R + r) if v < −R + r , r ≤ R,

ρ(r ,R − r) if v > R − r , r ≤ R,

ρ(R,0), if r > R.

(3.14)

It is shown in [12] that the operator GR satisfies globally the hypotheses of [20,
Theorem II.4.19], that is, the ascending hysteresis branches are uniformly convex

A

p
−R

R0

A = G[h]
A = GR[h]

Figure 2. Local behavior of the operator G and its convexification GR
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and the descending branches are uniformly concave, so that for each input p ∈ W2,1
2π ,

the second order energy inequality holds in the form

−
ˆ 4π

2π
GR[p]tptt dt ≥ KR

2

ˆ 4π

2π
|pt|3 dt . (3.15)

As a consequence of (3.10) we also have

ˆ 4π

2π
GR[p]tp dt ≥ 0 (3.16)

for every p ∈ W1,1
2π . Since the density ρ is globally bounded above by a constant Hρ

and the implication (3.6) holds, the operator GR has quadratic growth in the sense

|GR[p](t)| ≤ Hρ‖p‖2
[0,t] , |GR[p]t(t)| ≤ Hρ‖p‖[0,t]|pt(t)| a. e. (3.17)

for all functions p ∈ W1,1(0, T ) and all T > 0. On the other hand, we have the
implication

|p(t)| ≤ R ∀t ≥ 0 =⇒ GR[p](t) = G[p](t) ∀t ≥ 0 . (3.18)

4 Proof of Theorem 2.1

We replace the operator G by GR and consider the variational formulation of the
convexified version of Problem (2.1)–(2.3)

ˆ
Ω

(
(utt +ut)φ+A∇su : ∇sφ+ p divφ

)
dx =

ˆ
Ω
fφdx , (4.1)

ˆ
Ω

(
(GR[p]t − divut)ψ+∇p∇ψ

)
dx =

ˆ
Ω
hψdx +

ˆ
∂Ω
γ(x)(p∗ − p)ψds(x)

(4.2)

for every test functions φ ∈ W1,2
0 (Ω;R3) and ψ ∈ W1,2(Ω).

With the intention to use the Galerkin method, we choose {φk;k = 1,2, . . .} in
L2(Ω;R3) and {ψl; l = 0,1,2, . . .} in L2(Ω) to be the complete orthonormal systems
of eigenfunctions defined by

− div A∇sφk = λkφk in Ω , φk
∣∣
∂Ω = 0 , −∆ψl = µlψl in Ω , ∇ψl ·n

∣∣
∂Ω = 0 ,

(4.3)
with µ0 = 0, λk > 0, µl > 0 for k, l ≥ 1.

4.1 Galerkin approximations

Approximate 2π -periodic solutions will be searched in the form

u(m)(x, t) =
m∑

j=−m

m∑
k=1

ujkej(t)φk(x) , p(m)(x, t) =
m∑

j=−m

m∑
l=0

pjlej(t)ψl(x) , (4.4)
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with

ej(t) =
{

sin jt if j ≥ 1 ,
cos jt if j ≤ 0 ,

and with real coefficients ujk, pjl which satisfy the system
ˆ 4π

2π

ˆ
Ω

(
(u(m)tt +u(m)t )φk(x)+A∇su(m) : ∇sφk(x)+ p(m) divφk(x)

)
ej(t)dx dt

=
ˆ 4π

2π

ˆ
Ω
fφk(x)ej(t)dx dt , (4.5)

ˆ 4π

2π

ˆ
Ω

(
(GR[p(m)]t − divu(m)t )ψl(x)+∇p(m)∇ψl(x)

)
ej(t)dx dt

=
ˆ 4π

2π

ˆ
Ω
hψl(x)ej(t)dx dt +

ˆ 4π

2π

ˆ
∂Ω
γ(x)(p∗ − p(m))ψl(x)ej(t)ds(x)dt .

(4.6)

for j = −m, . . . ,m, k = 1, . . . ,m, l = 0, . . . ,m. This is an algebraic problem of (2m+
1)2 equations for a (2m+ 1)2-dimensional real unknown vector

U = (ujk, pjl), j = −m, . . . ,m, k = 1, . . . ,m, l = 0, . . . ,m (4.7)

that we solve by using the degree theory. We define a continuous family of mappings
Tα : R(2m+1)2 → R(2m+1)2 for α ∈ [0,1] which with U as in (4.7) associate the vector
Tα(U) = V of the form

V = (vjk,wjl), j = −m, . . . ,m, k = 1, . . . ,m, l = 0, . . . ,m, (4.8)

given by the formula

vjk =
ˆ 4π

2π

ˆ
Ω
(u(m)tt +u(m)t )φk(x)+A∇su(m) : ∇sφk(x)ej(t)

+ p(m) divφk(x)ej(t)dx dt −
ˆ 4π

2π

ˆ
Ω
αfφk(x)ej(t)dx dt , (4.9)

wjl =
ˆ 4π

2π

ˆ
Ω

((
(1−α)p(m) +αGR[p(m)]

)
t − divu(m)t

)
ψl(x)

+∇p(m)∇ψl(x))ej(t)dx dt −
ˆ 4π

2π

ˆ
Ω
αhψl(x)ej(t)dx dt

−
ˆ 4π

2π

ˆ
∂Ω
γ(x)(αp∗ − p(m))ψl(x)ej(t)ds(x)dt . (4.10)

System (4.5)–(4.6) can be interpreted as T1(U) = 0. Clearly, all mappings Tα for α ∈
[0,1] are continuous. We now show that the equation Tα(U) = 0 for any α ∈ [0,1]
has no solution U on the boundary of a sufficiently large ball BK ⊂ R(2m+1)2 . Indeed,
assume that V = Tα(U) = 0 for some U and α. Note that

u(m)t (x, t) =
m∑
k=1

m∑
j=−m

ûjkej(t)φk(x) with ûjk = ju−jk . (4.11)
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We then have

0 =
m∑
k=1

m∑
j=−m

vjkûjk +
m∑
l=0

m∑
j=−m

wjlpjl

=
ˆ 4π

2π

ˆ
Ω
(|u(m)t |2 −αfu(m)t +αGR[p(m)]tp(m) + |∇p(m)|2 −αhp(m))dx dt

−
ˆ 4π

2π

ˆ
∂Ω
γ(x)(αp∗ − p(m))p(m) ds(x)dt ,

and using (3.16) we obtain

ˆ 4π

2π

ˆ
Ω

(
|u(m)t |2 + |∇p(m)|2

)
dx dt +

ˆ 4π

2π

ˆ
∂Ω
γ(x)|p(m)|2 ds(x)dt

≤ α
ˆ 4π

2π

ˆ
Ω

(
fu(m)t + hp(m)

)
dx dt +α

ˆ 4π

2π

ˆ
∂Ω
γ(x)p∗p(m) ds(x)dt ,

so that
m∑
k=1

m∑
j=−m

|ujk|2 +
m∑
l=0

m∑
j=−m

|pjl|2 ≤ K

independently of α. We see that Tα is a homotopy of continuous mappings on
R(2m+1)2 and such that the equation Tα(U) = 0 has no solution on the boundary
of any ball of radius bigger than K. Since T0 is odd, its topological degree with
respect to the ball BK+1 and the point 0 is nonzero, and remains constant for all
α ∈ [0,1]. We conclude that the equation T1(U) = 0 has a solution, which, by defi-
nition satisfies (4.5)–(4.6), as well as the estimate

‖u(m)t ‖2,Ω,2π + ‖∇p(m)‖2,Ω,2π + ‖p(m)‖2,∂Ω,2π,γ ≤ Cδ (4.12)

with δ from Theorem 2.1 and with a constant C independent of m and δ.
By iterating the formula (4.11) we obtain

u(m)ttt (x, t) =
m∑
k=1

m∑
j=−m

u]jkej(t)φk(x) with u]jk = −j3u−jk ,

p(m)tt (x, t) =
m∑
l=0

m∑
j=−m

p]jlej(t)ψl(x) with p]jl = −j2pjl .

We now test (4.5) by −u]jk, (4.6) by −p]jl, and use (3.15) to obtain

‖u(m)tt ‖2
2,Ω,2π + ‖p

(m)
t ‖3

3,Ω,2π + ‖∇p
(m)
t ‖2

2,Ω,2π + ‖p
(m)
t ‖2

2,∂Ω,2π,γ ≤ Cδ2 (4.13)

with a constant C independent of m and δ. Then, testing (4.5) by ūjk := −j2ujk, we
obtain using (4.12), (4.13) that

‖∇su(m)t ‖2,Ω,2π ≤ Cδ . (4.14)
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By (3.17) we have

|GR[p(m)]t(x, t)| ≤ Hρ‖p(m)(x, ·)‖[2π,4π]|p(m)t (x, t)| (4.15)

for all x ∈ Ω and t ∈ [2π,4π]. Using the inequality

‖p(m)(x, ·)‖[2π,4π] ≤
1

2π

ˆ 4π

2π
|p(m)(x, τ)|dτ +

ˆ 4π

2π
|p(m)t (x, τ)|dτ , (4.16)

we have, by (4.16) and Minkowski’s inequality,(ˆ
Ω
‖p(m)(x, ·)‖6

[2π,4π] dx
)1/6
≤ C

ˆ 4π

2π

(ˆ
Ω
(|p(m)(x, t)|6 + |p(m)t (x, t)|6)dx

)1/6
dt ,

so that, by the Sobolev embedding and estimates (4.12)–(4.13),(ˆ
Ω
‖p(m)(x, ·)‖6

[2π,4π] dx
)1/6

≤ C
ˆ 4π

2π

(ˆ
Ω
(|p(m)(x, t)|2 + |p(m)t (x, t)|2

+ |∇p(m)(x, t)|2 + |∇p(m)t (x, t)|2)dx
)1/2

dt ≤ Cδ .

From (4.15) and Hölder’s inequality it follows
ˆ
Ω
|GR[p(m)]t(x, t)|2 dx ≤ Cδ2

(ˆ
Ω
|p(m)t (x, t)|3 dx

)2/3
, (4.17)

hence ˆ 4π

2π

(ˆ
Ω
|GR[p(m)]t(x, t)|2 dx

)3/2
dt ≤ Cδ5 . (4.18)

4.2 Passage to the limit

The compactness argument will be based on an anisotropic embedding formula
which is a special case of the theory developed in [10]. For a bounded domain
D ⊂ RN , an open bounded interval ω ⊂ R, and real numbers q, r ≥ 1 we define
for v ∈ Lr (ω;Lq(D)) and w ∈ Lq(D;Lr (ω)) their anisotropic norms

‖v‖q,r =
(ˆ
ω

(ˆ
D
|v(x, t)|q dx

)r/q
dt
)1/r

,

‖w‖∗r ,q =
(ˆ
D

(ˆ
ω
|w(x, t)|r dt

)q/r
dx
)1/q

.

(4.19)

We also introduce the anisotropic Sobolev spaces

W r0,q0;r1,q1(ω,D)

=
{
v ∈ L1(D ×ω) :

∂v
∂t
∈ Lr0

(
ω;Lq0(D)

)
, ∇v ∈ Lr1

(
ω;Lq1(D)

)}
,

Wq0,r0;q1,r1(D,ω)

=
{
w ∈ L1(D ×ω) :

∂w
∂t
∈ Lq0

(
D;Lr0(ω)

)
, ∇w ∈ Lq1

(
D;Lr1(ω)

)}
.

We will repeatedly use the following compact embedding result.
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Proposition 4.1 Let the domain D be Lipschitzian.

(i) If q ≥max{q0, q1}, r ≥max{r0, r1}, and

(
1− 1

r0
+ 1
r

)(
1
N
− 1
q1
+ 1
q

)
>
(

1
r1
− 1
r

)(
1
q0
− 1
q

)
,

then W r0,q0;r1,q1(ω,D) is compactly embedded in Lr (ω;Lq(D)) and
Wq0,r0;q1,r1(D,ω) is compactly embedded in Lq(D;Lr (ω)).

(ii) If q ≥max{q0, q1} is such that

(
1− 1

r0

)(
1
N
− 1
q1
+ 1
q

)
>

1
r1

(
1
q0
− 1
q

)
,

then Wq0,r0;q1,r1(D,ω) is compactly embedded in Lq(D;C(ω̄)).
(iii) If (

1− 1
r0

)(
1
N
− 1
q1

)
>

1
r1q0

,

then Wq0,r0;q1,r1(D,ω) is compactly embedded in C(D̄ × ω̄)).

We have bounds independent of m in L3(Ω;L3(2π,4π)) for p(m)t and in
L2(Ω;Lr (2π,4π)) for ∇p(m) for all r > 1 by virtue of (4.12) and (4.13). Hence, by
Proposition 4.1 (ii), {p(m)} is a compact sequence in Lq(Ω;C[2π,4π]) for each q ∈
[1,6). Furthermore, by (4.18) {GR[p(m)]t} is a bounded sequence in L3((2π,4π);
L2(Ω)). By (3.2) and (3.17), we can select a subsequence (still indexed by m) in such
a way that

p(m) → p strongly in L4
(
Ω;C[2π,4π]

)
,

GR[p(m)]→ GR[p] strongly in L2
(
Ω;C[2π,4π]

)
,

GR[p(m)]t → GR[p]t weakly in L3
(
(2π,4π);L2(Ω)

)
.

(4.20)

All the other terms in (4.5)–(4.6) are linear, so that we can pass to the weak limit and
conclude that the system

ˆ 4π

2π

ˆ
Ω

(
(utt +ut)Φ(x, t)+A∇su : ∇sΦ(x, t)+ p divΦ(x, t)

)
dx dt

=
ˆ 4π

2π

ˆ
Ω
fΦ(x, t)dx dt , (4.21)

ˆ 4π

2π

ˆ
Ω

(
(GR[p]t − divut)Ψ(x, t)+∇p∇Ψ(x, t)

)
dx dt

=
ˆ 4π

2π

ˆ
Ω
hΨ(x, t)dx dt +

ˆ 4π

2π

ˆ
∂Ω
γ(x)(p∗ − p)Ψ(x, t)ds(x)dt , (4.22)

is satisfied for all arbitrarily chosen 2π -periodic test functions Φ ∈ L2((2π,4π);
W1,2

0 (Ω;R3)), Ψ ∈ L2((2π,4π);W1,2(Ω)), with the regularity u,ut , utt ,∇sut ,∇p,
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∇pt ∈ L2
2π(Ω), pt ∈ L3

2π(Ω), GR[p]t ∈ L3((2π,4π);L2(Ω)). Choosing Ψ with com-
pact support in Ω, we obtain from (4.14), (4.18) that

‖∆p‖2,Ω,2π ≤ Cδ ,

and similarly
‖div A∇su‖2,Ω,2π ≤ Cδ ,

so that the identities

utt +ut − div A∇su = ∇p + f , (4.23)

GR[p]t −∆p = divut + h (4.24)

with boundary conditions (2.3) hold in the sense of L2
2π(Ω).

For τ > 0, and a function v ∈ L2
2π(Ω) such that vt ∈ L2

2π(Ω), we define

v(τ)(x, t) = 1
τ
(
v(x, t + τ)− v(x, t)

)
.

We have indeed
ˆ 4π

2π

ˆ
Ω
|v(τ)(x, t)|2 dx dt ≤

ˆ 4π

2π

ˆ
Ω
|vt(x, t)|2 dx dt ,

lim
τ→0

ˆ 4π

2π

ˆ
Ω
|v(τ)(x, t)− vt(x, t)|2 dx dt = 0 .

(4.25)

Put f̂ = ∇p + f . Then f̂ , f̂t ∈ L2
2π(Ω) by virtue of (4.13) and the hypotheses on f .

From (4.23) it follows for s > 0 that

u(τ)tt +u
(τ)
t − div A∇su(τ) = f̂ (τ) . (4.26)

We test (4.26) by u(τ)t and obtain for a. e. t ∈ R that

d
dt

ˆ
Ω
(|u(τ)t |2+A∇su(τ) : ∇su(τ))(x, t)dx+

ˆ
Ω
|u(τ)t |2(x, t)dx ≤

ˆ
Ω
|f̂ (τ)|2(x, t)dx ,

so that

d
dt

ˆ
Ω

(
|u(τ)t |2 +A∇su(τ) : ∇su(τ)

)
(x, t)dx

+
ˆ
Ω

(
|u(τ)t |2 +A∇su(τ) : ∇su(τ)

)
(x, t)dx

≤
ˆ
Ω

(
|f̂ (τ)|2 +A∇su(τ) : ∇su(τ)

)
(x, t)dx . (4.27)

Put

y(t) =
ˆ
Ω
(|u(τ)t |2 +A∇su(τ) : ∇su(τ))(x, t)dx ,

β(t) =
ˆ
Ω
(|f̂ (τ)|2 +A∇su(τ) : ∇su(τ))(x, t)dx .
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Both y and β belong to L1
2π by (4.13)–(4.14) and

ˆ 4π

2π

(
y(t)+ β(t)

)
dt ≤ Cδ2 . (4.28)

Then (4.27) is an inequality of the form

d
dt
y(t)+y(t) ≤ β(t) ,

which implies by the Gronwall argument that

y(t) ≤ C
ˆ 4π

2π

(
y(τ)+ β(τ)

)
dτ ≤ Cδ2 for a. e. t ∈ R ,

and we conclude by passing to the limit as τ → 0 and using (4.25) that utt ,∇sut
belong to L∞(R;L2(Ω)) with

sup ess
t∈R

ˆ
Ω

(
|utt|2 + |∇sut|2

)
(x, t)dx ≤ Cδ2 . (4.29)

We see that in (4.24), we have h ∈ L∞(R;L2(Ω)) by hypothesis, divut ∈ L∞(R;L2(Ω))
by Korn’s inequality and (4.29), and GR[p]t ∈ L3((2π,4π);L2(Ω)) by (4.20), with
bounds proportional to δ. Hence, with the notation (4.19),

‖∆p‖2,3 ≤ Cδ . (4.30)

By hypotheses about the regularity of ∂Ω and of the boundary data, and by (4.13),
we have ∥∥∥∥∥ ∂2p

∂xi∂xj

∥∥∥∥∥
2,3
≤ Cδ ,

∥∥∥∥∥ ∂2p
∂xi∂t

∥∥∥∥∥
2,2
≤ Cδ (4.31)

for all i, j = 1,2,3. From Proposition 4.1 (i) we obtain that

‖∇p‖r ,r ≤ Cδ (4.32)

for r < 14/3. Combining this result with the fact that

‖pt‖3,3 ≤ Cδ (4.33)

which follows from (4.13), we can use Proposition 4.1 (iii) and conclude that

max
{∣∣p(x, t)∣∣ : (x, t) ∈ Ω̄ × [2π,4π]

}
≤ Cδ (4.34)

provided r > 9/2. Thus, choosing

r ∈
(

9
2
,
14
3

)
,

we see that if δ > 0 is chosen sufficiently small, then |p(x, t)| does not exceed the
critical value R, and from (3.18) we infer that the solution of (4.23)–(4.24) that we
have constructed is the desired solution of (2.1)–(2.2), which we wanted to prove.



REVISED VERSION FOR FINAL CHECK

Periodic waves in unsaturated porous media with hysteresis 233

Conclusion

We have proved that a model for the propagation of periodic mechanical waves in-
side an elastic partially saturated porous body with capillary hysteresis represented
by a Preisach operator is well posed under periodic boundary forcing provided the
boundary forces are sufficiently small. The meaning of the smallness condition is to
keep the pressure values within the convexity domain of the Preisach operator and
exploit the hysteresis second order energy inequality.
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[6] B. Albers and P. Krejčí, Unsaturated porous media flow with thermomechanical inter-
action. Math. Meth. Appl. Sci. 39 (2016), 2220–2238.
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[11] R. M. Cosentini and S. Foti, Evaluation of porosity and degree of saturation from seis-
mic and electrical data. Géotechnique 64 (2014), 278–286.
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