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Abstract

We consider a class of ansätze for the construction of exact solutions of the Einstein-nonlinear

σ-model system with an arbitrary cosmological constant in (3+1) dimensions. Exploiting a geo-

metric interplay between the SU(2) field and Killing vectors of the spacetime reduces the matter

field equations to a single scalar equation (identically satisfied in some cases) and simultaneously

simplifies Einstein’s equations. This is then exemplified over various classes of spacetimes, which

allows us to construct stationary black holes with a NUT parameter and uniform black strings,

as well as time-dependent solutions such as Robinson-Trautman and Kundt spacetimes, Vaidya-

type radiating black holes and certain Bianchi IX cosmologies. In addition to new solutions, some

previously known ones are rederived in a more systematic way.

1 Introduction

Nonlinear σ-models have many important applications, e.g., in quantum field theory and statistical

mechanics, cf., e.g., [1, 2] and references therein. In particular, the SU(2) nonlinear σ-model is a low

energy effective model for pion interactions. This model can be extended by adding a so called Skyrme

term in order to admit stable solitonic solutions. In this way the Skyrme model can describe pions as

well as baryons in (3+1) dimensions [1,2]. The field equations can be described as a system of non linear

partial differential equations which are extremely difficult to solve. Not surprisingly, the coupling to

gravity makes the problem even more complicated and additionally requires also Einstein’s equations
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to be solved. For this reason, a lot of work has been devoted to numerical studies, cf., e.g., [3–15] and

references therein.

Finding exact solutions of the Einstein-nonlinear σ-model or Einstein-Skyrme system is thus not

an easy task. Nevertheless, having in mind a specific physical system, the choice of a good ansatz for

the matter field and the spacetime metric may reduce the complexity of the problem. A well-known

example is given by the hedgehog ansatz in the presence of spherical symmetry, considered in this

context (without backreaction) in [3, 16] and further used (also with backreaction) in a number of

works, see, e.g., [17–19] for reviews and more references. A generalizations of the hedgehog ansatz for

the Skyrme-Einstein system beyond spherical symmetry has been constructed in [20] and applied to

spacetimes which possess plane or hyperbolic symmetry or are stationary and axisymmetric (see [21]

for earlier results for the SU(2) nonlinear σ-model). With similar techniques, topologically non-trivial

solutions in curved spacetimes have been obtained in [22].

In the present paper we construct further extensions of the ansatz used in [20–22].1 For simplicity,

we restrict ourselves to the SU(2) nonlinear σ-model, without the Skyrme term.2 On the one hand,

we will show that certain solutions obtained in various earlier papers can be in derived in a unified,

more sistematic way. On the other hand, we will demonstrate that the same method can also be

used to construct some new solutions, and further allows one to drop the requirement of spacetime

symmetries assumed in previous works (at least under certain circumstances, as we shall explain in

the following). This enables one, in particular, to construct time-dependent Robinson-Trautman or

Kundt spacetimes [23] sourced by the SU(2) field. In passing, we will additionally observe that some

of the proposed ansätze correspond to truncations of the theory which make it effectively equivalent

to Einstein gravity coupled to (depending on the concrete ansatz) two axionic fields, a single scalar

field or an anisotropic fluid. Some of the obtained solutions can thus be reinterpreted also in those

contexts, and viceversa.

The structure of the paper is as follows. In section 2 we briefly review the theory of interest and

discuss two possible parametrizations of the SU(2) fields. Based on those, in section 3 we present

the ansätze for the SU(2) fields and for the spacetime geometries that we are going to consider. In

sections 4–7 we classify the exact solutions according to the considered ansätze and present several

explicit examples. The concluding section 8 is devoted to a brief summary of the results and further

comments. An appendix contains a few remarks about test fields in the Kerr spacetime.

1The ansatz of [20–22] is called a “generalization” of the hedgehog ansatz in that it applies to certain spacetimes
which do not possess spherical symmetry, as opposed to the standard hedgehog ansatz. In turn, the various ansätze
considered in the present paper can all be generically referred to as “extensions of the generalized hedgehog ansatz”
in the sense that they are inspired by [20–22] and take advantage of similar (but not identical) interplays between the
internal space and spacetime coordinates (and can also apply to spacetimes with less or no symmetries, at least in some
cases, cf. sections 4.3, 4.4, 5.3, 5.4).

2It is worth pointing out that one possible way to evade Derrick’s scaling argument (which prohibits static solitonic
solutions for the nonlinear σ-model) [1] is to couple it with gravity. For this reason, the self-gravitating SU(2) nonlinear
σ-model without Skyrme term has its own physical interest.
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2 The action

We consider the Einstein-nonlinear σ-model system in four dimensions in the presence of an arbitrary

cosmological constant Λ. The degrees of freedom of the nonlinear σ-model are encoded in an SU(2)

group-valued scalar field U . It arises as a special case of the Einstein-Skyrme theory by setting the

Skyrme term to zero [1, 2]. The system action is the sum of a gravitational action and a nonlinear

σ-model action

S = SG + Sσ, (1)

where

SG =
1

2κ

∫
d4x
√
−g(R− 2Λ), Sσ =

K

4

∫
d4x
√
−gTr (RµRµ) , (2)

with the Maurer-Cartan 1-form given by

Rµ = U−1∇µU , U ∈ SU(2). (3)

Here κ = 8πG, G is Newton’s constant, the parameter K (of dimension 1/G) is positive and R is the

Ricci scalar. In our conventions c = ~ = 1, the spacetime signature is (−,+,+,+) and Greek indices

run over spacetime.

The Einstein equations derived from (1) are

Gµν + Λgµν = κTµν , (4)

with

Tµν = −K
2

Tr

(
RµRν −

1

2
gµνR

αRα

)
, (5)

while the matter field equations read

∇µRµ = 0. (6)

It is a standard result (cf., e.g., appendix E of [24]) that the latter imply Tµν;ν = 0.

2.1 Parametrizations of the SU(2) field

It is useful to define the three invariant 1-forms Rjµ by writing Rµ as

Rµ = iRjµσj (j = 1, 2, 3), (7)

where σj are the Pauli matrices. We adopt the standard parametrization of the SU(2)-valued scalar

U(xµ)

U±1(xµ) = Y 0(xµ)I± iY j(xµ)σj ,
(
Y 0
)2

+ Y iYi = 1 , (8)

where I is the 2× 2 identity, which with (3) and (7) gives

Riµ = εijkYj∇µYk + Y 0∇µY i − Y i∇µY 0. (9)
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The second of (8) means that Y I = (Y 0, Y i) define a round unit 3-sphere in the internal space.

Defining its S3 metric

Gij = δij +
YiYj

1− Y kYk
, (10)

the action (2) takes the form

Sσ = −K
∫
d4x
√
−g
[

1

2
Gij(∇µY i)(∇µY j)

]
, (11)

while the energy-momentum tensor (5) becomes

Tµν = K

(
Sµν −

1

2
gµνS

)
, (12)

with

Sµν = δijR
i
µR

j
ν = ∇µY 0∇νY 0 +∇µY i∇νY i = Gij(Y )∇µY i∇νY j , S = gµνSµν . (13)

This enables one the rewrite the Einstein equations (4) in the useful form

Rµν = Λgµν + κKSµν , (14)

where Rµν is the Ricci tensor. The trace of (14) clearly reads R = 4Λ + κKS.

For the purposes of the present paper, two different parametrizations of S3 turn out to be conve-

nient.

2.1.1 Coordinates adapted to two commuting Killing vectors (Hopf coordinates)

A useful set of coordinates (H,A,G) in the internal space is defined by (cf., e.g., [25])

Y 0 = cosH sinA, Y 1 = sinH cosG,

Y 3 = cosH cosA, Y 2 = sinH sinG, (15)

where H ∈ [0, π/2], while A ∈ [0, 2πk1], G ∈ [0, 2πk2] are both periodic Killing coordinates of S3, with

k1 and k2 positive integers.3 The tensor Sµν (13) thus takes the form

Sµν = (∇µH)(∇νH) + cos2H(∇µA)(∇νA) + sin2H(∇µG)(∇νG). (16)

Next, defining the combinations of the Killing coordinates

Φ+ = G+A, Φ− = G−A, (17)

3There is apparently some redundancy in the above periodicities of the Killing angles, since the standard choice
k1 = k2 = 1 already covers the whole S3 – however, this becomes physically meaningful in certain applications [26].
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enables one to write the field equations (6) as

�H − 1

2
sin(2H)∇Φ+ · ∇Φ− = 0, (18)

sin(2H)�Φ+ + 2∇H · [∇Φ− + cos(2H)∇Φ+] = 0, (19)

sin(2H)�Φ− + 2∇H · [∇Φ+ + cos(2H)∇Φ−] = 0, (20)

where the simple identity (gµνhf,ν);µ = ∇h · ∇f + h�f has been used.

2.1.2 Hypersferical coordinates

Another useful set of coordinates consists of the standard hyperspherical4 coordinates (α, F,G), defined

by

Y 0 = cosα, Y i = ni sinα ,

n1 = sinF cosG , n2 = sinF sinG , n3 = cosF , (21)

where α, F ∈ [0, π], while G ∈ [0, 2π] is a periodic Killing coordinate. Using these, (13) takes the form

Sµν = (∇µα) (∇να) + sin2 α
[
(∇µF ) (∇νF ) + sin2 F (∇µG) (∇νG)

]
, (22)

while the field equations (6) can be rewritten as

−�α+
sin (2α)

2

[
(∇µF ) (∇µF ) + sin2 F (∇µG) (∇µG)

]
= 0 , (23)

− sin2 α�F − sin (2α) (∇µF ) (∇µα) + sin2 α
sin (2F )

2
(∇µG) (∇µG) = 0 , (24)

sin2 F sin2 α�G+ sin (2α) sin2 F (∇µG) (∇µα) + sin (2F ) sin2 α (∇µG) (∇µF ) = 0 . (25)

3 The ansätze

The system of field equations (4)–(6) is very complicated, in general. However, we will show that

they simplify considerably if one chooses a spacetime geometry suitably adapted to the SU(2) field

(this extends previous works such as [20–22,26], more comments will be given throughout the paper).

To this end, both the coordinate systems of sections 2.1.1 and 2.1.2 will prove useful, leading to

physically interesting solutions and a transparent geometric interpretation thereof. We will denote by

(x1, x2, x3, x4) the generic spacetime coordinates (without specifying which one is time, for now).

3.1 Ansätze in coordinates adapted to two commuting Killing vectors

Let us start from the internal space coordinates (H,A,G) of (15). First, let us assume x1 = A,

and that A is a Killing coordinate not only of the internal 3-space, but also of the four-dimensional

4Throughout the paper, we will use the adjective “hyperspherical” when referring to S3 and “spherical” when referring
to S2.
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spacetime. This gives
√
−g�A = (

√
−ggAµ̂),µ̂, where µ̂ = 2, 3, 4. If one further assumes that gAµ̂ = 0

for all coordinates xµ̂ (except, possibly, for additional Killing coordinates) then �A = 0. Similar

considerations apply to G, which can be taken as a second Killing coordinate.

To summarize, we have defined two of the spacetime (Killing) coordinates as

x1 = A, x2 = G, (26)

and assumed the metric conditions

gA3 = gA4 = 0 = gG3 = gG4. (27)

This gives rise to various adapted spacetime geometries for which �A = 0 = �G (⇔ �Φ± = 0)

identically. Among these, we will consider the following possible subcases.

(i) Toroidal ansatz: H =const∈ (0, π/2). This means that the SU(2) field takes a toroidal configu-

ration S1 × S1 (unless A or G are further restricted) and

Sµν = cos2H(∇µA)(∇νA) + sin2H(∇µG)(∇νG). (28)

The special case H = π/4 corresponds to the two S1 having the same radius. We observe

that here the two scalars A and G can be effectively reinterpreted as free axionic fields, since

the matter term in Einstein’s equations (14) reduces to the axionic one (cf., e.g., [27]), while

�A = 0 = �G by construction.

(ii) Circular ansatz: H = 0. This gives

Sµν = (∇µA)(∇νA), (29)

and includes, in particular, the “pionic vacuum” when A = π/2. Here A acts as a single axion

(or a free, massless dilaton, cf. [20] for more comments), while G becomes a stealth field (i.e.,

it does not contribute to Tµν) – A becomes a null field (pure radiation) in the special subcase

gAA = 0.

(iii) Hypersferical ansatz: x4 = H and, by (27), gHA = 0 = gHG. Here all the SU(2) fields are

dynamical and Sµν is fully general, i.e., of the form (16). Among the ansätze considered in this

paper, this one will be the only one giving rise to a non-zero topological charge (cf. [22, 28] for

comments related to the solutions of section 7).5

The extra assumptions (i), (ii) or (iii) imply ∇H · ∇Φ± = 0, so that the field equations (19) and

(20) become identities. In case (ii) also (18) is identically satisfied, while in case (i) it simplifies since

�H = 0.

5In general, SU(2)-valued scalar fields may possess a non-trivial topological charge which, mathematically, is a suitable
homotopy class or winding number (cf., e.g., [1]).
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3.2 Ansatz in hypersferical coordinates

Similar arguments also apply in the coordinate system (α, F,G) of (21). In particular, if we assume

x1 = G to be Killing and gGµ̂ = 0 for all coordinates xµ̂ with µ̂ = 2, 3, 4 (except, possibly, for additional

Killing coordinates), then �G = 0. By further setting α = π/2 (this means that the SU(2) field takes

an S2 configuration), (23) becomes an identity, while (25) reduces to sin (2F )∇G ·∇F = 0. If we take

x2 = F (not being a spacetime Killing coordinate), then gGF = 0 (by our previous assumption), so

that also (25) is identically satisfied. In this work we will further assume, for simplicity, that also x3

is a spacetime Killing coordinate.

To summarize, we have defined three spacetime Killing coordinates

x1 = G, x2 = F, x3 (30)

and assumed the metric conditions

gGF = gG4 = 0. (31)

Since α = π/2, here one has

Sµν = (∇µF ) (∇νF ) + sin2 F (∇µG) (∇νG) . (32)

and the only remaining field equation (24) reads

�F − 1

2
sin(2F )∇G · ∇G = 0. (33)

We will now discuss separately the various ansätze described above in sections 3.1 and 3.2. We

emphasize that they provide, in general, only sufficient conditions in order for (at least some of) the

matter field equations to be satisfied, and not necessary ones. Indeed, we will construct also a few

examples where the above assumptions can be relaxed, giving rise to solutions with less symmetries.

On the other hand, it should also be noted that, even when the assumptions on the metric coefficients

are satisfied, it is not guaranteed that the remaining field equations (18) or (33) admit a solution.

For example, the Kerr metric in Boyer-Lindquist coordinates obeys the assumptions of the above

ansatz (30), (31), however (33) is not satisfied when there is non-zero angular momentum (see also

appendix A). A similar comment applies also to the C-metric in spherical-type coordinates (cf., e.g.,

section 14.1.1 of [29]) when the acceleration parameter is non-zero. It is therefore non-trivial that

some spacetime exist which admit solutions of (18) or (33) (and that, moreover, also allow for the

backreaction of the pionic fields to be consistently taken into account).

4 Toroidal ansatz

The first class of solutions we consider corresponds to the ansatz (i) of section 3.1. It will lead

to toroidal black holes, their extremal (i.e., near-horizon) limits, and their extensions with a NUT

parameter or in the Robinson-Trautman and Kundt classes.
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In the parametrization (15), let us assume that

H =
π

4
, (34)

and the remaining pionic fields define two spacetime Killing coordinates

(x1, x2) ≡ (A,G). (35)

As explained in section 3.1 (case (i)), assuming

gA3 = gA4 = 0 = gG3 = gG4, (36)

ensures that the pionic field equations reduce to (18), which now gives

gAA = gGG. (37)

With the above assumptions, one can write the metric as

ds2 = g
(1)
BC(x3, x4)dxAdxB + g

(2)
bc (x3, x4)dxadxb, (38)

where B,C = 1, 2 and b, c = 3, 4, while (37) becomes equivalent to

gAA = gGG. (39)

This case includes a subset of stationary axisymmetric spacetimes, but the two Killing vectors can

also be both spacelike. With no loss of generality, a (x3, x4) coordinate transformation can be used to

set g
(2)
33 = ±g(2)

44 (the sign depending on the choice of a time coordinate) and g
(2)
34 = 0, if desired.

While the pionic field equations are identically satisfied in any spacetime (38) with (37), it is not

a priori obvious that Einstein’s equations (14) can be consistently solved. We will now show that this

can be done explicitly at least in some special cases of particular physical interest. Moreover, this

will subsequently inspire educated guesswork that will lead to more general solutions of the coupled

Einstein-nonlinear σ-model equations which go beyond the original ansatz.

4.1 Special case with adapted 2-geometry: toroidal black holes and their extremal

limit

For simplicity, let us assume from now on that

gAG = 0. (40)

This means that the metric of the 2-space (A,G) is proportional to the tensor (28) (with (34); recall

(39)) and that, to preserve the Lorentzian signature, gAA > 0. Two cases need to be analyzed

separately.
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4.1.1 Case dgAA 6= 0: toroidal black hole

In this case we can define coordinates (x3, x4) = (t, r) such that

r2 = gAA. (41)

For gtt 6= 0, a new coordinate t′(t, r) can always be defined (without changing r) such that gt′r = 0,

i.e., (dropping the primes) the metric takes the form ds2 = −f(t, r)dt2 + h(t, r)dr2 + r2(dA2 + dG2).

Next, it is not difficult to see (similarly as in the proof of Birkhoff’s theorem, cf., e.g., [30]) that the

solution to Einstein’s equations is given (up to normalizing t) by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dA2 + dG2), f(r) = −κK

2
− 2m

r
− Λ

3
r2. (42)

This spacetime represents a toroidal black hole in an asymptotically locally AdS spacetime. It was

found and studied in [26]. The (bi-)axionic counterpart of this solutions (dualized to 3-forms) was

obtained earlier in [31] (see also [27], and [32] in higher dimensions). The same metric, but supported

by a complex scalar field, was found in [33].

The case gtt = 0 turns out to be incompatible with Einstein’s equations and therefore there are no

other solutions in this branch.

4.1.2 Case dgAA = 0: AdS2 × S1 × S1

Here gAA = b20 is a positive constant. Einstein’s equations then imply that the 2-space spanned by

(x3, x4) has constant Gaussian curvature given by Λ and that 2b20Λ + κK = 0. The metric can thus

be reduced to a direct product AdS2 × S1 × S1

ds2 = −|Λ|r2dt2 +
dr2

|Λ|r2
+ b20(dA2 + dG2), Λ = −κK

2b20
< 0. (43)

This spacetime can also be obtained as the extremal limit of (42) (when Λ < 0). It is worth recalling

that the same metric also describes an electrovac solution in the standard Einstein-Maxwell theory [34]

(but with a different value of Λ; see also [35] and references therein for its role as a near-horizon

geometry).

4.2 Extended ansatz I: NUT metric with flat base space

The assumption that both pionic fields (A,G) are identified with spacetime Killing coordinates can

be in some cases relaxed. An interesting example when this occurs is given by the NUT-like metric

ds2 = −f(r)(dt− 2`ydx)2 +
dr2

f(r)
+ (r2 + `2)(dx2 + dy2). (44)

It is easy to see that defining

A = x, G = y, (45)
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the pionic field equations (18)–(20) are satisfied identically (even if ∂y is not a Killing vector). This is

true for any choice of f(r), which enables us to take into account also the effect of the backreaction.

Namely, a solution of the Einstein equations (14) sourced by (45) is given by metric (44) with

f(r) =
−Λ

3 r
4 − 2Λ`2r2 − 2mr + Λ`4 − κK

2 (r2 − `2)

r2 + `2
. (46)

For K = 0 this reduces to the Λ-NUT solution with a flat base space [36–38], while for ` = 0 to the

toroidal black hole (42). This nutty spacetime can thus also be reinterpreted as an extension of the

bi-axionic solution of [31].

4.3 Extended ansatz II: Robinson-Trautman solutions

A different extension of the ansatz of section 4.1.1 enables one to construct somewhat more general

solutions. Namely, since the toroidal black holes (42) clearly belong to the well-known Robinson-

Trautman class of spacetimes [23], it is natural to study whether one can obtain other pionic solutions

in such a family of spacetimes.

Let us consider the general Robinson-Trautman line-element [23]

ds2 = 2r2P−2dζdζ̄ − 2dudr − 2Hdu2, (47)

where P = P (u, ζ, ζ̄), H = H(u, r, ζ, ζ̄). If we identify

ζ =
A+ iG√

2
, (48)

then the field equations (18)–(20) are identically satisfied for any choice of P and H, since H is

constant (even if now A, G are generically not spacetime Killing coordinates).

Einsteins equations enable one to express the metric function H as

2H = ∆ lnP − κK

2
P 2 − 2r(lnP ),u −

2m(u)

r
− Λ

3
r2, (49)

up to solving the (modified) Robinson-Trautman equation

∆∆ lnP − κK

2
∆(P 2) + 12m(lnP ),u − 4m,u = 0, (50)

where ∆ ≡ 2P 2∂ζ∂ζ̄ is the Laplace operator in the 2-space (ζ, ζ̄).

The Weyl tensor component

Ψ2 = −m
r3
− κKP 2

12r2
, (51)

shows that these spacetimes are of Petrov type II or D (since Ψ0 = Ψ1 = 0). It also shows that the

pionic term produces a “non-standard” (slower) fall-off near infinity.

This family of solutions includes the static black hole (42) for the special choice P = 1, m =const
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(up to a simple coordinate transformation), but it also describes time-dependent solutions. When (50)

is not satisfied, the energy-momentum contains an additional pure radiation contribution Tuu (with

∆∆ lnP − κK
2 ∆(P 2) + 12m(lnP ),u − 4m,u > 0 by the null energy condition). The special case P = 1

gives radiating Vaidya-type solutions, as noticed in [31] in the axionic case.

It would be interesting to find other explicit solutions of (50) and study their physical properties.

However, finding a general solution to (50) is a highly non-trivial problem also in the vacuum case

K = 0 (cf. [23] and references therein), therefore we leave this for possible future investigations.

4.4 Extended ansatz III: Kundt solutions

We now consider an extension of the ansatz of section 4.1.2. Since the latter spacetime belongs to the

Kundt class, let us start here with the general Kundt line-element [23]

ds2 = 2P−2dζdζ̄ − 2du(dv +Wdζ + W̄dζ̄ +Hdu), (52)

where again we have defined (ζ, ζ̄) using (48), and P,v = 0, W = W (u, v, ζ, ζ̄), H = H(u, v, ζ, ζ̄).

(Since ζ is dimensionless, here P has the dimension of an inverse length.)

The pionic field equations (19), (20) are satisfied iff

W,v = 0, (53)

which means that the Kundt vector field ∂v is recurrent, while (18) is satisfied identically (recall (34)).

Using the Ricci tensor components given in [23] with (53), it is easy to see that the Einstein equations

give

H = −1

2
Λv2 +H(1)(u, ζ, ζ̄)v +H(0)(u, v, ζ, ζ̄), (54)

along with the following differential equations6 for the unknown functions P , H(1), H(0) and W

∆ lnP = Λ +
κK

2
P 2, (55)

H(1)
,ζ + (P 2W ),ζζ̄ − 2(lnP ),ζ̄(P

2W ),ζ − µ,ζ =
κK

2
P 2W, (56)

∆
(
H(0) + P 2WW̄

)
− 2(P 2W̄ ),ζ̄(P

2W ),ζ − 2
[
µ,ζP

2W̄ + µ,ζ̄P
2W + µ,u + µH(1) + µ2

]
= κKP 4WW̄, (57)

where

µ ≡ 1

2
P 2(W̄,ζ +W,ζ̄)− (lnP ),u, (58)

is one of the Newman-Penrose coefficients.

6An additional equation coming from the term linear in v in the Einstein equation of boost weight −2 can be shown
to be a consequence of (55), (56) – therefore we do not display it (cf. [23] for a similar comment in the electrovacuum
case).
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These spacetimes are of Petrov type II or D, since Ψ0 = Ψ1 = 0, whereas

Ψ2 = −1

6
(∆ lnP + Λ), (59)

which is necessarily non-zero in view of (55) (except in the vacuum limit with Λ = 0 = ∆ lnP ). Note

also that ∆ lnP is the Gaussian curvature of the 2-surfaces of constant u and v (“wave surfaces”) [23],

which is not a constant in general because of the pionic term in (55) (as opposed to the (Λ-)vacuum

case [23,29]).

The only possible case with wave surfaces of constant curvature occurs when P is assumed to be a

non-zero constant b−1
0 such that Λ + κK

2 b−2
0 = 0 (the wave surfaces are thus flat). With the additional

simplifying assumption W = 0, one obtains the special solution (after gauging away the function

H(1)(u), cf. [23])

ds2 = 2b20dζdζ̄ − 2dudv +
[
Λv2 + f(u, ζ) + f̄(u, ζ̄)

]
du2 (Λ = −κK

2
b−2
0 ). (60)

This solution describes a non-expanding gravitational wave propagating in the AdS2×S1×S1 pionic

spacetime (43), to which it reduces for f = 0 (in slightly different coordinates – recall also (48)).

Similar solutions in the Einstein-Maxwell theory were found in [39,40] and further studied in [41,42].

The more general case W 6= 0 gives rise to gyratonic solutions similar to those analyzed (in the

Einstein-Maxwell theory) in [43] and may deserve a separate investigation.

5 Spherical ansatz

We describe now the second class of solutions, which corresponds to the ansatz of section 3.2. It will

lead to spherical black holes, their extremal limits, and their extensions with a NUT parameter or in

the Robinson-Trautman and Kundt classes.

In the parametrization (21), we assume

α =
π

2
, (61)

and define the spacetime coordinates

(x1, x2, x3, x4) ≡ (G,F, t, r), (62)

where (G, t) are assumed to be Killing coordinates. We further require

gGF = 0 = gGr. (63)

As explained in section 3.2, in any such spacetime the pionic field equations reduce to the single

equation (33). Some coordinate freedom can be employed to simply the line-element depending on

whether gFF = 0 or not.
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If gFF 6= 0, a redefinition of t 7→ t′ = t+ T (r, F ), r 7→ r′ = R(r, F ) can be used to set

gtF = 0 = grF . (64)

In terms of the covariant metric, (63) and (64) read

gtF = grF = gFG = 0, gttgrG − gtGgtr = 0, (65)

i.e.,

ds2 = b2(r, F )dF 2 + gij(r, F )dxidxj , (66)

where i, j = 1, 3, 4, and the 3-metric gij is constrained by the second of (65) (for definiteness we have

assumed that ∂F is spacelike). Recall also that one still needs to solve the pionic equation (33).

If gFF = 0, we can redefine t 7→ t′ = t+ T (r, F ) such that also7

gtF = 0, (67)

so that the covariant metric is constrained by

gtr = grr = grG = 0, gttgFG − gtGgtF = 0, (68)

and necessarily grF 6= 0. In this case, requiring det g < 0 implies gttgGG > 0 and from (33) one obtains

grF =
(gttgGG − g2

tG),r
gtt sin(2F )

. (69)

5.1 Special diagonal subcase with adapted 2-geometry (gFF 6= 0): spherical black

holes and their extremal limit

Let us consider the ansatz (66) and further assume that the 3-metric gij is diagonal (which guarantees

that (65) is satisfied) and, in addition,

b,F = 0, gGG = b sin2 F. (70)

From (33) one immediately obtains grr = c1(r)/gtt, while a linear combination of the Einstein

equations (FF ) and (GG) gives gtt,F = 0.

7Except when grF = 0. However, this case can be neglected since one has �F = 0, for which (33) admits no solution
(det g 6= 0 requiring gGG 6= 0).
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5.1.1 Case b,r 6= 0: spherical black hole

In this case we can redefine r 7→ r′(r) such that r′ = b(r). Integrating Einstein’s equations then yields

(dropping the prime and after a constant rescaling of t)

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dF 2 + sin2 FdG2), f(r) = (1− κK)− 2m

r
− Λ

3
r2. (71)

For Λ = 0, this solution was obtained in [44, 45] and describes a global monopole inside a black hole

(in the σ-model approximation) – it is not asymptotically flat but contains a solid angular deficit. The

generalization with Λ 6= 0 was obtained in [46] and with a Skyrme term in [20].

5.1.2 Case b,r = 0: Levi-Civita–Bertotti–Robinson and Nariai solutions (A)dS2×S2 and

R1
1 × S2

Here gFF = b20 =const, while a redefinition of r allows us to set grr = 1/gtt. Einstein’s equations then

lead to

ds2 = −f(r)dt2 +
dr2

f(r)
+ b20(dF 2 + sin2 FdG2), f(r) = −Λr2 + c1r + c2, Λ =

1− κK
b20

. (72)

This is a direct product of two 2-spaces of constant Gaussian curvature equal to Λ and 1/b20, respec-

tively. Depending on the sign of 1− κK, this is thus an (A)dS2 × S2 or R1
1 × S2 spacetime, similar to

the well-known electrovac solutions of [34, 47–50]. This metric can also be obtained as the extremal

limit of (71) (when 1− κK 6= 0). It is conformally flat iff the constants are fine tuned as κK
2 = 1.

5.2 NUT metric with spherical base space

Although the static black hole of section 5.1.1 cannot be extended to a pionic version of the Kerr black

hole (as discussed in appendix A), it does admit a generalization to a stationary NUT spacetime with

a spherical base space. To see this, let us consider the line-element

ds2 = −f(r)

(
dt+ 4` sin2 θ

2
dφ

)2

+
dr2

f(r)
+ (r2 + `2)(dθ2 + sin2 θdφ2). (73)

This clearly has the form of ansatz (66), provided one takes a pionic field configuration with

F = θ, G = φ. (74)

Furthermore, using (73), (74) it is easy to verify that also the remaining pionic field equation (33) is

satisfied identically, for any choice of f(r). This freedom enables us to take into account also the effect

of the backreaction on the metric. Namely, a solution of the Einstein equations (14) sourced by (74)
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(recall that α = π/2) is given by metric (73) with

f(r) =
−Λ

3 r
4 + r2(1− 2Λ`2)− 2mr − `2(1− Λ`2)− κK(r2 − `2)

r2 + `2
. (75)

This solution was already obtained in [20] (including a Skyrme term). For ` = 0 it reduces to the

black hole (71), while for K = 0 it gives the vacuum Taub-NUT solution [36,51] with Λ [37,38]

5.3 Extended ansatz I: Robinson-Trautman solutions

Similarly as in section 4.3, it is natural to consider an extension of the spherical black holes (71) to

the more general Robinson-Trautman class. The line-element is still given by (47), but now with the

identification

ζ =
√

2eiG tan
F

2
. (76)

Taking α = π/2 (as before), the field equations (23)–(25) are identically satisfied for any choice of P

and H (even if now the spacetime does not possess any Killing vectors, generically).

Defining

Q ≡ 1 + tan2 F

2
= 1 +

1

2
ζζ̄, (77)

Einsteins equations give

2H = ∆ lnP − κKP 2Q−2 − 2r(lnP ),u −
2m(u)

r
− Λ

3
r2, (78)

along with the modified Robinson-Trautman equation (as before ∆ ≡ 2P 2∂ζ∂ζ̄)

∆∆ lnP − κK∆(P 2Q−2) + 12m(lnP ),u − 4m,u = 0. (79)

As in section 4.3, it is easy to argue that these spacetimes can only be of Petrov type II or D, with

a 1/r2 fall-off of Ψ2 due to the pionic term.

The static black holes (71) are recovered in the special case P = Q, m =const. When (79) is not

satisfied, the energy-momentum contains also a pure radiation term Tuu – in particular, for P = Q,

m,u 6= 0 one a pionic extension of the Vaidya solution [23]. As observed in section 4.3, it would

be interesting to study this class of solutions more systematically, which would deserve a separate

investigation.

5.4 Extended ansatz II: Kundt solutions

Following the ideas of section 4.4, we can similarly extend the ansatz of section 5.1.2 to more general

Kundt solutions. One starts again with the line-element (52), but now with the identification (76).

With α = π/2, the field equations (23)–(25) are identically satisfied provided (53) holds (while P and
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H remain arbitrary). Einstein’s equations again imply (54), but now with

∆ lnP = Λ + κKP 2Q−2, (80)

H(1)
,ζ + (P 2W ),ζζ̄ − 2(lnP ),ζ̄(P

2W ),ζ − µ,ζ = κKP 2Q−2W, (81)

∆
(
H(0) + P 2WW̄

)
− 2(P 2W̄ ),ζ̄(P

2W ),ζ − 2
[
µ,ζP

2W̄ + µ,ζ̄P
2W + µ,u + µH(1) + µ2

]
= 2κKP 4Q−2WW̄, (82)

where (58) and (77) are understood.

The Weyl scalar Ψ2 is again given by (59). These spacetimes are thus generically of Petrov

type II, however, the types III and N are now also possible (as opposed to the case of section 4.4).

First, imposing Ψ2 = 0 implies that the 2-space (ζ, ζ̄) have constant Gaussian curvature −Λ. Then,

compatibility with (80) requires Λ < 0, P =
√
−ΛQ and the fine-tuning κK

2 = 1 (and one has to solve

(81), (82) in a simplified form). A simple example (of type N) occurs for W = 0 = H(1), i.e.,

ds2 = 2|Λ|−1Q−2dζdζ̄ − 2dudv +
[
Λv2 + f(u, ζ) + f̄(u, ζ̄)

]
du2 (Λ < 0,

κK

2
= 1). (83)

This solution describes a non-expanding gravitational wave propagating in a conformally flat

AdS2 × S2 pionic background, to which it reduces for f = 0 (the latter is contained in the “near-

horizon” solution (72), up to a simple coordinate transformation). See [40–42,52] for similar solutions

in the Einstein-Maxwell theory.

6 Circular ansatz

Let us turn to the ansatz (ii) of section 3.1. It will lead to black string-type solutions.

In the parametrization (15), let us assume that

H = 0, (84)

and the remaining pionic fields define two spacetime Killing coordinates

(x1, x2) ≡ (A,G). (85)

As discussed in section 3.1 (case (ii)), assuming gA3 = gA4 = 0 = gG3 = gG4, ensures that the pionic

field equations are identically satisfied. One thus only needs to solve Einstein’s equations. We will

discuss this here only in one special case, which appears however of some interest. Moreover, thanks

to the comments in section 3.1, various solutions available in the literature on Einstein gravity coupled

to a massless scalar field can be reinterpreted as nonlinear sigma-model solutions within this ansatz.
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6.1 Special static case: black strings

Let us further assume here that the spacetime is static and define coordinates (x1, x2, x3, x4) ≡
(A,G, t, r). Because of the form of the energy-momentum tensor (cf. section 3.1), it is natural to

consider two possible different ansätze where the coordinates A and G play a different role, namely

ds2 = −f(r)dt2 + dr2/f(r) + r2dA2 + b20dG
2 and ds2 = −f(r)dt2 + dr2/f(r) + r2dG2 + b20dA

2, where

b0 is a constant (the case when gAA and gGG are both constant turns out to admit no solution here).

In the first case, integrating Einstein’s equations implies Λ = 0 and leads to the solution

ds2 = κK ln
r

r0
dt2 +

dr2

−κK ln r
r0

+ r2dA2 + b20dG
2 (Λ = 0), (86)

where r0 is an integration constant. This is the direct product of a (2+1)-dimensional electrostatic

solution found in [53–55] with a circle or arbitrary radius. It represents an object with a S1 × S1

horizon located at r = r0 and a static region for 0 < r < r0, which ends at a timelike curvature

singularity at r = 0 (since R = κK/r2), thus resembling the inner region of the Reissner-Nordström

spacetime. If reinterpreted as a scalar field solution (see section 3.1), the range of the “angular”

coordinates becomes arbitrary and the same solution can thus also describe a black string or a black

2-brane. It can be lifted to higher dimensions by simply taking the direct product with a Ricci-flat

space (see [56] for a recent discussion of a similar construction). It should be observed that a black

string solution similar to (86) was obtained and its thermodynamics discussed in [57] – that solution

however has Λ < 0 and in fact corresponds to a different ansatz for the SU(2) matter field.

The second solution is given by

ds2 = −
(
−µ− Λ

2
r2

)
dt2 +

dr2

−µ− Λ
2 r

2
+ r2dG2 + b20dA

2 Λ = −κK
b20

< 0, (87)

where again µ is an integration constant which we now assume to be positive (in order to have an event

horizon). Note that here the cosmological constant is necessarily negative. This is the direct product

of the vacuum BTZ black hole [58] with a circle, whose radius fixes the value of Λ. The same solution

was found in [59, 60] in the context of general relativity coupled to a scalar field (cf. the comments

in section 3.1), in which case the range of A is arbitrary (while G has still to be periodic in order for

sections at constant A to describe a BTZ black hole). It can be lifted to higher dimensions provided

an additional scalar field is introduced for each extra dimension (so as to support the cosmological

constant) [59]. Different BTZ black strings were discussed in [61]: those are vacuum solution and the

fourth dimension is necessarily warped.

7 Hyperspherical ansatz

Let us discuss now the last class of solutions considered in this paper, which corresponds to the

ansatz (iii) of section 3.1. It will lead to cosmological solutions (but also to their stationary “counter-

parts”) which, as mentioned in section 3, have a non-zero topological charge (see [22,28] and references
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therein for related comments).

In the parametrization (15), let us take

(x1, x2, x3, x4) ≡ (A,G, t,H), (88)

where (A,G) are Killing coordinates. As discussed in section 3.1 (case (iii)), assuming

gAH = gAt = 0 = gGH = gGt, (89)

the field equations reduce to (18). The metric has the form (38) (but without (39)).

7.1 Special case with adapted 3-geometry: LFRW cosmologies and Einstein’s

static universe

Let us assume

gAA = f(t,H) cos2H, gGG = f(t,H) sin2H, gAG = 0, f(t,H) ≡ gHH , (90)

where f is a positive function. This means that the metric of the 3-spaces at constant t is proportional

to the tensor (16). Similarly as in section 4.1.1, if gtt 6= 0 we can redefine t such that gtH = 0.8 Eq. (18)

then gives (up to normalizing t)

gtt = − 1

f(t,H)
, (91)

and all the matter field equations are now solved. Integrating the Einstein equation (tH) gives

f = [f1(t) +f2(H)]2, but a linear combination of the equations (tt), (HH) and (AA) then reveals that

f2 must be a constant and therefore f = f(t). Solving the remaining Einstein equation one arrives at

the final metric

ds2 = − dt2

f(t)
+ f(t)(dH2 + cos2HdA2 + sin2HdG2),

f(t) =
Λ

3
t2 + c1t+ c2, κK =

3c2
1 − 4Λc2

6
+ 2. (92)

This metric clearly describes a LFRW cosmology (and is thus conformally flat) with spherical

spatial sections. The pionic matter acts effectively as a (non-tilted) perfect fluid with 4-velocity
√
f∂t

and energy density ρ = 3K/(2f) and negative pressure p = −K/(2f), thus satisfying a barotropic

equation of state p = (γ − 1)ρ with γ = 2/3. We can expect that, since ρ + 3p = 0, accelerated

expansion occurs only when Λ > 0 (as we indeed demonstrate explicitly below). A constant shift of

t (under which the quantity 3c2
1 − 4Λc2 in (92) is invariant) can always be used to get rid of one of

the integration constants c1 and c2 (cf., e.g., [62]). One thus arrives at various canonical forms of the

8The case gtt = 0 turns out to be forbidden, as can be seen by first setting gHH = 0 by a redefinition of t, and then
considering the Einstein equation (tt) with (18).
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metric with either

c2
1 = 0, c2 = −3(κK − 2)/(2Λ), or c2

1 = 2(κK − 2), c2 = 0. (93)

Since one must ensure f(t) > 0, eq. (92) implies that κK − 2 > 0 if Λ < 0 and κK − 2 ≥ 0 if Λ = 0.

Introducing the standard cosmological time by dτ = f−1/2dt and depending on the possible signs of

Λ and κK − 2, similarly as in [62] one finds:

(i) for Λ < 0, f = c2 cos2

(√
|Λ|
3 τ

)
, κK − 2 > 0

(ii) for Λ > 0,

a) f = c2 cosh2

(√
Λ
3 τ

)
if κK − 2 < 0 (approaching de Sitter spacetime in the vacuum limit

K → 0)

b) f = |c2| sinh2

(√
Λ
3 τ

)
if κK − 2 > 0

c) f = l20e
±2

√
Λ
3
τ

if κK − 2 = 0 (l0 is an arbitrary length scale)

(iii) for Λ = 0,

a) f = 1
4c

2
1τ

2, if κK − 2 > 0

b) f = c2 > 0 if κK − 2 = 0, so that the metric becomes

ds2 = −dt2 + c2(dH2 + cos2HdA2 + sin2HdG2) (Λ = 0 = κK − 2), (94)

i.e., an Einstein’s static universe R × S3 with an arbitrary radius
√
c2, possessing an extra

Killing vector ∂t.

Since S = 3/f(τ), it is easy to see (recall (14)) that zeros of f in (92) correspond to curvature

singularities (while the metric is otherwise regular), which occur in the above solutions iff κK−2 > 0.

The only oscillating cosmology is obtained for Λ < 0. Solutions (92), (94) are well-known in the

context of perfect fluid LFRW cosmologies [63]. The non-linear σ-model Einstein universe (94) was

also found in [64]. Similar solutions when a Skyrme term is added to the theory have been discussed

recently in [22,28,65] and present different features. In particular, the corresponding Einstein universe

differs from (94) since it requires Λ 6= 0 6= κK − 2 and the radius of the S3 is uniquely fixed by the

constants of the theory [22]. On the other hand, for Λ = 0 there are additional, qualitatively different

time-dependent solutions [65].

7.2 Extended ansatz: Bianchi IX cosmologies

It is worth observing that the solutions considered in section 7.1 can be extended to a larger class of

spatially homogeneous but anisotropic models, i.e., Bianchi IX cosmologies. Their line-element can be
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written as [51] (cf. also, e.g., [23, 66])

ds2 = −dτ2 + gij(τ)ωiωj (i, j = 1, 2, 3), (95)

where

ω1 = − sinχdθ + sin θ cosχdψ (96)

ω2 = cosχdθ + sin θ sinχdψ

ω3 = dχ+ cos θ dψ,

define an SO(3) invariant basis. Following [28] (with a slightly different notation), we take the pionic

fields (15) as

2H = θ, 2A = χ+ ψ, 2G = −χ+ ψ. (97)

(The special case of section 7.1 is recovered for gij(τ) = 1
4f(τ)δij .) This means that the invariant

1-forms Riµ (eq. (9)) coincide with the ωi (up to a constant rescaling; cf. also appendix A of [28]) and

guarantees that the field equations (6) are automatically satisfied in the spacetime (95).9

One thus needs to study only Einstein’s equations. In the analysis of [28] it was assumed that (95)

is diagonal. Here we complete this by showing that indeed there is no loss of generality in making this

assumption. With (16) and (95)–(97), the energy-momentum tensor (12) can be written as

Tµν = K

[
S
2
uµuν +

(
Sµν −

S
3
hµν

)
− S

6
hµν

]
, (98)

where

u = dτ, h = gij(τ)ωiωj . (99)

The pionic matter thus acts as an anisotropic fluid with ρ = KS/2, p = −KS/6, anisotropic stress

πµν = K
(
Sµν − S3 hµν

)
and with vanishing heat flux. Moreover, u is clearly a Ricci eigenvector (cf.

eq. (14)). Thanks to the results of [67, 68] (cf. also the comments in [69]), without loss of generality

one can thus take gij(τ) in (95) to be diagonal, i.e.,

ds2 = −dτ2 + a2(τ)ω1ω1 + b2(τ)ω2ω2 + c2(τ)ω3ω3. (100)

This reduces Einstein’s equations to three dynamical equations for the scale factors a, b, c and one

constraint which can be found in [28] (setting the Skyrme coupling constant λ = 0 therein). The

analysis of such a system for general Bianchi IX models is very complicated (even in vacuum, cf.,

e.g., [23, 51, 66, 67, 69]) and goes beyond the scope of this paper. Let us only observe that ref. [28]

derived the corresponding mini-superspace action and discussed the integrability properties of the

9This was observed in [28] in the presence of an additional Skyrme term in the theory. Let us note that, alternatively,
this also follows easily from the fact that the ωi form an invariant basis and the dual basis vectors ei are linear
combinations of the three Killings vectors ξi [66]. For example, writing ei = aξ1 + bξ2 + cξ3 and requiring [ξ1, ei] = 0,
using [ξ1, ξ2] = ξ3 (etc.) one obtains ∇ξ1

a = 0, and so on with ξ2 and ξ3, so that eventually div ei = 0.
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system.

One might hope to find explicit analytic solutions by making some simplifying assumptions, such

as a factorized, overall τ -dependence in (100). However, easy integration reveals that, in this case,

the only solutions are the LFRW ones discussed in section 7.1. In particular, and in contrast to the

Skyrme case [28], the only static solution is thus given by the conformally flat Einstein universe (94).

However, different, non-conformally flat solutions are available up to suitable analytic continuations,

as we discuss in section 7.3 below.

7.3 Special stationary Bianchi IX solutions

Let us modify the Bianchi IX ansatz (100) by taking τ = iy, a2 = b2 = 1
4f , c2 = −1

4fq
2 (q2 is a

positive constant), i.e.,

ds2 = dy2 +
1

4
f(y)

[
dθ2 + sin2 θdψ2 − q2(dχ+ cos θdψ)2

]
,

(101)

still with the pionic fields (97).

From Einstein’s equations one immediately obtains

q2 =
1

4
κK, (102)

Then, proceeding as in section 7.1 one arrives at the following solutions:

(i) for Λ < 0,

a) f = c2 cosh2

(√
|Λ|
3 y

)
if κK − 8 > 0

b) f = |c2| sinh2

(√
|Λ|
3 y

)
if κK − 8 < 0

c) f = l20e
±2

√
|Λ|
3
y if κK − 8 = 0 (l0 is an arbitrary length scale)

(ii) for Λ > 0, f = c2 cos2

(√
Λ
3 y

)
, κK − 8 < 0

(iii) for Λ = 0,

a) f = 1
4c

2
1y

2, if κK − 8 < 0

b) f = l20 if κK − 8 = 0, in which case ∂y is an additional Killing vector.

In the above equations the costants c2 and c1 are given by

c2 = −3

4

κK − 8

Λ
, c2

1 = −(κK − 8). (103)
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In all cases the Killing vector ∂χ is timelike, therefore these spacetimes are stationary. It is also

interesting to observe that they are not conformally flat, as opposed to those of section 7.1. Since

CµνρσC
µνρσ ∼ f−2(y) [62], zeros of f(y), which occur iff κK−8 < 0, give rise to curvature singularities.

The (singularity-free) Λ < 0 solution with κK − 8 > 0 was already obtained in [22] and interpreted

there as a traversable AdS wormhole with a NUT parameter q.

8 Conclusions

We have explored the generalized hedgehog ansatz and some extensions thereof in order to find exact

solutions of the Einstein-nonlinear SU(2) σ-model. We have considered four different subclasses of

solutions giving rise to examples of physical interest in various contexts. The toroidal and spherical

ansätze (sections 4 and 5) contains static black holes (with toroidal and spherical horizons, respectively)

along with their extremal limits. Extensions of these ansätze also lead to new nutty generalizations and

to larger classes of Robinson-Trautman and Kundt metrics, which describe time-dependent solutions.

The circular ansatz (section 6) was used to describe two kinds of uniform black strings, with Λ = 0

and Λ < 0, respectively. Finally, the hyperspherical ansatz (section 7) was naturally employed in the

context of Bianchi IX cosmologies, where the pionic field plays the role of an anisotropic fluid. This

also led to some special stationary solutions of the Bianchi IX class. Along with new solutions,10

certain previously known ones (cf. the text for the corresponding references) have been rederived in

a more systematic way. Let us observe that we have explored only some possible subclasses of the

proposed ansatz, which means that a more systematic analysis might lead to further explicit solutions.

Until very recently it was considered as prohibitively difficult to find exact solutions of the self-

gravitating nonlinear σ (or Skyrme)-model. However, in the last years it has been shown that, by

generalizing the hedgehog ansatz, the matter and Einstein field equations simplify dramatically [20–

22,26,28,57]. Our work provided further results in this direction. It is worth pointing out the hedgehog

ansatz is also useful for finding exact solutions in Einstein Yang-Mills theory. For example, in [73] an

explicit meron black hole solution for the self-gravitating SU(2) Yang Mills theory has been found.

This suggests that some of the techniques developed in this paper can also be applied in different

contexts, such as the Skyrme and Yang-Mills theories coupled to gravity – see, e.g., [20, 21, 57] for

a few cases where such a method indeed works. Exploring such extensions, however, will deserve a

separate investigation.
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A Extended spherical ansatz: test fields in Kerr spacetime

The ansatz (66), with the additional restriction grG = 0 = gtr, reduces to

ds2 = gttdt
2 + 2gtGdtdG+ gGGdG

2 + grrdr
2 + gFFdF

2, (A1)

where all the metric coefficients are functions only of (r, F ). If gtt < 0, this metric is stationary and

axisymmetric11 and clearly includes the Kerr(-Newman-(A)dS) spacetime in Boyer-Lindquist coordi-

nates. However, it is easy to see that the field equation (33) is not satisfied when a 6= 0 (not even in

the flat case m = 0) – for the case a = 0 see instead section 5.1.

Nevertheless, it turns out that an extended ansatz enables one to have the pionic field equations

satisfied identically. Let us consider the Kerr metric in Kerr-Schild coordinates [70], i.e.,

ds2 = Σ(dθ2 + sin2 θdφ2) + (du+ a sin2 θdφ)(2dr − du+ a sin2 θdφ) +
f

Σ
(du+ a sin2 θdφ)2,(A2)

Σ = r2 + a2 cos2 θ, f = 2mr. (A3)

Upon taking in (21) α = π/2 and identifying the remaining pionic fields with the angular coordinates,

i.e.,

(x1, x2, x3, x4) ≡ (φ, θ, u, r) = (G,F, u, r), (A4)

one can see that all pionic equations (23)–(25) are obeyed.12 This is in fact true regardless of the choice

of the function f in (A2) (hence, e.g., also in a Kerr-Newman background). Let us emphasize that

these test field configurations are different from the ones recently constructed (in the Einstein-Skyrme

theory) in [71], for example because of the different fall-off properties at infinity.

The next step would be to go beyond the test field approximation and take into account also the

backreaction. Similarly as in the Kerr-Newman case [72], one would hope to preserve the general form

of the line-element (A2) and only modify the scalar function f in (A3) in such a way that Einstein’s

equations are satisfied. However, this turns out to be inconsistent. It might thus be necessary to

modify the form of the Kerr-Schild vector in (A2), or perhaps to go beyond the Kerr-Schild ansatz.
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