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Abstract Electro- ormagneto-sensitive elastomers are smartmaterialswhose me-
chanical properties change instantly by the application of an electric or magnetic
fields. The paper analyses the convexity conditions (quasiconvexity, polyconvex-
ity, ellipticity) of the free energy of such materials. These conditions are treated
within the framework of the general A-quasiconvexity theory for the constraints

curlF ¨ 0Ù div d ¨ 0Ù div b ¨ 0Ù � �

where F is deformation gradient, d is the electric displacement and b is the mag-
netic induction. If the energy depends separately only on FÙ or on d , or on bÙ the
A-quasiconvexity reduces, respectively, to Morrey’s quasiconvexity, polyconvex-
ity and ellipticity conditions or to convexity in d or in bØ In the present case, the
simultaneous occurrence of FÙdÙand b leads to the cross-phenomena: mechanic-
electric, mechanic-magnetic, and electro-magnetic.

The main results of the paper are:
• In dimension 3 there are 32 linearly independent scalar A-affine functions

(and 15 in dimension 2) corresponding to the constraints � �Ø
• Therefore, an energy function ψ�FÙdÙb� is A-polyconvex if and only if it is

of the form
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ψ�FÙdÙb� ¨ Φ�FÙcof FÙdetFÙdÙbÙFdÙFb�

whereΦ is a convex function (of 31 scalar variables).Apart from the expected
terms FÙ cofFÙ detFÙ dÙ and bÙwe have the cross-effect terms FdÙFb (and
in dimension 2 also d � b).

• An existence theorem is proved for a state of minimum energy for a system
consisting of anA-polyconvex electro-magneto-elastic solid plus the vacuum
electromagnetic field outside the body.

Keywords Electromechanical and magnetomechanical interactions, finite strain,
constitutive equations, energy methods, variational principles, instabilities, A-
quasiconvexity, A-polyconvexity
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1 Introduction

Electro- or magneto-sensitive elastomers are smart materials whose mechanical prop-
erties change instantly by the application of an electric or magnetic field. The sensi-
tivity to the electromagnetic fields is due to the manufacturing process in which some
metallic electro- or magneto- sensitive inclusions (such as alumina particles or iron
powder) are deposited in an elastomeric (usually rubber) matrix. If the fabrication
process is conducted under the external electric or magnetic fields, it produces an
alignment of the inclusions and consequently an anisotropy; the latter is combined
with large deformations of the matrix. One is thus faced with full nonlinear cou-
plings of the mechanical response with the electric and magnetic fields and also with
an indirect magneto-electric coupling.

As is well-known, for large deformations the well-posedness questions play an
important role.

For nonlinear elastostatics Ball [1] showed that Morrey’s quasiconvexity condi-
tion [30–31] has a direct relevance for the behavior of the body; moreover, recog-
nized the importance of Morrey’s sufficient condition for quasiconvexity [31; The-
orem 4.4.10], for which he introduced the term polyconvexity. He showed that the
polyconvexity is compatible with the realistic constraint for the energy function ψÙ
viz.,
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ψ�F� r ð as detF r 0

and leads to a satisfactory existence theorems in nonlinear elasticity under realistic
assumptions. These convexity conditions are known to be one of the main guiding
principles for the formation of the nonlinear constitutive equations, e.g., [44, 48] and
[22].

In this paper I extend the quasiconvexity and polyconvexity notions to the com-
pletely coupled problem in electro-magneto-rheological elastomers. There are new
issues beyond the purely mechanical case, as we shall see below.

Our choice of the basic variables in the constitutive equations are the deformation
gradient F, the (lagrangean) electric displacement d and the (lagrangean) magnetic
induction bØ Among the new issues that we encounter is that the electromagnetic
variables satisfy

div d ¨ 0Ù div b ¨ 0 (1.1)

identically as a counterpart of
curlF ¨ 0 (1.2)

for the deformation gradient FØWemake a full use of (1.1) and (1.2) by adopting the
convexity theory under differential constraints known as theA-quasiconvexity theory
[6, 15, 35–36, 4, 26, 28]. Central to the theory are the notions of A-quasiconvex
function, A-quasiaffine function, and A-polyconvex function, see Definitions 5.2
and 5.5.

The novel feature of the present paper is that it adopts these “A-notions” to the
full combined electro-magneto-elastic interactions, i.e., to the combinations of the
constrains (1.1) and (1.2) (Definitions 6.1 and 6.4). For brevity, in this special case we
omit the modifier “A-” and use the terms quasiconvex function, quasiaffine function,
and polyconvex function. The main results of the paper are as follows.

• In dimension 3 there are 32 linearly independent scalar quasiaffine func-
tions; dimension 2 there are 15 linearly independent scalar quasiaffine func-
tions, see the lists in (6.4) in Theorem 6.3, below. Here ‘linear independence’
means linear independence in the linear space of (unrestricted) functions
f ¨ f �FÙdÙb� defined on the space Mn�n � R

n � R
nÙ n ¨ 2 or 3Ù under

standardly defined addition and multiplication by scalars.¡ The nontrivial
proof is given in Section 7.¡¡

• In dimension 3, an energy function ψ ¨ ψ�FÙdÙb� of an electro-magneto-
elastic material is polyconvex if and only if it is of the form

ψ�FÙdÙb� ¨ Φ�FÙcof FÙdet FÙdÙbÙFdÙFb� (1.3)

where Φ is a convex function (of 31 scalar variables). In dimension 2, ψ is
polyconvex if and only if it is of the form

ψ�FÙdÙb� ¨ Φ�FÙdet FÙdÙbÙFdÙFbÙd � b�

¡ See Section 2 for the notation.
¡¡ The paper [46] proves a general result which yields the electro-magneto-elastic quasi-

affine functions as a special case.
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whereΦ is a convex function (of 14 scalar variables), see Theorem 6.5, below.
Apart from the expected terms FÙ cofFÙ det FÙ dÙ and bÙ we have the cross-
effect terms FdÙFb (and in dimension 2 also d � b). This description applies
to materials of arbitrary symmetry. ¡

• An existence theorem is proved for a state of minimum energy for a sys-
tem consisting of a polyconvex electro-magneto-elastic solid plus the vacuum
electromagnetic field outside the body, see Theorem 8.3, below.

To mention restricted cases (as opposed to the full case described above), we start
with noting that in the absence of electromagnetic phenomema theA-quasiconvexity
under the constraint (1.2) reduces to the aforementioned Morrey’s quasiconvexity.
The convexity conditions for the electric or magnetic phenomena in rigid bodies (no
deformation) have been studied in [49, 6, 39, 15, 7]. These works show that the A-
quasiconvexity under (1.1)1 or under (1.1)2 reduces to the ordinary convexity.

The quasiconvexity for combinations of mechanical and magnetic phenomena
has been discussed in [24] and [23], but ignoring the constraint (1.1)2Ù which sub-
stantially reduces the class of quasiconvex and polyconvex energies. The paper [16]
brieflymentions, as an example, a combination of mechanical and magnetic phenom-
ena in 2 dimensions within a different framework, but without any further develop-
ment.

Note After the research presented in this paper had been completed, the author
became aware of the recent papers by Gil & Ortigosa [19, 37–38],¡¡ which postu-
late (1.3) also. The main motivation for (1.3) in [19, 37–38] comes from the electro-
magneto-elastic ellipticity condition, which is implied by condition (1.3). Accord-
ingly, the developments and motivations of [19, 37–38] are different from the present
work since here I derive the polyconvexity (1.3) from the general concepts of A-
quasiconvexity theory (Theorem 6.5) and prove a result specific to polyconvexity:
the existence theorem (Theorem 8.3). The electro-magneto-elastic ellipticity condi-
tion figures as a consequence of the A-quasiconvexity (Proposition 6.2, below) and
the non-trivial proof of the form of the polyconvexity presented in Section 7 has no
counterpart in [19, 37–38].

The paper is organized as follows. Section 2 describes the notation and presents
the basic definitions from the ordinary convexity. Section 3 gives a survey of the equi-
librium and constitutive equations for the static electro-magneto-elasticity.Formal as-
pects of the variational principle of the electro-magneto-elasticity (the total energy, its
first and second variations and the variational derivation of the equilibrium equations)
are treated in Section 4. The optional Section5 introduces theA-quasiconvexity in the
general case. A specialization of theA-quasiconvexity to electro-magneto-elasticity
is provided in Section 6. This central section can be read independently of Section 5
since independent definitions are given therein. Section 7 provides the proof of The-
orem 6.3. Section 8 establishes an existence theorem. The remaining sections are ap-
pendices. Section 9 summarizes some results on the classical rank 1 convexity needed
in our proofs. Section 10 collects the results on the weak convergence necessary for
the existence theorem.

¡ A companion paper [47] treats isotropic polyconvex electro-magneto-elastic bodies.
¡¡ I thank M. Itskov for drawing my attention to these papers.
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2 Preliminaries: notation, brief convexity

We use the direct notation with the same conventions as in [50, 45]. The following
sets are used throughout:

R̄¨RT  ð( ¨ the extended real line,
R
n ¨ the n-dimensional euclidean space,

Z
n ¨ the set of all n-tuples of integers,

M
n�n ¨ the space of all real n � n matrices,

M
n�n
+ ¨!F X M

n�n Ú det F ± 0)Ø

We interpret the matrices fromM
n�n as second–order tensors on RnØWe denote by

1 X M
n�n is the unit matrix, by a ċ b the usual scalar product of two vectors in R

n

and by A ċ B Ú¨ tr�ATB� the scalar product of tensors. We recall that the tensor of
cofactors of F X M

n�n
+ is given by cofF ¨ �det F�F−TØ

If n ¨ 3Ù we define the vector product and the curl in the usual way as vectors
in R

3 while if n ¨ 2 then both the vector product and the curl are the numbers
a � b ¨ a1b2 − a2b1Ù curl a ¨ a2Ù1 − a1Ù2Ø

Although the main theme of the paper are various weakened notions of convex-
ity, an essential use is made of the classical convexity. We refer to [43] and [10] for
systematic expositions of the convexity theory; here we only outline basic notions. A
function f Ú X r R̄ on a vector space X is said to be convex if

f ��1 − t�ξ1 + tξ2	 ² �1 − t�f �ξ1� + tf �ξ2� (2.1)

for every ξ1Ù ξ2 X X and every t X �0Ù 1�Ø The function f is said to be affine if we
have the equality sign in (2.1) holding identically. f is affine if and only if there is a
linear functional � on X and a constant c X R such that

f �ξ� ¨ 0�Ùξ8 + c (2.2)

for every ξ X X where 0�Ùξ8 is the value of � on ξØ If X ¨ R
m then (2.2) reads

f �ξ� ¨ � ċ ξ + c where � X R
mØ

We conclude this section by recording Jensen’s inequality [14; Theorem 4.80],
which underlies the notion of polyconvexity. IfΦ Ú Rm r R̄ is a convex lowersemi-

continuous function and Q ¨ �0Ù 1�n then

�
Q

Φ�z�x�� d x ³ Φ� �
Q

z�x� d x� (2.3)

for any measurable map z Ú Q r R
mØ

3 Equilibrium and constitutive equations for

electro-magneto-elasticity

With the exception of Section 5, we work in the space dimensions n ¨ 2 or 3Ø Recall
from the introduction that the variables in the constitutive equations are the defor-
mation gradient F X M

n�n
+ Ù the referential electric displacement d X R

n and the
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magnetic induction b X R
nØ Throughout the section, ψ Ú Mn�n

+ � R
n � R

n r R

denotes the energy function of an electro-magneto-elastic body and �FÙdÙb� is an
element ofMn�n

+ � R
n � R

nØ
The coupling between electricity,magnetism and nonlinear elasticity is well stud-

ied since the sixties of the last century, as illustrated by the book expositions [51, 5,
21, 29, 12–13, 25] and others. Our situation is purely static, so that only the static
form of Maxwell’s equations and the mechanical equilibrium of forces govern the
behavior of the body.

3.1 Equilibrium equations

3.1.1 Actual (“eulerian”) configuration The basic electromagnetic variables are the
electric and magnetic fields, the electric displacement and the magnetic induction,
denoted, respectively, by EÙHÙDÙBØ The mechanical variables are the Cauchy stress
tensor T , the density of the body force gÙ and the actual density of mass ρØ The
equilibrium equations are

DivD ¨ 0Ù DivB ¨ 0Ù CurlE ¨ 0Ù CurlH ¨ 0 on R
nÙ (3.1)

DivT + ρg ¨ 0 on ω (3.2)

where Curl and Div denote the curl and divergence with respect to the actual position
and ω is the actual configuration of the body. In Section 4, the equilibrium equations
will be derived from a variational principle. The equations (3.1) and (3.2) are assumed
to hold in the weak sense, which then includes the well-known jump conditions for
the electromagnetic variables on the boundary of the body. This is not repeated here.
Furthermore, below we shall consider only the Dirichlet boundary conditions for the
deformation; thus there is no equation for the surface traction on the boundary. Out-
side ω we have the ether relations

E ¨ DÙ H ¨ BÛ (3.3)

on ω, we have the constitutive relations for E and H to be discussed below.

3.1.2 Referential (“lagrangian”) configuration We denote by Ω ⊂ R
n the refer-

ence configuration of the body and by y Ú Ω r R
n the deformation. We prescribe

the Dirichlet boundary conditions on ãΩÙ i.e.,
y ¨ 0 on ãΩ (3.4)

where 0 Ú ãΩ r R
n is a given function. We assume that 0 can be extended to an

equally denoted injective function on R
n « clΩ such that det∇0 ± 0 on R

n «Ω.
For notational convenience we define the deformation gradient F Ú Rn r M

n�n
+ by

F ¨










∇y on ΩÙ
∇0 on R

n « clΩØ
(3.5)

We now use the classical Piola transformation [20], [27; Chapter I, §§7.18–7.20] to
introduce the referential (lagrangean) quantities by

e ¨ FTEÙ h ¨ FTHÙ d ¨ �cofF�TDÙ b ¨ �cofF�TB on R
nÙ

S ¨ T cofF on ΩÙ
(3.6)
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where, of course the spatial variables EÙÜ ÙT are now expressed as functions of the
referential variable. The referential forms of the equilibrium equations read

div d ¨ 0Ù div b ¨ 0Ù curl e ¨ 0Ù curlh ¨ 0Ù on R
nÙ (3.7)

div S + g ¨ 0 on ΩÙ (3.8)

where curl and div denote the referential forms of the curl and divergence, i.e., the
same differential operators as Curl and DivÙ but with the derivatives with respect to
the actual position replaced by the derivatives with respect to referential position. The
ether relations (3.3) read in terms of the referential variables as

e ¨ FTFd¤ detFÙ h ¨ FTFb¤ detF (3.9)

outsideΩØ

3.2 Constitutive relations The density of the free energy is

ψ ¨ ψ�FÙdÙb�
which is a twice continuously differentiable function with the domain

D
n
+ Ú¨ M

n�n
+ � R

n � R
n (3.10)

which is a subset of
D
n Ú¨ M

n�n � R
n � R

nØ (3.11)

We have the potential relations

S ¨ ÿFψÙ e ¨ ÿdψÙ h ¨ ÿbψØ (3.12)

We assume that ψ satisfies the principle of material frame indifference

ψ�QFÙdÙb� ¨ ψ�FÙdÙb� (3.13)

for all �FÙdÙb� X D
n
+ and all proper orthogonal tensors QØ A standard argument

shows that (3.13) implies the symmetry of the stress,

SFT ¨ FSTÙ TT ¨ T Ø

3.3 Example (Non-interacting matter) Consider an elastic body Ω in the external
electromagnetic field but suppose that there is no field-matter interaction. Therefore,
the energy splits into the sum

ψ�FÙdÙb� ¨ ψ1�F� + ψ2�FÙdÙb�
of the elastic energy ψ1�F� and of the energy of the vacuum electromagnetic field
ψ2�FÙdÙb�. In the reference configurationΩ, ψ2 is given by

ψ2�FÙdÙb� ¨
1

2
�det F�−1�@Fd@2 + @Fb@2	Ø (3.14)

Indeed, passing from the reference variable x to the spatial variable y ¨ y�x� and
employing the transformation rules (3.6) we obtain the vacuum energy of the electro-
magentic field, i.e.,

1

2
�
Ω

�det F�−1�@Fd@2 + @Fb@2	 d x ¨ 1

2
�
ω

�@D@2 + @B@2	 d y
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where dx and dy are the referential and actual elements of volume if n ¨ 3 or those
of area if n ¨ 2, D and B are the spatial electric displacement and magnetic induc-
tion and ω ¨ y�Ω� is the actual configuration of the body. The potential relations
(3.12)2Ù3 yield the ether relations (3.9); the stress relation (3.12)1 yields

S ¨ S1 + S2 where S1�F� ¨ ÿFψ1�F�Ù S2�FÙdÙb� ¨ ÿFψ2�FÙdÙb�
where S1 is the elastic stress while a calculation shows that S2 is given by

S2�FÙdÙb� ¨ �det F�−1�Fd � d + Fb � b − 1

2
F−T�@Fd@2 + @Fb@2	
Ø

Let us show that
div S2 ¨ 0 (3.15)

for any deformation y of Ω and any vector fields d and b that satisfy (3.7)1Ù2 on ΩØ
Indeed, passing to the spatial stress T2 ¨ S2 cofF

−1Ùwe obtain the vacuumMaxwell
tensor

T2 ¨ D � D + B � B − 1

2
�@D@2 + @D@2	1

whose spatial divergence is known to vanish as a consequence of (3.1)1Ù2:

DivT2 ¨ 0Ø
The referential form (3.15) then follows by Piola’s transformation. The equilibrium
equation (3.8) with the total stress S then reduces to the equilibrium for the elastic
stress

div S1 + g ¨ 0 on ΩØ
We thus summarize that the total stress S is different form zero even in the (idealized)
absence of matter as a consequence of the geometric factors in (3.14); however, its
divergence identically vanishes.

4 Variational principle

This section presents a preliminary analysis of a variational principle for an electro-
magneto-elastic body. We consider a state of minimum energy of the system con-
sisting of an elastic body Ω interacting with the electromagnetic field inside Ω and
the vacuum electromagnetic field in its exterior. Section 8 treats the same minimum
principle under natural, weakened assumptions on yÙ dÙ b which ensure the existence
of a minimizer. As already mentioned, the proof is currently available only for the
Dirichlet data for the deformation. Even though the considerations to be presented
in this section can be carried out for the general boundary conditions, we assume the
Dirichlet data for notational simplicity also here.

4.1 The system and its states We assume that the reference configuration Ω is
bounded and has class C2 boundary ãΩ. We denote by Ω

c ¨ R
n « �Ω T ãΩ�

the complement of the body and by n the outer normal to ãΩØ
By a state we mean any triplet σ ¨ �yÙdÙb� of maps
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y Ú Ω r R
nÙ d Ú Rn r R

nÙ b Ú Rn r R
nÛ

these represent the deformation of the body and the referential electric displacement
and magnetic induction, respectively. We assume that
(i) y is twice continuously differentiable with y and its derivatives up to the order 2

having continuous extensions to the closure clΩ of ΩÙ and with det∇y ± 0 on
clΩÛ

(ii) y satisfies Dirichlet’s boundary condition (3.4);
(iii)d and b are continuously differentiable in Ω and in Ω

c with d and b and their
derivatives having continuous extensions fromΩ to clΩ and fromΩ

c to clΩcØ
(iv) d and b satisfy

div d ¨ 0Ù div b ¨ 0 on ΩTΩ
cÙ

DdF ċ n ¨ 0Ù DbF ċ n ¨ 0 on ãΩÙ
where DċF the jump across ãΩØ

We denote byS the set of all states.

4.2 The total energy The total energy of a state σ ¨ �yÙdÙb� X S is defined by

E�σ� ¨ �
Ω

ψ�∇yÙdÙb� d x − �
Ω

g ċ y d x + 1

2
�
Ωc

J−1�@Fd@2 + @Fb@2	 d x (4.1)

where the deformation gradient outside Ω is defined by (3.5) using the extension 0

on Ωc which is fixed, and J ¨ detFØ Following [8; Chapter 8], we note that the last
term in (4.1) is independent of the choice of the fictitious ‘deformation’ 0 since it can
be transformed into the vacuum energy

1

2
�
ωc

�@D@2 + @B@2	d y

as in Example 3.3, where ωc ¨ R
n« y�Ω� is the exterior of the actual configuration

y�Ω�.
The set δS of admissible variations of state is the set of triplets �κÙδÙβ� of

infinitely differentiable functions on Rn with values in Rn such that

κ ¨ 0 on Ω
cÙ div δ ¨ 0Ù divβ ¨ 0 in R

n (4.2)

and δÙ β vanish outside some (varying) bounded subset of RnØ If σ ¨ �yÙdÙb� is a
state, we define the first and second variations δ E�σ��ċ� and δ

2
E�σ��ċ� of energy at

σ as linear and quadratic functionals on δS by

δ E�σ��κÙδÙβ� ¨ �
Ω

ÿψ�∇yÙdÙb��∇κÙδÙβ� d x − �
Ω

g ċ κ dx

+ 1

2
�
Ωc

J−1��Fd ċ Fδ� + �Fb ċ Fβ�	 d xÙ

δ
2
E�σ��κÙδÙβ� ¨ �

Ω

ÿ
2ψ�∇yÙdÙb���∇κÙδÙβ�Ù�∇κÙδÙβ�� d x

+ �
Ωc

J−1�@Fδ@2 + @Fβ@2	 d xØ



















































































(4.3)
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4.3 Equilibrium states A state σ ¨ �yÙdÙb� X S is said to be an equilibrium state
if E�σ� ° ð and

E�σ� ² E�o�
for all o X SØ Necessary conditions for the minimum are, standardly,

δ E�σ��κÙδÙβ� ¨ 0Ù δ
2
E�σ��κÙδÙβ� ³ 0 (4.4)

for each �κÙδÙβ� X δSØMoreover, (4.4)1 is equivalent to the equilibriumconditions

div S + g ¨ 0 in ΩÙ
curl e ¨ 0Ù curlh ¨ 0 in ΩTΩ

cÙ
DeF � n ¨ 0Ù DhF � n ¨ 0 on ãΩÙ



























(4.5)

where the associated stress S on Ω and the electric and magnetic fields e and h on
the entire space are given by































S ¨ ÿFψ�FÙdÙb� on Ω

e ¨ ÿdψ�FÙdÙb�Ù h ¨ ÿbψ�FÙdÙb� on Ω

e ¨ J−1FTFdÙ h ¨ J−1FTFb on Ω
cØ

To derive (4.5), note that if �κÙδÙβ� X δSÙ then
δ E�σ��κÙδÙβ� ¨ �

Ω

�S ċ ∇κ − g ċ κ� d x + �
Rn

�e ċ δ + h ċ β� d x ¨ 0 (4.6)

by (4.4)1. By (4.2)2Ù3 we may write δ ¨ curlπÙ β ¨ curlρÛ inserting this in to (4.6)
and integrating by parts we obtain

�
Ω

�− div S − g� ċ κ dx + �
Rn

�π ċ curl e + ρ ċ curlh� d x ¨ 0Ø

The arbitrariness of κÙ πÙ and ρ then gives (4.5). è

5 A-quasiconvexity: the general case

Our treatment of the convexity properties for the electro-magneto-elasticity is based
on theA-quasiconvexity theory,which includes the associated notionsA-quasiaffinity,
A-polyconvexity, Λ-convexity and Λ-ellipticity. The A-quasiconvexity theory has
been introduced in [6] and further developed in [15]. Closely related is the compen-
sated compactness theory [35–36]. The reader is referred to [4, 26, 28] formore recent
developments and additional literature. This section discusses these notions from a
general point of view; the specialization to electro-magneto-elastic materials is the
subject of the succeeding sections.

5.1 The differential operator A and the characteristic cone Λ The following
dimensions will be needed in the subsequent discussion:

n ¨ the number of independent variables, x ¨ �x1ÙÜ Ùxn�Ù
d ¨ the number of dependent variables, u ¨ �u1ÙÜ Ùud�Ù

l ¨ the number of differential constrains.



A-quasiconvexity: the general case 11

Let Q ¨ �0Ù 1�n be the unit cube, let Cð
per�RnÙRd� denote the set of all infinitely

differentiable Q-periodic maps u Ú R
n r R

d. We shall consider the first–order
differential constraintAv¨ 0 on a map v X Cð�RnÙRd� where

Av ¨
n

�
i¨1

A�i�vÙi

with A�i� X Lin�RdÙRl�Ø For each η ¨ �η1ÙÜ Ùηn� X R
n define

A�η� ¨
n

�
i¨1

ηiA
�i�Ù

which is an element of Lin�RdÙRl�Ù and make the standing assumption that the rank
of A�η� is the same for all η © 0ØWe define the characteristic cone

Λ¨ !u X R
d Ú A�η�u ¨ 0 for some η X R

nÙ η © 0)Ø

5.2 Definition A continuous function f Ú Rd r R̄ is said to be
(i) A-quasiconvex if

�
Q

f �u + v�x�� d x ³ f �u� (5.1)

for all u X R
d and all v X Cð

per�RnÙRd� such thatAv¨ 0 on Rn and �Q vdx ¨
0Û

(ii) A-quasiaffine if it takes only finite values and both f and−f areA-quasiconvex;
(iii)Λ-convex if

f �tu1 + �1 − t�u2� ² tf �u1� + �1 − t�f �u2�

for every t X �0Ù 1� and u1Ù u2 X R
d such that u2 − u1 X ΛÛ

(iv)Λ-affine if it takes only finite values and both f and −f areΛ-convex.

If f is continuously differentiable then the Λ-convexity is equivalent to the Λ-
ellipticity

ÿ
2f �u��lÙ l� ³ 0

for every u X R
n and l X ΛØ

5.3 Theorem ([15; Proposition 3.4]) If f Ú Rd r R̄ is a continuousA-quasiconvex

function then f is Λ-convex; consequently, if f is A-quasiaffine then f is Λ-affine.

The following weak sequential lower semicontinuity theorem is the main moti-
vation for the A-quasiconvexity. We refer to Section 10 (below) for our conventions
about the weak convergence. The weak sequential lower semicontinuity is the basic
ingredient of the direct method of the calculus of variations. It should be also noted
that for the proof of the existence of the minimizer in electro-magneto-elasticity in
Theorem 8.3 (below) the sequential lower semicontinuity theorem cannot be used
as the hypothesis (5.2) is inconsistent with the requirement ψ�FÙdÙb� r ð for
detF r 0Ø One has to use the A-polyconvexity defined below.
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5.4 Theorem ([15; Theorem 3.7]) Let 1 ² p ° ð and suppose that f Ú Ω � R
d r

�0Ùð� is a Carathéodory integrand such that f �xÙ ċ� is A-quasiconvex and

0 ² f �xÙu� ² a�x��1 + @u@p� (5.2)

for all x X Ω and u X D
d where a Ú Ω r �0Ùð� is a bounded function. If u and uk

belong to Lp�ΩÙRd� and satisfy

uk u u in Lp�ΩÙRd� and Auk r 0 in W−1Ùp�ΩÙRd�
then

lim inf
krð

�
Ω

f �xÙuk�x�� d x ³ �
Ω

f �xÙu�x�� d xØ

5.5 Definition A continuous function f Ú R
d r R̄ is said to be A-polyconvex

if there exists a finite number of A-quasiaffine functions f 1ÙÜ Ù fm and a convex
lowersemicontinuous functionΦ Ú Rm r R̄ such that

f �u� ¨ Φ�f 1�u�ÙÜ Ù fm�u�� (5.3)

for each u X R
dØ

5.6 Theorem ([6; Corollary 2.5]) Any A-polyconvex function is A-quasiconvex.

Proof Since the polyconvexity is central for the present paper, let us outline the
proof. Thus let f ¨ f �u� be as in (5.3) and prove (5.1) for all uÙ v as in Definition
5.2(i). The quasiaffinity of f 1ÙÜ Ù fm means that

�
Q

f i�u + v�x�� d x ¨ f i�u�Ù 1 ² i ² mÙ

and hence the application of Jensen’s inequality (2.3) with z given by

z�x� ¨ �f 1�u + v�x�	ÙÜ Ù fm�u + v�x�	

gives

�
Q

f �u + v�x�� d x ¨ �
Q

Φ�f 1�u + v�x�	ÙÜ Ù fm�u + v�x�	
 d x

³ Φ� �
Q

f 1�u + v�x�	 d xÙÜ Ù �
Q

fm�u + v�x�	 d x�

¨ Φ�f 1�u�ÙÜ Ù fm�u�� ¨ f �u�Ø è

6 A specialization to electro-magneto-elasticity

We apply the formalism of the preceding section with n ¨ 2 or 3Ù and with the
identifications

v¨ �FÙdÙb�
where F is the deformation gradient, d the electric displacement and b the magnetic
induction. In view of the constraint det F ± 0, we apply theA-quasiconvexity notions
to functions f defined on the domain D

n
+, see (3.10). To obtain an agreement with
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the general theory of the preceding section, where only functions f defined on the
entire Rd have been considered, we tacitly extend f Ú Dn

+ r R̄ to the entireDn from
(3.11) by setting f equal toð on Dn « D

n
+Ø

The functions v of Section 5 will be identified with the triples ��ÙδÙβ� Ú Rn r
D
n and the operatorA with

A��ÙδÙβ� ¨ �curl�Ùdiv δÙdiv β�Ø (6.1)

Here curl of � ¨ ��ij�niÙj¨1 is defined by

�curl��il ¨
3

�
jÙk¨1

ε ljk�ijÙkÙ �curl��i ¨
2

�
jÙk¨1

ε jk�ijÙkÙ

in dimensions n ¨ 3 and n ¨ 2, respectively, where iÙ l ¨ 1Ù2Ù3 or i ¨ 1Ù2 and ε ijk
and ε ij are the three– and two– dimensional permutation symbols. Analogously, if
η X R

n, we define � � η by

�� � η�il ¨
3

�
jÙk¨1

ε ljk�ijηkÙ �� � η�i ¨
2

�
jÙk¨1

ε jk�ijηk

in dimensions n ¨ 3 and n ¨ 2, respectively.
To determine the characteristic coneΛª ΛE corresponding to the system (6.1),

we replace the partial derivatives∇�Ù∇δÙ∇β in (6.1) by the tensor products��ηÙ
δ� ηÙβ � η where η X R

n is an arbitrary nonzero vector. This transforms (6.1) into

� � η ¨ 0Ù δ ċ η ¨ 0Ù β ċ η ¨ 0Û (6.2)

noting that (6.2)1 is satisfied in and only if � ¨ ξ � η for some ξ X R
nÙ one obtains

ΛE ¨ !�ξ � ηÙδÙβ� X D
n Ú ξÙ δÙ βÙ η X R

nÙ δ ċ η ¨ β ċ η ¨ 0Ù η © 0)Ø
We now specialize the general definitions of Section 5 to the present case.

6.1 Definition A continuous function f Ú Dn r R̄ is said to be
(i) quasiconvex at �FÙdÙb� X D

n if

�
Q

f �F + ��x�Ùd + δ�x�Ùb + β�x�� d x ³ f �FÙdÙb�

for each triplet ��ÙδÙβ� X Cð
per�RnÙDn� satisfying

curl� ¨ 0Ù div δ ¨ divβ ¨ 0 on R
n and �

Q

��ÙδÙβ� d x ¨ 0Û

(ii) quasiconvex if it is quasiconvex at every point of DnÛ
(iii) quasiaffine if f takes only finite values, and both f and −f are quasiconvex;
(iv)ΛE-convex if

f �F + tξ�ηÙd+ tδÙb + tβ� ² �1− t�f �FÙdÙb�+ tf �F +ξ�ηÙd+δÙb+β�
for every t X �0Ù 1� and �FÙdÙb� X D

n and every ξÙ δÙ βÙ η X R
n such that

δ ċ η ¨ β ċ η ¨ 0 and η © 0Û (6.3)

(v) ΛE-affine if f takes only finite values, and both f and −f areΛE-convex.



6. A specialization to electro-magneto-elasticity 14

6.2 Proposition Let f Ú Dn
+ r R be twice continuously differentiable.

(i) If f is quasiconvex at �FÙdÙb� X D
n
+ then f is elliptic at �FÙdÙb�Ù i.e.,

ÿ
2ψ�FÙdÙb���ξ � ηÙδÙβ�Ù�ξ � ηÙδÙβ�� ³ 0

for every ξÙ δÙ βÙ η X R
n satisfying (6.3);

(ii) if f is quadratic, i.e., if

f �FÙdÙb� ¨ C��FÙdÙb�Ù�FÙdÙb��
for every �FÙdÙb� X D

n and some symmetric bilinear form C then f is quasi-

convex at some point h f is quasiconvex h f is elliptic at some point h f

is elliptic at every point of DnØ
Here the second derivative ÿ2ψ�FÙdÙb��ċÙ ċ� of ψ at �FÙdÙb� is interpreted as a
bilinear form in the incremental variable �ξ � ηÙδÙβ�Ø The proof of Proposition 6.2
is only a minor variation of van Hove’s original proof [52] in the gradient case; it is
therefore omitted.

Proposition 6.2 can be restated equivalently in terms of the second variation
δ
2
E�σ� of the total energy [see (4.1) and (4.3)]. Namely, the ellipticity of ψ at

�FÙdÙb� is equivalent to the nonnegativity of the second variation δ
2
E�σ� at the

homogeneous state with data �FÙdÙb� under the Dirichlet boundary conditions, i.e.,

δ
2
E�σ��κÙδÙβ� ³ 0

for every triplet of infinitely differentiable functionsκÙδÙβ Ú Rn r R
n which vanish

outsideΩØ
The main results of this paper are the following theorem and Theorem 6.5, below.

6.3 Theorem A continuous function f Ú Dn r R is quasiaffine h f is ΛE-affine

h f is a linear combination, with constant coefficients, of the following functions:

1Ù FÙ detFÙ dÙ bÙ FdÙ FbÙ d � b if n ¨ 2Ù
1Ù FÙ cofFÙ detFÙ dÙ bÙ FdÙ Fb if n ¨ 3.











(6.4)

Here the expressions involving the variables FÙ dÙ b in (6.4) stand for the functions of
�FÙdÙb� defined on the domain Dn; linear independence is understood in the linear
space of functions f ¨ f �FÙdÙb� on D

n under standardly defined addition and
multiplication by scalars.

Thus there are 15 linearly independent quasiaffine functions if n ¨ 2 and 32
linearly independent quasiaffine functions if n ¨ 3Ù including constants. The proof
of Theorem 6.3 is deferred to Section 7.

6.4 Definition A continuous function f Ú Dn r R̄ is said to be polyconvex if there
exists a finite number of quasiaffine functions f 1ÙÜ Ù fm and a convex lowersemicon-
tinuous functionΦ Ú Rm r R̄ such that

f �FÙdÙb� ¨ Φ�f 1�FÙdÙb�ÙÜ Ù fm�FÙdÙb��

for each �FÙdÙb� X D
nØ

Theorem 6.3 has the following corollary.
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6.5 Theorem A continuous function f Ú Dn r R̄ is polyconvex if and only is f is

of the following form:
f �FÙdÙb� ¨ Φ�b�FÙdÙb��

for every �FÙdÙb� X D
n
+, where we abbreviate

b�FÙdÙb� ¨














�FÙdet FÙdÙbÙFdÙFbÙd � b� if n ¨ 2Ù
�FÙcofFÙdet FÙdÙbÙFdÙFb� if n ¨ 3

and where Φ is a convex lowersemicontinuous function on

D̃
n ¨



















M
2�2 � R � �R2�4 � R if n ¨ 2Ù

M
3�3 �M

3�3 � R � �R3�4 if n ¨ 3Ø

Thus Φ is a function of 14 and 31 scalar variables, respectively.

7 Proof of Theorem 6.3

Recall from Definition 6.1 that a continuous function f Ú Dn r R is quasiaffine if

�
Q

f �F + �Ùd + δÙb + β� d x ¨ f �FÙdÙb� (7.1)

for each triplet ��ÙδÙβ� X Cð
per�RnÙDn� satisfying

curl� ¨ 0Ù div δ ¨ divβ ¨ 0 on R
n and �

Q

��ÙδÙβ� d x ¨ 0Ù (7.2)

and that f is ΛE-affine if

f �F + tξ � ηÙd + tδÙb + tβ� ¨ �1 − t�f �FÙdÙb� + tf �F + ξ � ηÙd + δÙb + β�
(7.3)

for every t X �0Ù 1� and �FÙdÙb� X D
n and every ξÙ δÙ βÙ η X R

n such that

δ ċ η ¨ β ċ η ¨ 0 and η © 0Ø (7.4)

The proof of Theorem 6.3 is divided into several lemmas. We start with the anal-
ysis of the separate ΛE-affinity with respect to the variables F, dÙ and bØ The cross
effects will be analyzed subsequently. We refer to Section 9 for the rank 1 affinity
which underlies Item (i) of the following result and many points in the subsequent
treatment.

7.1 Lemma Let f Ú Dn r R be a ΛE-affine function. Then

(i) for each dÙ b X R
n the function f �ċÙdÙb� is rank 1 affine, i.e., it is a linear

combination, with coefficients depending on dÙ bÙ of the functions occurring in

(9.2);
(ii) for each F X M

n�n the function f �FÙ ċÙ ċ� is a linear combination, with coeffi-

cients depending on FÙ of the functions
1Ù dÙ bÙ d � b if n ¨ 2Ù
1Ù dÙ b if n ¨ 3Ø
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Proof (i): Fixing dÙ b X R
n, taking δ ¨ β ¨ 0 in (7.3) and denoting g�ċ� ¨

f �ċÙdÙb� we obtain Inequality (9.1) with the equality sign for every t X �0Ù 1�, every
and F X M

n�n and every ξÙ η X R
nØ Thus f �ċÙdÙb� is rank 1 affine and Lemma

9.2 yields the assertion.
(ii): Employing (7.3) with ξ ¨ β ¨ 0 and noting that there always exists an

η X R
n, η © 0Ù such that δ ċ η ¨ β ċ η ¨ 0Ùwe obtain

f �FÙd + tδÙb� ¨ �1 − t�f �FÙdÙb� + tf �FÙd + δÙb�
for every FÙ dÙ b and δØ Thus f �FÙ ċÙb� is affine and hence

f �FÙdÙb� ¨ ∆�FÙb� + ε�FÙb� ċ dÙ
for each �FÙdÙb� X D

nÙ where ∆�FÙb� X R and ε�FÙb� X R
nØ Repeating the

same argument for δ ¨ 0Ù β arbitrary, we obtain

f �FÙdÙb� ¨ Γ�FÙd� + ζ�FÙd� ċ bÙ
�FÙdÙb� X D

nÙwhere Γ�FÙd� X R and ζ�FÙd� X R
n. Thus

Γ�FÙd� + ζ�FÙd� ċ b ¨ ∆�FÙb� + ε�FÙb� ċ dØ
Since the left–hand side is affine in b at any fixed d , we see that the functions ∆ and
ε must be affine functions of b as well, i.e.,

∆�FÙb� ¨ c2�F� ċ b + c4�F�Ù ε�FÙb� ¨ c1�F� + A�F�bÙ
b X R

nÙwhere c2�F�Ù c1�F� X R
n, c4�F� X R and A�F� X M

n�nØ Hence
f �FÙdÙb� ¨ c1�F� ċ d + c2�F� ċ b + A�F�b ċ d + c4�F�Ø (7.5)

To complete the proof, we return to (7.3), this time with ξ ¨ 0Ù so that we have

f �FÙd + tδÙb + tβ� ¨ �1 − t�f �FÙdÙb� + tf �FÙd + δÙb + β� (7.6)

for every t X �0Ù 1�, every �FÙdÙb� X D
n and every δÙ βÙ η X R

n such that (7.4)
holds. This gives

A�F��b + tβ� ċ �d + tδ� ¨ �1 − t�A�F�b ċ d + tA�F��b + β� ċ �d + δ�Ø
The left–hand side contains a quadratic term (i.e., the coefficient of t2) which is equal
to A�F�β ċ δ and hence we have to have

A�F�β ċ δ ¨ 0 (7.7)

for every δÙ β such that δ ċ η ¨ β ċ η ¨ 0 for some η © 0Ø
If n ¨ 3Ù then for a given pair �δÙβ� there always exists a η © 0 such that

δ ċ η ¨ β ċ η ¨ 0. Hence (7.6) asserts that f �FÙ ċÙ ċ� is affine. Thus the bilinear term
A�F�b ċ d in (7.5) must vanish and hence f �FÙ ċÙ ċ� is of the form asserted in (ii).

If n ¨ 2 then for a given pair �δÙβ� there exists a η © 0 such that δ ċη ¨ β ċη ¨ 0

if and only if δ and β are parallel, i.e., δ � β ¨ 0Ø Thus (7.7) requires
A�F�b ċ d ¨ c3�F��d � b�

for all dÙ b X R
2 and some c3�F� X RØ Then (7.5) gives the asserted form. è

We are about to pass to the cross effects. In view of the results of Lemma 7.1 it
suffices to consider functions of very special forms considered in Lemmas 7.2–7.5,
as explained in the proof of Lemma 7.6.
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7.2 Lemma Let f Ú Dn r R be given by

f �FÙdÙb� ¨ Ω�F� ċ d
�FÙdÙb� X D

n where Ω is a linear transformation from M
n�n into R

nÙ written
F w Ω�F�Ø Then f isΛE-affine if and only if f is of the form

f �FÙdÙb� ¨ Fd ċ c
for all �FÙdÙb� X D

n and some c X R
nØ

Proof The choice F ¨ 0Ù d ¨ b ¨ 0 in (7.3) yields

t2Ω�ξ � η� ċ δ ¨ tΩ�ξ � η� ċ δ (7.8)

for every t X �0Ù 1� and every ξÙ δÙ η X R
n such that

δ ċ η ¨ 0Ù η © 0Ø (7.9)

Thus Ω�ξ � η� ċ δ ¨ 0 for every ξÙ δÙ η X R
n such that (7.9) holds. Consequently,

Ω�ξ � η� ¨ m�ξ�η
ξÙ η X R

n where m�ξ� X RØ The linearity in ξ requires m�ξ� ¨ c ċ ξ for some
c X R

n and all ξ X R
nÛ thus Ω�ξ � η� ¨ �c ċ ξ�η ¨ �ξ � η�Tc for all ξÙ η X R

nØ
Since everyA X M

n�n is a sum of tensor products ξ�ηÙ the linearity ofΩ�ċ� yields
Ω�A� ¨ ATc for all A X M

n�nØ Hence
f �FÙdÙb� ¨ Ω�A� ċ d ¨ FTc ċ d ª Fd ċ cØ

This completes the proof of the direct implication; the proof of the converse implica-
tion is straightforward and the details are omitted. è

7.3 Lemma Let n ¨ 3 and let f Ú D3 r R be given by

f �FÙdÙb� ¨ Ψ�cofF� ċ d
�FÙdÙb� X D

n where Ψ is a linear transformation from M
3�3 into R

3Ù written
A w Ψ�A�Ø Then f is ΛE-affine if and only if f ¨ 0 identically.

Proof We apply (7.8) with F ¨ 1, d ¨ 0 and ξÙ δÙ η X R
3 as in (7.9). Using the

formula
cof�1 + ξ � η� ¨ ��1 + ξ ċ η�1 − η � ξ	

one finds that (7.3) is equivalent to

t2Ψ��ξ ċ η�1 − tη � ξ	 ċ δ ¨ tΨ��ξ ċ η�1 − η � ξ	 ċ δ
This requires

Ψ��ξ ċ η�1 − η � ξ	 ċ δ ¨ 0

for every ξÙ δÙ η X R
3 as above. Hence

Ψ��η ċ ξ�1 − η � ξ� ¨ m�ξ�η
ξÙ η X R

3 where m�ξ� X RØ The linearity in ξ provides m�ξ� ¨ −c ċ ξ for some
c X R

3 and all ξ; hence

Ψ��η ċ ξ�1 − η � ξ� ¨ −�c ċ ξ�η ¨ −�η � ξ�cØ
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Setting a Ú¨ Ψ�1�Ù we obtain
Ψ�η � ξ� ¨ �η ċ ξ�a + �η � ξ�cØ

Since every A X M
3�3 is a sum of tensor products η�ξÙ the linearity ofΨ�ċ� yields

Ψ�A� ¨ �trA�a + Ac

for each A X M
3�3Ø The consistency requires a ¨ Ψ�1� ¨ 3a + c and hence

Ψ�A� ¨ − 1

2
�trA�c + AcØ

To complete the proof, let us show that c ¨ 0Ø Let η X R
3 be any unit vector, and

apply (7.3) with F ¨ 1 − η � ηÙ d ¨ 0Ù δ X R
3 satisfying δ ċ η ¨ 0Ø Using

cof�F + tη � η� ¨ tF + η � η

one finds that Equation (7.3) reads

t�tFc − �1 + t¤2�c	 ċ δ ¨ −tc ċ δ¤2Û
the arbitrariness of t then leads to the unique consequence

c ċ δ ¨ 0

for any δ such that δ ċ η ¨ 0 for some unit vector ηØ Taking η such that η ċ c ¨ 0Ùwe
can take δ ¨ c to obtain c ¨ 0Ø è

7.4 Lemma Let f Ú Dn r R be given by

f �FÙdÙb� ¨ �det F�c ċ d
for every �FÙdÙb� X D

n where c X R
n is a constant. If f is ΛE-affine then f ¨ 0

identically.

Proof We apply (7.3) with F ¨ 1, d ¨ 0 and ξÙ δÙ η X R
n as in (7.9). This gives

t�1 + tξ ċ η��c ċ d� ¨ t�c ċ d� + �1 − t��1 + ξ ċ η��c ċ d�
and clearly this can hold only if c ¨ 0Ø è

7.5 Lemma Let n ¨ 2 and let f Ú D2 r R be given by

f �FÙdÙb� ¨ m�F��d � b�
for every �FÙdÙb� X D

n where m Ú M2�2 r R is a rank 1 affine function. Then f

isΛE-affine if and only if

f �FÙdÙb� ¨ c�d � b� (7.10)

for all �FÙdÙb� X D2 and some c X RØ
Proof By Lemma 9.2 we have m�F� ¨ A ċ F + b det F + c for each F X M

2�2

where A X M
2�2 and bÙ c X R are constants. Hence

f �FÙdÙb� ¨ �A ċ F + b det F + c��d � b�Ø
Let η X R

2 be any unit vector, let β ¨ ηþ and λ ± 0Ø Let us write the equality (7.3)
with F ¨ λ1Ù d ¨ ηÙ b ¨ 0Ù ξ X R

2 arbitrary, δ ¨ 0Ø This gives
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t �A ċ �λ1 + tξ � η� + bλ2�1 + tλ−1�ξ ċ η�	 + c� �η � ηþ�
¨ �1 − t�f �FÙdÙb� + tf �F + ξ � ηÙdÙb + β�Ø

The quadratic term (i.e., the coefficient of t2) on the left–hand side is

A ċ �ξ � η� + bλ�ξ ċ η�Ø
This term must vanish. The arbitrariness of λÙ ξÙ η then gives A ¨ 0Ù b ¨ 0Ø Thus
we have (7.10). Conversely, if f is given by (7.10), then clearly, f isΛE-affine. è

7.6 Lemma A continuous function f Ú Dn r R is ΛE-affine if and only if f is a

linear combination, with constant coefficients, of the functions occurring in (6.4).

Proof Let f beΛE-affine. By Lemma 7.1(ii) then

f �FÙdÙb� ¨ c0�F� + c1�F� ċ d + c2�F� ċ b + c3�F��d � b�
for each �FÙdÙb� X D

n where the last term must be omitted if n ¨ 3Ø By Item (i) of
the same lemma then f �ċÙdÙb� is a rank 1 affine function for each dÙ b X R

nØ The
independence of dÙ b and d � b then implies that each of the coefficients c0 to c3
are rank 1 affine functions. Lemma 9.2 then asserts that c0 and c3 are exactly of the
form described in (9.2). Since c1 and c2 are vector valued functions, a componentwise
application of Lemma 9.2 gives

c1�F� ¨ c + Ω�F� +Ψ�cof F� + d det F

for everyF X M
n�n, where c X R

n andΩ ÙΨ are linear transformations fromM
n�n

to R
n with Ψ ¨ 0 if n ¨ 2Ø A similar form applies to c2. Using the just described

forms of c0�F� to c3�F� and collecting some of the terms of the same type into one,
it is found that

f �FÙdÙb� ¨ m0�FÙdÙb� +M1 ċ cofF
+Ω1�F� ċ d +Ω2�F� ċ b +Ψ1�cof F� ċ d +Ψ2�cofF� ċ b
+ �m2 ċ d + m3 ċ b� det F + m4�F��d � b�

(7.11)

for every �FÙdÙb� X D
n wherem0 is an affine function of FÙ dÙ bÙ the tensorM1 is in

M
n�n withM1 ¨ 0 if n ¨ 2Ù the objects ΩiÙΨi (i ¨ 1Ù2) are linear transformations

from M
n�n into R

n with Ψi ¨ 0 if n ¨ 2Ù the vectors mi X R
n (i ¨ 1Ù2) are

constants and m4 is a rank 1 affine function.
We shall now make use of the full power of theΛE-affinity equality (7.3) (so far

only various particular cases have been used). Inserting the form of f from (7.11) into
(7.3) and noting that the affine function m0 and the term M1 ċ cofF trivially satisfy
that equality, we see that we have to require that the function f 1 given by

f 1�FÙdÙb� ¨ Ω1�F� ċ d + Ω2�F� ċ b +Ψ1�cofF� ċ d +Ψ2�cofF� ċ b
+ �m2 ċ d + m3 ċ b� det F + m4�F��d � b�

has to satisfy (7.3). Then of course the terms of different order in F have to satisfy the
equality individually as well as the terms with d and bØ Thus each of the functions

Ω1�F� ċ dÙ Ω2�F� ċ bÙ
Ψ1�cofF� ċ dÙ Ψ2�cofF� ċ bÙ mi ċ d det FÙ m4�F��d � b�
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must be ΛE-affine. By Lemma 7.2 then Ω1�F� ċ d ¨ Fd ċ c1Ù Ω2�F� ċ b ¨ Fb ċ c2
where ci X R

n are constants, by Lemma 7.3 then Ψi ¨ 0Ù i ¨ 1Ù2Ù by Lemma
7.4 mi ¨ 0 and by Lemma 7.5 m4 is constant. The asserted form of f follows. The
converse implication is immediate. è

We conclude this section with the following converse statement.

7.7 Lemma Each function from the list (6.4) is quasiaffine.

Proof We have to prove that any function f from the list (6.4) satisfies the equality
(7.1) for each triplet ��ÙδÙβ� X Cð

per�RnÙDn� satisfying (7.2).
Consider first the case n ¨ 3Ø The system (7.2) implies that there are functions

ωÙ πÙ ρ X Cð�R3ÙR3�, such that � ¨ ∇ωÙ δ ¨ curlπÙ β ¨ curlρÛ Equation (7.1)
then reads

�
Q

f �F +∇ωÙd + curlπÙb + curlρ� d x ¨ f �FÙdÙb�Ø (7.12)

An argument described in [2; Remark, p. 141] shows that it suffices to verify (7.12)
only forωÙπÙρ X Cð

0 �QÙR3�. The verificationof (7.12) for the functions �FÙdÙb� w
FÙ cofFÙ det F is standard, see, e.g., [1]. Consider now the functions �FÙdÙb� w
dÙ bØ Then (7.12) reads

�
Q

�d + curlπ� d x ¨ d

and a similar equation for bÙ which is true since

�
Q

curlπ dx ¨ �
ãQ

π � n dA�x� ¨ 0

by Gauss theorem (where n is the normal to ãQ) and π vanishes on ãQØ Finally
consider the functions �FÙdÙb� w FdÙ FbØWe have

�
Q

��F +∇ω��d + δ�	 d x ¨ �
Q

div ��Fx + ω� � �d + δ�	 d x

¨ �
ãQ

�Fx + ω���d + δ� ċ n	 dA�x�

¨ �
ãQ

Fx �d ċ n� dA�x� (since δ ¨ 0 on ãQ)

¨ �
Q

div ��Fx� � d	 d x ¨ FdØ

This completes the proof for n ¨ 3Ø The case n ¨ 2 is similar; the details are omitted.
è

8 Existence theorem

The present section deals with the existence of minimum energy states for the energy
E of a polyconvex solid and the surrounding vacuum electromagnetic field. As is
usual, the state space S from Section 4 has to be enlarged as described in Definition
8.1 (below). Let us recall the definitions of Dn

+ and D
n in (3.10) and (3.11).
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The existence theory for a purely elastic material with a polyconvex energy is
well understood [1, 17, 34, 18]. The corresponding part of the proof is based on the
sequential weak continuity of the cofactor and determinant. The additional electro-
magnetic variables d and b interact with the mechanical variable in the nonlinear
terms Fd and Fb and in dimension 2 we have also electrical–magnetic interactions
d � bØ These terms are sequentially weakly continuous as well, but this time one has
to use the div–curl lemma. We summarize the results on the weak convergence and
weak continuity in Section 10, below.

8.1 Definition Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary. We

denote byS the set of all triplets �yÙdÙb� X W 1Ù1�ΩÙRn��L1�ΩÙRn��L1�ΩÙRn�
such that

div d ¨ 0Ù div b ¨ 0 in R
n,

y ¨ 0 on ãΩ











(8.1)

in the sense of distributions and in the sense of traces, respectively. Here 0 Ú ãΩ r
R
n is a prescribed function. As in § 3.1.2, we assume that 0 can be extended to an

equally denoted injective function on ãΩTΩ
c; in the present section we assume that

c ċ 1 ³ J−1FTF ³ c−1 ċ 1 (8.2)

on Ωc where F is as in (3.5) and c is a positive constant.

8.2 Definition The total energy of a state σ ¨ �yÙdÙb� X S is defined by the
original formula (4.1) where ψ Ú D

n
+ r R is the energy, which is assumed to be

continuous and bounded from below and where we assume that the body force g is
in Lð�ΩÙRn� for notational simplicity.

8.3 Theorem Let (8.2) hold and let pÙ r Ù and s be numbers satisfying
2 ² p ° ðÙ 1¤r + 1¤p ² 1Ù 1¤s + 1¤p ² 1Ù

and additionally














let 1¤r + 1¤s ² 1 if n ¨ 2,

let q be a number satisfying 3¤2 ² q ° ð if n ¨ 3.

Extend the energy function ψ Ú Dn
+ r R to  Ú Dn r R by setting  �FÙdÙb� ¨ ð

if detF ² 0 and assume that the following conditions hold:
(i) there exists a continuous convex and bounded from below function Φ Ú D̃n r

RT  ð( such that

 �FÙdÙb� ¨ Φ�b�FÙdÙb�� (8.3)

for every �FÙdÙb� X D
nÛ

(ii) we have

ψ�FÙdÙb� ³














c�@F@p + @d@r + @b@s� + d if n ¨ 2Ù
c�@F@p + @ cofF@q + @d@r + @b@s� + d if n ¨ 3

for some c ± 0Ù d X R and all �FÙdÙb� X D
n
+Ø

IfS contains an element of finite total energy then there exists a σ ¨ �yÙdÙb� X S

such that
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E�σ� ² E�o�
for all o X SÛ each such a σ satisfies

det∇y ± 0 for almost every point of ΩØ

Note that the continuity ofΦ, the definition of  Ù and (8.3) imply that ψ�FÙdÙb� r
ð if detF r 0Ø
Proof Let n ¨ 3 and assume that q ± 3¤2 rather than q ³ 3¤2 to simplify the
matters; the case q ¨ 3¤2 is similar but slightly more complicated (cf. [32; Proof of
Theorem 5. 1, Case 2] for purely elastic bodies).

In the proof, we are going to apply Propositions 10.1 and 10.2, below. These
propositions involve hypotheses on the exponents; we leave to the reader to verify
that the hypotheses of the present theorem on pÙ qÙ r Ù and s are chosen exactly to
satisfy the hypotheses of Propositions 10.1 and 10.2.

Let σk ¨ �ykÙdkÙbk� X S be a minimizing sequence and write Fk ¨ ∇yk
for brevity. The coercivity condition (ii) implies that the sequence yk is bounded in
W 1Ùp�ΩÙR3�, the sequence cofFk is bounded in Lq�ΩÙM3�3�, the restrictions of dk
and bk toΩ are bounded in Lr�ΩÙR3� and Ls�ΩÙR3�Ù respectively, and the restric-
tions of dk and bk to Ωc are bounded in L2�ΩcÙR3�Ø The reflexivity of these spaces
implies that it is possible to extract a subsequence of the sequence σk ¨ �ykÙdkÙbk�Ù
again denoted by σk, such that

yk u y in W 1Ùp�ΩÙR3�Ù

dk u d in















Lr�ΩÙR3�Ù
L2�ΩcÙR3�Ù

bk u b in















Ls�ΩÙR3�Ù
L2�ΩcÙR3�

for some �yÙdÙb� the indicated spaces. Proposition 10.1 then implies that

cofFk u cofF in Lq�ΩÙM3�3�Ù (8.4)

det Fk u det F in L2q¤3�Ω�Ø (8.5)

Furthermore, the components of the vector Fd with a general F ¨ ∇y and a general
d are Fi ċ d where Fi ¨ �Fi1ÙFi2ÙFi3� and since

curlFi ¨ 0Ù div d ¨ 0Ù
the div–curl lemma Proposition 10.2 implies

Fkdk u Fd in L1�ΩÙR3� and similarly Fkbk u Fb in L1�ΩÙR3�.
To summarize, we have

b�FkÙdkÙbk� u b�FÙdÙb� in L1�Ω� (8.6)

and hence Proposition 10.3 gives

lim inf
krð

�
Ω

Φ�b�FkÙdkÙbk�� dx ³ �
Ω

Φ�b�FÙdÙb�� d xØ
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This can be rewritten as

lim inf
krð

�
Ω

 �FkÙdkÙbk� dx ³ �
Ω

 �FÙdÙb� d xØ (8.7)

The integral on the right–hand side is finite and the fact that  ¨ ð if det F ² 0Ù we
see that det∇y ± 0 for almost every x X Ω. Furthermore, the weak form of (8.1)1
reads

�
R3

dk ċ ∇φ dx ¨ 0Ù �
R3

bk ċ ∇φ dx ¨ 0

for each indefinitely integrable function φ Ú R
3 r R with compact support. The

convergence indicated in (8.6)4Ù5 then yields

�
R3

d ċ ∇φ dx ¨ 0Ù �
R3

b ċ ∇φ dx ¨ 0Ù

i.e.,
div d ¨ 0Ù div b ¨ 0 in R

3 in the sense of distributions.

As one also finds that yk ¨ 0 on ãΩ implies y ¨ 0 on ãΩÙ we see that the triplet
σ ¨ �yÙdÙb� belongs to SØ Also, trivially in view of (8.2),

lim inf
krð

�
Ωc

J−1�@Fdk@2 + @Fbk@2� d x ³ �
Ωc

J−1�@Fd@2 + @Fb@2� d xÙ (8.8)

lim
krð

�
Ω

yk ċ g d x ¨ �
Ω

y ċ g d xØ (8.9)

Inequalities (8.7)–(8.9) can be collected to show that

lim inf
krð

E�σk� ³ E�σ�

which shows that σ is the required minimizer. This completes the proof in the case
n ¨ 3Ø

The proof is similar if n ¨ 2Ø Instead of Proposition 10.1 one has to use the
simpler result of Reshetnyak [40, 42] and Ball [1] that yk u y inW 1Ùp�ΩÙR2� with
p ± 2 implies det Fk u F in Lp¤2�Ω�Û moreover, one more use of the div–curl
lemma Proposition 10.2 is needed to show that dk u d in Lr�ΩÙR2� and bk u b

in Ls�ΩÙR2� implies that dk � bk u d � b in L1�Ω�Ø For this, one has to identify
the sequence gk of Proposition 10.2 with �d2ÙkÙ−d1Ùk� so that div dk ¨ 0 reads
curlgk ¨ 0Ø è

9 Appendix A: rank 1 convex and rank 1 affine functions

The reader is referred to [1, 6] and [33] for the following notions.

9.1 Definitions Let g Ú Mn�n r R̄Ø
(i) g is said to be rank 1 convex if

g�F + tξ � η� ² �1 − t�g�F� + tg�F + ξ � η� (9.1)

for every t X �0Ù 1�, every F X M
n�n and every ξÙ η X R

nØ
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(ii) g is said to be rank 1 affine if it taken only finite values and (9.1) holds with the
equality sign for every tÙ FÙ ξÙ and η as in (i).

(iii)The rank 1 convex envelope Rg Ú Mn�n r R̄ of g is defined by

Rg�F� ¨ sup !h�F� Ú h is rank 1 convex and h ² g on M
n�n)Ù

F X M
n�nØ

The following result is standard.

9.2 Lemma ([11], [9], [1; Theorem 4.1]) A continuous function g Ú Mn�n r R is

rank 1 affine if and only if g is a linear combination, with constant coefficients, of the

functions

1Ù FÙ det FÙ if n ¨ 2Ù
1Ù FÙ cofFÙ det F if n ¨ 3Ø











(9.2)

10 Appendix B: weak convergence

We here gather some basic facts about maps that are continuous under the weak con-
vergence.

Let 1 ² p ² ð and let θk and θ be measurable functions on open subset Ω of
R
nØ In this situation, we define the following three types of weak convergence:

θk u θ in Lp�ΩÙRm�Ù•
θk o θ in M�ΩÙRm�Ù•
θk u θ in W 1Ùp�ΩÙRm�•

which mean, respectively,
• that θÙ θk X Lp�ΩÙRm� and

�
Ω

θk ċ φ dx r �
Ω

θ ċ φ dx (10.4)

for each φ X Lq�ΩÙRm� where 1¤p + 1¤q ¨ 1Û we then say that the sequence
θk converges weakly to θ in Lp�ΩÙRm�Û

• that θÙθk X L1�ΩÙRm� and (10.4) holds for each continuous functionφ Ú Rn r
R
m which vanishes outsideΩÛwe then say that the sequence θk converges weak 

to θ in the sense of measures;
• that θÙ θk X W 1Ùp�ΩÙRm� and θk u θ in Lp�ΩÙRm� and ∇θk u ∇θ in

Lp�ΩÙMm�n�Û we then say that θk converges weakly to θ in W 1Ùp�ΩÙRm�Ø
If p ¨ ðÙ we should actually write o instead of u and speak about the weak 

convergence; however, this is consistently ignored here.

10.1 Proposition (Müller, Tang & Yan [34]) LetΩ be a bounded open subset of Rn

where n is arbitrary, let

p ³ n − 1Ù q ± n¤�n − 1�
and let yÙ yk X W 1Ùp�ΩÙRn� satisfy
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yk u y in W 1Ùp�ΩÙRn�Ù (10.5)

cofFk is bounded in Lq�ΩÙMn�n� (10.6)

where F ¨ ∇y, Fk ¨ ∇yk. Then

cofFk u cofF in Lq�ΩÙMn�n�Ù (10.7)

det Fk u det F in Lr�Ω�Ù r ¨ q�n − 1�¤nØ (10.8)

If q ¨ n¤�n − 1� and det Fk ³ 0 then instead of (10.8) we have

detFk u det F in L1�K�Ù

for all compact subsets K ⊂ ΩØ

10.2 Proposition (Murat [35], Tartar [49]) Let Ω ⊂ R
n be open bounded and let

1 ° pÙq ° ð satisfy 1¤p+1¤q ¨ 1ØSuppose dÙdk X Lp�ΩÛRn�ÙgÙgk X Lq�ΩÙRn�
are sequences such that

dk u d in Lp�ΩÙRn�
gk u g in Lq�ΩÙRn�Ù
div dk r div d in W−1Ù1�Ω�Ù
curl gk r curlg in W−1Ù1�Ω�Ø

Then

dk ċ gk u d ċ g in M�Ω�Ø

HereW−1Ù1�Ω� is the dual ofW 1Ùð
0

�Ω�.

10.3 Proposition (Reshetnyak [41], Ball &Murat [3]) LetΦ Ú Rm r R̄ be convex,

lower semicontinuous and bounded below. Let θÙ θk X L1�ΩÙRm� with θk o θ in

the sense of measures. Then

lim inf
jrð

�
Ω

Φ�θk� d x ³ �
Ω

Φ�θ� d xØ
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