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Abstract: Let n be a natural number, 2 ≤ n < ω. We show that it is consistent
to have a model of set theory where ℵω is strong limit, 2ℵω = ℵω+n, and the tree
property holds at ℵω+2; we use a weakly compact hypermeasurable cardinal for
the result. This generalises the known result with n = 2. We note that this
is the first exposition of the tree property at ℵω+2 with ℵω strong limit which
uses a projection-of-product analysis of the Mitchell forcing followed by Prikry
forcing with collapses reminiscent of the analysis in Abraham [1].
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1 Introduction

Let κ be a regular cardinal. We say that the tree property holds at κ if every κ-tree
has a cofinal branch. The tree property is a compactness property which can hold at
successor cardinals low in the set-theoretical hierarchy: Mitchell first showed in [12] that
it is equiconsistent with the existence of a weakly compact cardinal that ℵ2 has the tree
property (his argument readily generalises to any κ++ for an infinite regular cardinal κ).

The situation is more complex when we wish to get the tree property at the double successor
of a singular strong limit cardinal κ. First, since one needs to have 2κ > κ+ (and thus the
failure of SCH, the singular cardinal hypothesis), it is known that a measurable cardinal of
high Mitchell order is required. Second, a new idea is required which connects the Mitchell
construction and the known ways of obtaining the failure of SCH. This was first achieved by
Cummings and Foreman [4] who proved that it is consistent to have a singular strong limit
cardinal κ of countable cofinality with the tree property at κ++. The cardinal κ in [4] was
supercompact in the ground model; without a proof, [4] claimed that κ can be collapsed to
ℵω using a similar argument. However, for some time no such proof had been found.

The first argument which yields a model where ℵω is strong limit, 2ℵω = ℵω+2, and the
tree property holds at ℵω+2, was given by Friedman and Halilović in [6]. The argument
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started with a much weaker hypothesis than [4] (an H(λ)-hypermeasurable κ for a weakly
compact λ > κ), and used an iteration of the κ-Sacks forcing followed by the Prikry forcing
and therefore was quite different in spirit from the construction in [4].

Recently, the authors of [5] found another construction which yields the same configuration
(in particular with 2ℵω = ℵω+2). The construction is based on the Mitchell forcing followed
by the Prikry forcing with collapses, and starts with a supercompact cardinal. It is of
interest to note that the proof that the tree property holds at ℵω+2 proceeds directly
without using a projection-of-product analysis (which is at the heart of the presentations
of Abraham [1] and crucial in the analysis in [4]).

In the present paper, we formulate yet another approach to constructing a model where ℵω
is strong limit, violates SCH, and the tree property holds at ℵω+2. The main features of
our construction are as follows:

• We start with a suitably large hypermeasurable cardinal;
• We are able to ensure that 2ℵω is equal to ℵω+n for any fixed 2 ≤ n < ω;
• We use a variant of the Mitchell forcing (to ensure the large value of 2ℵω ) followed by

the Prikry forcing with collapses. Our proof relies on a projection-of-product analysis
and is therefore similar to the methods of [4].1

The paper is structured as follows.

In Section 1.1 we review the forcings which we will use: in particular, we define a variant
of the Mitchell forcing which ensures the large value of 2ℵω , and provide a product analysis
of the Mitchell forcing followed by the Prikry forcing with collapses which is reminiscent of
the analysis in [1] and [4] (Section 1.1.3).

In Section 2, we argue that it is possible to start with a hypermeasurable cardinal κ of
a suitable degree and prepare the ground model so that a further forcing with the Cohen
product at κ (of a prescribed length) does not destroy the measurability of κ.2

In Section 3, we show that over the prepared ground model, the standard Mitchell forcing
followed by the Prikry forcing with collapses forces that κ = ℵω is a strong limit cardinal,
2ℵω = ℵω+3, and the tree property holds at ℵω+2.

In Section 4 we generalise the construction in Section 3 to any finite gap 2 ≤ n < ω.

Finally, in Section 5 we mention some open questions.

1There is a fine difference in the proofs, though: in [4], a “Prikry-ised Mitchell forcing” is used, i.e. the
Prikry part is integrated into the Mitchell forcing; we used a similar method in [7] to obtain a large value of
2κ with the tree property at κ++, κ strong-limit with countable cofinality. When the collapsing is involved,
it is easy to see that the Prikry forcing with collapses must come after the Mitchell forcing, and cannot be
integrated into the Mitchell part. Surprisingly, the latter method seems easier and more universal (it can
be used to reprove the result of [4]).

2With more work, we can also preserve the initial degree of hypermeasurability; see Remark 2.6.
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1.1 Preliminaries

1.1.1 A variant of Mitchell forcing

We will use a variant of the standard Mitchell forcing as presented in [1].

If κ is a regular infinite cardinal and α is an ordinal greater than 0, we identify the Cohen
forcing for adding α-many subsets of κ, Add(κ, α), with a collection of functions p from a
subset of κ× α of size < κ into {0, 1}. The ordering is by reverse inclusion.

Let κ < λ be regular cardinals, and assume λ is inaccessible. Let µ > λ be an ordinal. We
define a variant of the Mitchell forcing, M(κ, λ, µ), as follows: Conditions are pairs (p, q)
such that p is in Add(κ, µ), and q is a function whose domain is a subset of λ of size at
most κ such that for every ξ ∈ dom(q), q(ξ) is an Add(κ, ξ)-name, and ∅ Add(κ,ξ) q(ξ) ∈
Add(κ+, 1). The ordering is as in the standard Mitchell forcing, i.e.: (p′, q′) ≤ (p, q) if and
only if p′ is stronger than p in the Cohen forcing, the domain of q′ contains the domain of
q and if ξ is in the domain of q, then p′ restricted to ξ forces q′(ξ) extends q(ξ).

Lemma 1.1 Assume GCH.

(i) M(κ, λ, µ) is λ-Knaster.
(ii) In V [M(κ, λ, µ)], 2κ = |µ|, and the cardinals in the open interval (κ+, λ) are collapsed

(and no other cardinals are collapsed).

Proof. The proof is standard (using a ∆-system argument for Knasterness). �

The following follows as in [1]:

Lemma 1.2 (i) M(κ, λ, µ) is a projection of Add(κ, µ)×T, where T is a κ+-closed term
forcing defined by T = {(∅, q) | (∅, q) ∈M(κ, λ, µ)}.

(ii) M(κ, λ, µ) is equivalent to Add(κ, µ) ∗ Ṙ, where Ṙ is forced to be κ+-distributive.

Proof. The proof is as in [1]. �

As will be apparent from the arguments in Section 3, it is also the case that if λ is weakly
compact, then the tree property holds at λ = κ++ in V [M(κ, λ, µ)].

1.1.2 Prikry forcing with collapses

We use the forcing as it is described in Gitik’s paper [8].

Here we give just a quick review to fix the notation. Let κ be a measurable cardinal, U a
normal measure at κ, and jU : V → M the ultrapower embedding generated by U . The
Prikry forcing with collapses, which we denote PrkCol(U,Gg), is determined by U and a
guiding generic Gg. Gg is a Coll(κ+n, < j(κ))M -generic filter over M , where n typically
satisfies 2 < n < ω (Coll denotes the Levy collapse).

A condition r in PrkCol(U,Gg) has a lower part (“stem”) which is a finite increasing
sequence of cardinals below κ with information about collapses between the cardinals (thus
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the stem is an element of Vκ), and an upper part which is composed of sets A and H, where
A is in U , and H is a function defined on A such that [H]U , the equivalence class of H in
M , belongs to Gg.

If all is set up correctly in V , the forcing PrkCol(U,Gg) collapses κ to ℵω while preserving
all cardinals above κ.

1.1.3 Mitchell followed by Prikry forcing with collapses

Assume κ < λ < µ are as above, M = M(κ, λ, µ) is the Mitchell forcing, and U̇ and Ġg

are M-names such that the weakest condition in M forces that PrkCol(U̇ , Ġg) is the Prikry
forcing with collapses defined with respect to U̇ and Ġg.

Lemma 1.3 M ∗ PrkCol(U̇ , Ġg) is λ-Knaster.

Proof. This follows by a ∆-system argument applied to M ∗ PrkCol(U̇ , Ġg) (the compat-
ibility of the Prikry component is determined by the compatibility of the stems, and there
are only κ-many of these). �

Lemma 1.4 In M ∗ PrkCol(U̇ , Ġg), conditions ((p, q), r), where r in the Prikry forcing
depends only on the Cohen information of the Mitchell forcing and its stem is a checked
name, are dense.

Proof. This is because all conditions in the Prikry forcing exist already in the extension
by the Cohen part of the Mitchell forcing (in contrast, the definition of PrkCol(U̇ , Ġg)
itself may require the whole M in order to refer to U̇ and Ġg; this will be the case in our
argument in Section 3.2.3). Given ((p, q), r) we can extend (p, q) to some (p′, q′) such that
(p′, q′) forces that r is equal to some r′ in the generic extension by the Cohen part of the
Mitchell forcing with its stem being a ground model object (since the Cohen forcing at κ
does not add bounded subsets of Vκ). �

Using Lemma 1.4, we can formulate a projection-of-product analysis of the forcing M ∗
PrkCol(U̇ , Ġg) reminiscent of Abraham’s analysis of the Mitchell forcing in [1]. Let us
define:

(1.1) C = {((p, ∅), r) | ((p, ∅), r) ∈M ∗ PrkCol(U̇ , Ġg)},

where we require that r depends only on the Cohen information of the Mitchell forcing and
its stem is a checked name.3 Let us also define:

(1.2) T = {(∅, q) | (∅, q) ∈M}.

Define a function τ from C × T to M ∗ PrkCol(U̇ , Ġg) as follows: τ applied to the pair
composed of ((p, ∅), r) and (∅, q) is equal to the condition ((p, q), r).

3The requirement that the stem of r is a checked name is not important for Lemma 1.5, but will be
useful in Section 3.2.3 when a similar analysis is performed.
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Lemma 1.5 (i) τ is a projection from C× T onto a dense part of M ∗ PrkCol(U̇ , Ġg).
(ii) T is κ+-closed in V .

(iii) C is κ+-cc in V .

Proof. (i). If ((p′, ∅), r′) ≤ ((p, ∅), r) and (∅, q′) ≤ (∅, q), then ((p, q′), r′) ≤ ((p, q), r), so τ
is order-preserving.

Now, suppose we are given ((p′, q′), r′) ≤ ((p, q), r), where

((p, q), r) = τ(((p, ∅), r), (∅, q))

and r′ depends only on the Cohen information of the Mitchell forcing and its stem is a
checked name (by Lemma 1.4 such conditions are dense). We will find q∗ and r∗ such that

(a) (∅, q∗) ≤ (∅, q) in T,
(b) ((p′, ∅), r∗) ≤ ((p, ∅), r) in C,
(c) τ(((p′, ∅), r∗), (∅, q∗)) = ((p′, q∗), r∗) ≤ ((p′, q′), r′).

In order to get (a)–(b), first define q∗ so that it interprets as q′ below p′, and as q below
conditions incompatible with p′ (ensuring (a)). Since we assume that r and r′ depend
only on the Cohen forcing (and have checked names for their stems), we can take r∗ = r′

(ensuring (b)). (c) is clear by the definition of q∗ and r∗.

Items (ii) and (iii) are obvious. �

The existence of the projection τ in Lemma 1.5 will be useful (in a quotient setting) in
Section 3.2.3.

2 Preserving measurability by Mitchell forcing

In [4], the construction which yields the tree property at the double successor of a singular
strong limit κ with countable cofinality starts by assuming that κ is supercompact. The
reason is that we can then invoke Laver’s indestructibility result [10], and assume that
adding any number of Cohen subsets of κ will preserve the measurability of κ. Such an
assumption tends to simplify the subsequent constructions because one can avoid the work
of lifting a weaker embedding using a surgery argument, or some other methods.

A natural question is whether a “Laver-like” indestructibility is available also for smaller
large cardinals. In this Section, we use an idea of Cummings and Woodin (see [2]) to argue
that it is possible to have a limited indestructibility for µ-tall cardinals κ,4 where µ > κ is
a regular cardinal.5

4κ is µ-tall if there is an embedding j : V →M with critical point κ such that j(κ) > µ and M is closed
under κ-sequences.

5With more work, one can also preserve the hypermeasurability of κ; see Remark 2.6.
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2.1 Stage 1

Assume GCH and suppose that µ > κ is the successor6 of the least weakly compact cardinal
λ above κ and j : V → M is an H(µ)-hypermeasurable embedding with the extender
representation:

M = {j(f)(α) | f : κ→ V & α < µ}.
In particular, H(µ) is included in M and M is closed under κ-sequences in V . Let U be the
normal measure derived from j, and let i : V → N be the ultrapower embedding generated
by U . Let k : N → M be elementary so that j = k ◦ i. Note that κ is the critical point of
j, i and j, i have width κ, i.e. every element of M and N is of the form j(f)(α), or i(f)(κ)
respectively, for some f with domain κ. In contrast, the critical point of k is (κ++)N and
k has width µκ, i.e. every element of M can be written as k(f)(α) for some f in N with
domain µκ, where µκ is the successor of the least weakly compact cardinal above κ in N ,
in particular (κ++)N < µκ < i(κ) < κ++. See [3] for more details regarding the lifting of
embeddings and the notion of width.

Let P denote the forcing Add(κ, µ) in V , Q = i(P ), and let g be a Q-generic filter over V .
Then the following hold:

Theorem 2.1 Assume GCH. Forcing with Q preserves cofinalities and the following hold
in V [g]:

(i) j lifts to j1 : V [g]→M [j1(g)], where j1 restricted to V is the original j.
(ii) i lifts to i1 : V [g] → N [i1(g)], where i1 restricted to V is the original i. N [i1(g)] is

the measure ultrapower obtained from j1.
(iii) k lifts to k1 : N [i1(g)]→M [j1(g)], where k1 restricted to N is the original k.
(iv) g is Q-generic over N [i1(g)].
(v) There is g̃ in V [g] such that g̃ is k(Q) = j(P )-generic over M [j1(g)].

Proof. We show that Q is κ+-closed and κ++-cc in V . Closure is obvious by the fact
that N is closed under κ-sequences in V . Regarding the chain condition, notice that every
element of Q can be identified with the equivalence class of some function f : κ→ Add(κ, µ).
For f, f ′ : κ → Add(κ, µ), set f ≤ f ′ if for all i < κ, f(i) ≤ f ′(i); it suffices to check that
the ordering ≤ on these f ’s is κ++-cc. Let A be a maximal antichain in this ordering; take
an elementary substructure M̄ in some large enough H(θ) of V which contains all relevant
data, has size κ+ and is closed under κ-sequences. Then it is not hard to check that A∩ M̄
is maximal in the ordering (and so A ⊆ M̄), and therefore has size at most κ+.

(i) and (ii). These follow by κ+-distributivity of Q in V and the fact that j, i have width
κ: the pointwise image of g generates a generic for j(Q) and i(Q), respectively.

(iii). i(Q) is i(κ+)-closed in N , and since µκ < i(κ+), we use the distributivity of i(Q) and
the fact that k has width µκ to argue that the pointwise image k”(i1(g)) generates a generic
filter which is equal to the generic filter generated by j”g by commutativity of j, i, k.

(iv). Q is i(κ+)-cc in N and i(Q) is i(κ+)-closed in N . Therefore g and i1(g) are mutually
generic over N by Easton’s lemma.

6Or more generally the n-th successor for some finite n > 1.
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(v). Q is i(κ)-closed in N [i1(g)] since the generic i1(g) does not add new sequences of length
i(κ); it follows as in (iii) that k1”g generates a j(P )-generic filter g̃ over M [j1(g)]. �

Remark 2.2 Notice that g is not present in M1. However, if so desired,7 we can ensure
that κ is still H(µ)-hypermeasurable after the generic object g̃ is added; see Remark 2.6 for
more details.

2.2 Stage 2

Let us work in the model V [g] = V 1 and let us use the notation j1, V 1,M1 to denote the
resulting models and embeddings in Theorem 2.1. Recall that by Remark 2.2, j1 is just
µ-tall (but the initial H(µ)-hypermeasurability of j still implies that the cardinals in the
interval [κ, µ] coincide between V 1 and M1). Note that λ is no longer strong limit in V 1,
but we will argue in Section 3.2.1 that it retains enough of weak compactness in V 1 for
further arguments.

Define Pκ to be the following Easton-supported iteration:

(2.3) Pκ = 〈(Pα, Q̇α) |α < κ is measurable〉,

where Q̇α denotes the forcing M(α, λα, µα), where λα is the least weakly compact cardinal
above α, and µα = (λα)+.

Theorem 2.3 The following hold:

(i) In V 1[Pκ][M(κ, λ, µ)], λ = κ++, 2κ = κ+3 = µ, and κ is measurable.
(ii) The measurability of κ is witnessed by a lifting of j1, which we call j2,

j2 : V 1[Pκ][M(κ, λ, µ)]→M2 = M1[j2(Pκ ∗M(κ, λ, µ))].

Moreover, j2 is the normal measure embedding derived from j2, and M2 satisfies
λ = κ++ and 2κ = κ+3 = µ.

Proof. Let Gκ ∗H be Pκ ∗M(κ, λ, µ)-generic over V 1.

(i). We follow closely the argument in Cummings [2] but with the important simplification
that we use the factoring through k only in stage 1 (Theorem 2.1), and use directly the
generic object g̃ (Theorem 2.1) to lift only the embedding j1 (we do not lift k1 and i1).8

Using standard methods, lift j1 to

j2 : V 1[Gκ]→M1[Gκ][H][h],

7This is not required for the present proof, but may be useful if more complicated forcings are to be
defined over V 1 (such as the Radin forcing).

8Lifting through k1 is problematic at stage κ where we deal with the forcing M(κ, λ, µ) in the sense of
the ultrapower (the forcing is non-trivially moved by k1 – a fact innocuous for the Cohen forcing at κ, but
problematic for the Mitchell forcing).

7
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where h is constructed using the extender representation of M1: the dense open sets in the
forcing j1(Pκ) in the interval (κ, j1(κ)) can be grouped into κ+-many groups each of size
µ in M1[Gκ][H]; these groups are of the form {j1(f)(α) |α < µ}, where f is a function
from κ to H(κ). The intersection of each group is a dense set because the forcing j1(Pκ)
in the interval (κ, j1(κ)) is µ+-closed in M1[Gκ][H]. Since there are only κ+-many of these
groups, a generic h can be constructed in V 1[Gκ][H] which meets them all.

It remains to find a generic filter for the j2-image of M(κ, λ, µ). Using the fact that the
Mitchell forcing decomposes into Add(κ, µ) ∗ Ṙ for some Ṙ which is forced to be κ+-
distributive by Add(κ, µ) (see Section 1.1.1), it suffices first to lift Add(κ, µ), and then
(easily) lift the distributive part Ṙ. Let us write H = gκ ∗ hκ where gκ is Cohen generic
and hκ is Ṙ-generic.

In order to lift Add(κ, µ), we use the generic object g̃ which we prepared in V 1. Notice
that g̃ is generic for the wrong forcing: it is j1(Add(κ, µ))-generic over M1, but we need a
generic object for j2(Add(κ, µ)) over M1[Gκ][H][h]. We use the following fact to overcome
this problem.9

Fact 2.4 Let S be a κ-cc forcing notion of cardinality κ, κ<κ = κ. Then for any µ, the
term forcing Qµ = Add(κ, µ)V [S]/S is isomorphic to Add(κ, µ).

By elementarity, Fact 2.4 implies that in V 1[Gκ][H], g̃ yields a generic object g∗ over
M1[Gκ][H][h] for j2(Add(κ, µ)) (note that j1(Pκ) has size j1(κ) in M1 and is j1(κ)-cc). g∗

is still not good enough to lift j2 because it may not contain the pointwise image j2”gκ.
Using the method of surgery (see [2]), we modify g∗ to g∗∗ which is still j2(Add(κ, µ))-
generic, but in addition contains the pointwise image j2”gκ. It follows we can lift to

j2 : V 1[Gκ][gκ]→M1[Gκ][H][h][g∗∗],

and then finally to V 1[Gκ][gκ][hκ] = V 1[Gκ][H]:

j2 : V 1[Gκ][H]→M2 = M1[Gκ][H][h][g∗∗][h∗],

where h∗ is generated from j2”hκ. The last lifting shows that κ remains measurable as
desired.

(ii). It remains to show that j2 is a measure ultrapower embedding. Let N∗ be the normal
measure ultrapower via the measure U generated from j2 with the associated embedding
iU : V 1[Pκ][M(κ, λ, µ)] → N∗, and let j2 = k∗ ◦ iU be the commutative triangle with
k∗ : N∗ → M2. First note that k∗ is the identity on µ since its critical point must be a
regular cardinal in N∗ and N∗ computes κ+3 (= µ) correctly. Then the claim follows since
k∗ must be onto (and therefore the identity) using the extender representation of M2 and
elementarity: any element of M2 is of the form j2(f)(α) for some α < µ, and if k∗ is the
identity on α, then j2(f)(α) = k∗(iU (f))(α) = k∗(iU (f))(k∗(α)) = k∗(iU (f)(α)), and thus
j2(f)(α) is in the range of k∗. �

9This appears as Fact 2 in [2]. Recall that Qµ – mentioned in Fact 2.4 – is the term forcing defined as
follows: the elements of Qµ are names τ such that τ is an S-name and it is forced by 1S to be in Add(κ, µ)
of V [S]. The ordering is τ ≤ σ ↔ 1S  τ ≤ σ.

8
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Remark 2.5 It can also be shown that the tree property holds at κ++ = λ in the model
V 1[Pκ][M(κ, λ, µ)]. This is implicit in the proof of Theorem 3.3.

Remark 2.6 Notice that in constructing M1 in Theorem 2.1 we lost the H(µ)-hyper-
measurability of j. By a more complicated construction in Theorem 2.1, this can be retained
(and then automatically retained by the further construction in Theorem 2.3):

In the first step, argue exactly as in the proof of Theorem 2.1; in particular there exists
in V 1 = V [g], where g is Q-generic over V , a generic object g̃ for j(Add(κ, µ)) over M1.
However, M1 does not contain g, which we are going to repair now.

Let M be the set of all measurable cardinals α < κ in V . Define in V an Easton product
P 1
κ =

∏
α∈MQ1

α of length κ such that at every α ∈ M, Q1
α is chosen by a lottery among

all forcings R in V which satisfy the following condition (∗):

(∗) There is a measure W on α in V such that the embedding iW generated by W is of
the form iW : V → NW for some NW and R is equal to iW (Add(α, µα)),

where µα is the local version of µ in V with respect to α, i.e. it is the successor of the least
weakly compact cardinal λα above α.

For α ∈ M, let us write P 1
α for the product P 1

κ below α, and P 1
>α for the product indexed

above α so that P 1
κ = P 1

α × Q1
α × P 1

>α. We state some facts concerning P 1
κ . For α ∈ M,

let G1
α, G1

>α and g1α be generic filters for P 1
α, P

1
>α, and Q1

α over V , respectively. Let G1
κ be

P 1
κ -generic.

(i) For α ∈M, let α∗ denote the next element ofM above α. For every α ∈M, Q1
α has

size less than α∗.
(ii) For every α ∈M, G1

α, g1α, and G1
>α are mutually generic. Also, G1

κ and g are mutually
generic.

(iii) In V [g][G1
α], forcing with Q1

α does not collapse cardinals. More generally, forcing with
P 1
κ ×Q does not collapse cardinals.

For (i) note that there are at most α++-many measures W at stage α and each R in the
lottery has size less than α∗. Regarding (ii) note that for α ∈ M, P 1

α is α-cc, Q1
α is α+-

closed and has size less than α∗, and P 1
>α is (α∗)+-closed. The same facts apply to Q and

P 1
κ . For (iii), it suffices to show that R chosen by the lottery does not collapse cardinals

over V [g][G1
α]. We argue by a variant of Theorem 2.1: R is α+-closed in V , and therefore

also in V [g], and since P 1
α is α-cc, it remains α+-distributive in V [g][G1

α]; R is α++-cc in
V , and hence also in V [g], and since P 1

α has size just α, it forces that R is still α++-cc (if
there were an antichain in V [g][G1

α] of size α++, a single condition in P 1
α would determine

a cofinal part of it, which would yield an antichain in V [g] of size α++). Using the fact that
Q1
α does not collapse cardinals and has size less than α∗, standard methods can be used to

argue that the whole forcing P 1
κ ×Q does not collapse cardinals.

Let G1
κ be P 1

κ -generic over V [g]. As we argued in (ii), Q and P 1
κ are mutually generic since

Q is κ+-closed and P 1
κ is κ-cc. In V [g][G1

κ] = V [G1
κ][g] we lift j to

j∗ : V [G1
κ]→M [G1

κ][g][h],

9



THE TREE PROPERTY AT ℵω+2 WITH A FINITE GAP

choosing by the lottery at stage κ of j(P 1
κ ) the forcing Q which is available here. The

generic object h is constructed using the extender representation of M and the fact that
j(P 1

κ ) at the interval (κ, j(κ)) is κ+-closed in V , and more than µ+-closed in the sense of
M ; by mutual genericity argued in (ii), h constructed in V as generic over M is actually
generic over M [G1

κ][g]. Since g is added by a κ+-distributive forcing over V [G1
κ], it lifts

easily, and so we get
j∗∗ : V [G1

κ][g]→M [G1
κ][g][h][h∗],

where h∗ is generated by j∗”g.

Let us now look at M [G1
κ][g][h][h∗] = M∗∗. We know from Theorem 2.1 that the object g̃

is j(Add(κ, µ))-generic over M [h∗] = M1. The forcing j(Add(κ, µ)) remains j(κ)-closed in
M1 since h∗ does not add new j(κ)-sequences. Since the forcing j(P 1

κ ) is j(κ)-cc in M1, g̃ is
mutually generic with G1

κ ∗ g ∗ h, and therefore g̃ is j(Add(κ, µ))-generic over M∗∗. Finally
we apply over M1 Fact 2.4 arguing that there is g̃∗ in V [G1

κ][g] which is j∗∗(Add(κ, µ))-
generic over M∗∗ (in more detail, the forcing j(P 1

κ ) over M1 has size j(κ) and is j(κ)-cc
and therefore g̃ yields the required g̃∗). Thus

j∗∗ : V [G1
κ][g]→M∗∗

satisfies the assumptions necessary for the proof of Theorem 2.3 (with g̃∗ now being the
required generic), with M∗∗ now containing H(µ) of V [G1

κ][g].

Renaming V 1 = V [G1
κ][g], M1 = M∗∗, and j∗∗ = j1, arguments in this paper using these

objects can be carried out with the additional assumption that M1 contains H(µ) of V 1.
This ends Remark 2.6.

3 The tree property with gap 3

In this section we will prove that it is consistent to have a model where ℵω is strong
limit, 2ℵω = ℵω+3, and the tree property holds at ℵω+2. It is relatively straightforward to
generalise this construction to get a finite gap: 2ℵω = ℵω+n, 3 ≤ n < ω (see Section 4).

3.1 Definition of the forcing

Let us work with the model V 1[Pκ][M(κ, λ, λ+)]. As we showed in Theorem 2.3, κ is
measurable in here. In order to analyse this model, let us introduce notation for the
generic filters: let Gκ ∗ H be a generic filter over V 1 for Pκ ∗M(κ, λ, λ+). As we showed
in Theorem 2.3, the lifted extender embedding j2 in Theorem 2.3 becomes a measure
ultrapower embedding iU in V 1[Gκ ∗H], generated by the normal measure U derived from
j2. Let us rename j2 to j for simplicity.

In particular, we can define the Prikry forcing with collapses PrkCol(U,Gg) using this U
and a suitable guiding generic Gg which we construct in Lemma 3.1 (the small g stands for
“guiding”).10

10See Section 1.1.2 for more details about this forcing.
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Let Coll denote the forcing Coll((κ+4), < j(κ))M
1[j(Gκ∗H)].

Lemma 3.1 In V 1[Gκ ∗H], there exists an M1[j(Gκ ∗H)]-generic filter for Coll.

Proof. Consider the extender representation j1 : V 1 → M1 ensured by the arguments in
Section 2.1, where

(3.4) M1 = {j1(f)(α) | f ∈ V 1 & f : κ→ V 1 & α < λ+}.

Now notice that every maximal antichain of Coll in M1[j(Gκ ∗H)] has a name of the form

j1(f)(α) for some f : κ → H(κ)V
1

and α < λ+, with the range of f being composed of
Pκ-names. There are only κ+-many such f ’s, and since Coll is κ+4-closed in M1[j(Gκ ∗H)],
we can built a Coll-generic filter Gg in V 1[Gκ ∗ H] over M1[j(Gκ ∗ H)] by the standard
method of grouping the antichains into κ+ many blocks each of size at most λ+, where λ+

is equal to κ+3 in M1[j(Gκ ∗H)]. �

Let us define in V :

(3.5) P = Q ∗ Pκ ∗M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg),

where Q is the forcing from Theorem 2.1, and Ġg is a name for a guiding generic which we
know exists by Lemma 3.1.

Lemma 3.2 P is λ-cc.

Proof. This is a standard argument using Theorem 2.1 for Q and Lemma 1.3 for the
forcing M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg). �

We plan to show that V [P] is the desired model.

3.2 Verifying the tree property with gap 3

Now we show that the tree property holds with gap 3. See Section 4 for a generalisation
for any 3 ≤ n < ω.

Theorem 3.3 (GCH). Assume that κ is H(λ+)-hypermeasurable, where λ > κ is the least
weakly compact above κ. Then the forcing P in (3.5) forces κ = ℵω, ℵω strong limit,
2ℵω = ℵω+3, and the tree property holds at λ = ℵω+2.

By Lemma 1.1 and standard facts about the Prikry forcing with collapses, it suffices to
check that we have the tree property at ℵω+2.

The argument starts with an observation (see Section 3.2.1) which allows us to work over
V 1[Pκ] with a fragment of a weakly compact embedding with critical point λ (but still
strong enough for our purposes).11

11Note that Q destroys the strong limitness of λ by adding many subsets of κ+.
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The core argument has two parts and starts over the model V 1[Pκ]. In Part 1 (Section
3.2.2), we show that if there were in V 1[Pκ] an M(κ, λ, λ+) ∗PrkCol(U̇ , Ġg)-name Ṫ for an
ℵω+2-Aronszajn tree, we could find a suitable β, λ < β < λ+, and define a “truncation”
M(κ, λ, β) ∗PrkCol(U̇β , Ġ

g
β) of the original forcing which forces that that there is an ℵω+2-

Aronszajn tree (witnessed by Ṫ ). Then in Part 2 (Section 3.2.3), we show that in fact this
cannot be the case, i.e. we show that M(κ, λ, β) ∗ PrkCol(U̇β , Ġ

g
β) forces the tree property

at ℵω+2. This will yield the final contradiction, finishing the proof of Theorem 3.3.

3.2.1 The fragment of weak compactness of λ in V 1[Pκ]

Suppose for contradiction that P forces that there is an ℵω+2-Aronszajn tree (assume for
simplicity the weakest condition forces this, otherwise work below a suitable condition); let
Ẇ be a Q ∗ Pκ-name for an M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg)-name Ṫ such that over V 1[Pκ],
M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg) forces that Ṫ is an ℵω+2-Aronszajn tree.

By Lemma 3.2,12 we can assume that Ẇ can be expressed as a nice name for a subset of
λ, and that Ṫ itself is a nice name for a subset of λ in V 1[Pκ].

Let β∗ be an ordinal between λ and λ+ (the construction of β∗ is described in Section
3.2.3) large enough so that Ẇ only uses coordinates below β∗ in the sense that we can fix
a weakly compact embedding k with critical point λ,

(3.6) k : M → N

with the following properties:13

(i) M and N are transitive models of size λ closed under < λ-sequences,
(ii) M ∈ N , k ∈ N , β∗ < k(λ), and
(iii) M contains all relevant information (in particular, β∗, P and Ẇ are elements of M ).

Let g ∗ Gκ be Q ∗ Pκ-generic over V and let us consider Q restricted to β∗ (let us denote
it Q(β∗))14; note that Q(β∗) is an element of M . Let g(β∗) be the restriction of g to β∗

so that g(β∗) ∗ Gκ is Q(β∗) ∗ Pκ-generic. Note that Q(β∗) ∗ Pκ is actually equivalent to
Q(β∗) × Pκ since Q(β∗) does not change Vκ where Pκ lives. By standard arguments, k
lifts to M [Gκ] → N [Gκ] since k(Pκ) = Pκ, and both the models are still closed under
< λ-sequences in V [Gκ].

By elementarity, k(Q(β∗)) is Q restricted to k(β∗). Let b : k(β∗) → k(β∗) be a bijection
which swaps γ and k(γ) for every λ ≤ γ < β∗, and is the identity otherwise. b extends to
an automorphism on k(Q(β∗)) by mapping p ∈ k(Q(β∗)) to b(p) where the coordinates in
b(p) are swapped by b. Note that b(p) is a valid condition in Q since by the elementarity

12In more details, both Q and Add(κ, λ+) (which is a part of M(κ, λ, λ+)) are products and therefore by
the chain condition, we can ensure that only up to λ-many coordinates below λ+ appear in a name for the
tree.

13See [3] Theorem 16.1. To ensure β∗ < k(λ), define E in the proof of Theorem 16.1 so that it also codes
a well-ordering of β∗ of type λ: then N |= |β∗| = λ and therefore k(λ) > β∗ since by elementarity, k(λ) is
in N a limit cardinal greater than λ.

14Note that λ+ is a fixed point of the mapping i so Q is Add(i(κ), λ+) of the measure ultrapower N .
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of k, k(p) = k”p is a condition in k(Q(β∗)) (and hence in Q) for every p in Q(β∗).15

Let g(k(β∗)) be the restriction of g to k(β∗). The automorphism b generates from g(k(β∗))
a generic filter g∗ on k(Q(β∗)) which contains the pointwise image k”g(β∗). It follows k
lifts to

(3.7) k : M [Gκ][g(β∗)]→ N [Gκ][g∗].

Since Q is κ+-distributive over Pκ it holds that both the models are still closed under
κ-sequences in V [g ∗Gκ].16

Thus for any Ẇ and β∗ as above, we have in V [g ∗ Gκ] a fragment of a weakly compact
embedding (3.7) such that all the relevant parameters are in M , including the name Ṫ , and
the models are closed under κ-sequences in the universe.

3.2.2 Part 1

As we argued in Section 3.2.1, we can work in V 1[Gκ] and assume for contradiction that
Ṫ is a name for an ℵω+2-Aronszajn tree (we assume that Ṫ is a nice name for a subset
of λ). There is β̄, λ ≤ β̄ < λ+, such that all the coordinates in the forcing Add(κ, λ+)
which appear in Ṫ are below β̄ (there are only λ-many of them by the chain condition of
the forcing).

We wish to find β, β̄ < β < λ+, which allows us to define a suitable truncation of
M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg) to β which we will analyse in Part 2.

Using standard arguments, construct an elementary submodel A of H(θ) for some large
enough regular θ so that A satisfies the following conditions:

(i) |A | = λ, and A is closed under κ-sequences,
(ii) β̄ + 1 ⊆ A ,
(iii) M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg), U̇ , Ġg, Ṫ are elements of A ,
(iv) A ∩ λ+ = β for some β of cofinality κ+, β̄ < β,
(v) There is an M(κ, λ, β)-name U̇β which is forced by M(κ, λ, λ+) to be a normal measure

and a restriction of the measure U̇ to V 1[Pκ][M(κ, λ, β)].

The last item (v) follows as in [4].

Let c : A → Ā be the transitive collapse. The following hold (the proofs are routine):

(i) c(λ+) = β,
(ii) c(M(κ, λ, λ+)) = M(κ, λ, β),
(iii) c(U̇) is forced by M(κ, λ, β) to be equal to U̇β ,

(iv) c(Ġg), which we denote by Ġgβ , is forced by M(κ, λ, β) to be a guiding generic with

respect to U̇β , and therefore M(κ, λ, β) forces that PrkCol(U̇β , Ġ
g
β) is a Prikry forcing

with collapses,

15The support of p is some set of size less than i(κ) in the measure ultrapower N , but certainly less than
λ in V : thus the k-image of the support is just its pointwise image.

16They are not closed under κ+-sequences though.
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(v) M(κ, λ, λ+) forces that PrkCol(U̇β , Ġ
g
β) is a regular subforcing of PrkCol(U̇ , Ġg),

(vi) c(Ṫ ) = Ṫ is forced by M(κ, λ, β) ∗ PrkCol(U̇β , Ġ
g
β) to be an ℵω+2-Aronszajn-tree.

By elementarity, c(Ṫ ) = Ṫ is forced in Ā by the forcing M(κ, λ, β) ∗ PrkCol(U̇β , Ġ
g
β) to

be a λ-Aronszajn tree. This by itself would not be enough to conclude that M(κ, λ, β) ∗
PrkCol(U̇β , Ġ

g
β) adds such a tree over the universe V 1[Gκ]. However, since the collapse c(Ṫ )

is equal to Ṫ , and (v) holds, any M(κ, λ, λ+) ∗ PrkCol(U̇ , Ġg)-generic filter h ∗ x yields an
M(κ, λ, β) ∗ PrkCol(U̇β , Ġ

g
β)-generic filter h′ ∗ x′ over V 1[Gκ] (and therefore over Ā ) such

that (Ṫ )h∗x = (Ṫ )h
′∗x′ . It follows that M(κ, λ, β) ∗PrkCol(U̇β , Ġ

g
β) forces over V 1[Gκ] that

Ṫ is a λ-Aronszajn tree. In Part 2 we show this is not possible, and this will be the desired
contradiction.

3.2.3 Part 2

Let M denote the forcing M(κ, λ, β), where β is as in Part 1. Let us work in V 1[Gκ].

Using the arguments in Section 3.2.1, let us fix

(3.8) k : M → N

which is the fragment of a weakly compact embedding with critical point λ such that M and
N are transitive models of size λ closed under κ-sequences, M ∈ N , k ∈ N , β < k(λ),17

and M contains all relevant information (in particular, β, M ∗PrkCol(U̇β , Ġ
g
β), U̇β and Ġgβ

are elements of M ). Let M∗ denote k(M(κ, λ, β)), which is equal to M(κ, k(λ), k(β)).

Let h∗ be M∗-generic over V 1[Gκ]; use h∗ to define h which is M-generic over V 1[Gκ] and
k”h ⊆ h∗. Now lift to

(3.9) k : M [h]→ N [h∗].

Let us abuse notation a little and write U = (U̇β)h and Gg = (Ġgβ)h instead of Uβ and Ggβ
(to simplify notation).

In N [h∗], consider U∗ = k(U), and Gg∗ = k(Gg), and the forcing PrkCol(U∗, Gg∗). Note
that by elementarity U ⊆ U∗ (since k(X) = X for every X ∈ U), and all functions F whose
equivalence class is in Gg appear in the forcing PrkCol(U∗, Gg∗) (since k(F ) = F for every

F : κ→ V
M [h]
κ , F ∈M [h]), and k(PrkCol(U,Gg)) = PrkCol(U∗, Gg∗).18

It follows that k is a regular embedding:

(3.10) k : M ∗ PrkCol(U̇ , Ġg)→M∗ ∗ PrkCol(U̇∗, Ġ∗g),

as by the λ-cc of M ∗ PrkCol(U̇ , Ġg), if A is a maximal antichain in M ∗ PrkCol(U̇ , Ġg),
then k(A) = k”A is a maximal antichain in M∗ ∗ PrkCol(U̇∗, Ġ∗g).

17Choose β∗ in Section 3.2.1 high enough to ensure this inequality.
18However, note that the equivalence classes of a fixed F with respect to U and U∗ may be different

objects (after the transitive collapse).
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Let x∗ be PrkCol(U∗, Gg∗)-generic over V 1[Gκ][h∗]; the pull-back of x∗ via k−1 is a generic
filter x for PrkCol(U,Gg) such that k”x ⊆ x∗. Let us lift k further to

(3.11) k : M [h][x]→ N [h∗][x∗].

By (3.10) and (3.11), we can define in N [h∗][x∗] a generic filter h∗x for M∗PrkCol(U̇ , Ġg) ∈
N using the inverse of k (by our assumptions in (3.8), k is an element of N ). By standard
arguments for complete Boolean algebras it follows that there is a projection π,

(3.12) π : M∗ ∗ PrkCol(U̇∗, Ġ∗g)→ RO+(M ∗ PrkCol(U̇ , Ġg)).

Notice that if ((p, q), r) is a condition in M∗ ∗PrkCol(U̇∗, Ġ∗g), then we can identify π(p) =
π((p, ∅), 1PrkCol(U̇∗,Ġ∗g)) with (k−1)”p, i.e. with

(3.13) p�(κ× λ) ∪ {((γ, α), i) | γ < κ, α ∈ [λ, β), i ∈ {0, 1}, ((γ, k(α)), i) ∈ p}.

In the analysis of the quotient determined by π, it will be important to control the names for
the conditions in PrkCol(U∗, Gg∗). Recall that by Lemma 1.4, we can adopt the following
convention:

Convention. We now view M∗ ∗ PrkCol(U̇∗, Ġ∗g) as consisting of conditions ((p, q), r),
where r depends only on Cohen information, and its stem is a checked name (such condi-
tions are dense by Lemma 1.4). With this convention in mind, let us denote the quotient
determined by π in (3.12) as Qπ:

(3.14) Qπ = {((p, q), r) ∈M∗ ∗ PrkCol(U̇∗, Ġ∗g) |π(((p, q), r)) ∈ h ∗ x},

where we identify h ∗ x with the generic filter for the associated complete Boolean algebra.

The following product analysis reformulates the analysis in Section 1.1.3 in a quotient
setting.

Define:

(3.15) C = {((p, ∅), r) | ((p, ∅), r) ∈ Qπ},

The ordering is the one inherited from Qπ.

Define:

(3.16) T = {(∅, q) ∈M∗ | (∅, q)�λ ∈ h}.

The ordering is the one inherited from M∗.

Define a function τ from C×T to Qπ as follows: τ applied to the pair composed of ((p, ∅), r)
and (∅, q) is equal to the condition ((p, q), r). Note that if ((p, ∅), r) is in C and (∅, q) is
in T, then ((p, q), r) is a condition in the quotient Qπ since π((p, q), r) is the infimum of
π((p, ∅), r) and ((∅, q)�λ, 1PrkCol(U̇,Ġg)) in RO+(M ∗ PrkCol(U̇ , Ġg)).

Lemma 3.4 is proved exactly as Lemma 1.5(i):
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Lemma 3.4 τ is a projection from C× T onto Qπ.

The following lemma is obvious:

Lemma 3.5 T is κ+-closed in N [h].

Finally, we analyse the chain condition of (C)2 in N [h][x].

Lemma 3.6 (C)2 is κ+-cc in N [h][x].

Proof. Assume for contradiction that A is an antichain in (C)2 in N [h][x] of size κ+.
Denote the elements of A by (1ai, 2ai) for i < κ+. By thinning out the antichain if necessary,
we can choose a condition ((p, q), r) in h ∗ x which forces that A is an antichain and also
forces that stems of all conditions 1ai, i < κ+, are the same and the stems of all conditions
2ai, i < κ+, are the same (they may not equal each other, but they are compatible; denote
them 1t, and 2t). Now choose ((pi, qi), ri) in h ∗ x which decide the 1ai’s and 2ai’s; let us
write 1ai = ((1p∗i , ∅), 1r∗i ) and 2ai = ((2p∗i , ∅), 2r∗i ), i < κ+.

By further thinning and extending the stems if necessary, we may assume that the stems of
((p, q), r) and ((pi, qi), ri), i < κ+, are all the same; denote this stem s. Note that s extends
both 1t and 2t.

Now, we need to handle together 1ai and 2ai, for all i < κ+, to get mutual compatibility
in Claim 3.9 below: Let ((1p∗∗i , 1q

∗∗
i ), 1r∗∗i ) be a lower bound of ((1p∗i , ∅), 1r∗i ), ((pi, qi), ri),

and ((p, q), r) with stem s such that π(1p∗∗i )19 is in the Cohen part of the generic h ∗ x
(this can be done since such conditions are dense). Analogously, let ((2p∗∗i , 2q

∗∗
i ), 2r∗∗i ) be

a lower bound of ((2p∗i , ∅), 2r∗i ), ((pi, qi), ri), and ((p, q), r) with stem s such that π(2p∗∗i ) is
in the Cohen part of the generic h ∗ x. Note that in particular π(1p∗∗i ) is compatible with
π(2p∗∗i ).

Using a ∆-system argument, find i < j such that 1p∗∗i is compatible with 1p∗∗j and 2p∗∗i is
compatible with 2p∗∗j . Let us define:

(3.17) 1(∗) is the greatest lower bound (glb) of((1p∗∗i , ∅), 1r∗∗i ) and ((1p∗∗j , ∅), 1r∗∗j )

and

(3.18) 2(∗) is the greatest lower bound (glb) of((2p∗∗i , ∅), 2r∗∗i ) and ((2p∗∗j , ∅), 2r∗∗j ).

Note that both 1(∗) and 2(∗) have the same stem s.

Denote
p′ = π(1p∗∗i ) ∪ π(1p∗∗j ) ∪ π(2p∗∗i ) ∪ π(2p∗∗j ).

Note that p′ is correctly defined by the construction of the 1p∗∗i ’s and 2p∗∗i ’s. Let ((p̄, q̄), r̄)
denote the glb of the conditions ((p′, ∅), ∅), ((p, q), r), ((pi, qi), ri), ((pj , qj), rj). Note that
((p̄, q̄), r̄) has stem s.

We need the following claims to finish the proof.

19See (3.13) for definition.
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Claim 3.7 Assume ((p, q), r) is a condition in M∗PrkCol(U̇ , Ġg) and ((p∗, ∅), r∗) is a con-
dition in M∗ ∗ PrkCol(U̇∗, Ġ∗g) and the following conditions are satisfied:

(i) Stems of r and r∗ are checked names,
(ii) p ≤ π(p∗),

(iii) The length of the stems of r and r∗ is the same and the ordinals on the stems coincide,
(iv) The collapsing information in the stem of r extends the collapsing information in the

stem of r∗.

Then ((p, q), r) does not force ((p∗, ∅), r∗) out of the quotient C.

Proof. It suffices to find a generic filter h′ ∗ x′ for M∗ ∗ PrkCol(U̇∗, Ġ∗g) such that
π((p, q), r) is in the M ∗ PrkCol(U̇ , Ġg)-generic filter obtained by π from h′ ∗ x′. Any
filter h′ ∗ x′ containing a lower bound of ((p, q), r) and ((p∗, ∅), r∗) (such a lower bound
exists by conditions (i)-(iv)) satisfies this. �

Recall that the Prikry forcing with collapses satisfies the Prikry condition: any statement
in the forcing language is decidable by a direct extension (note that a direct extension does
not lengthen the stem, but is allowed to extend the collapsing information).

Claim 3.8 Let ((p, q), r) and ((p∗, ∅), r∗) are as in Claim 3.7. Then there is a direct ex-
tension ((p′, q′), r′) of ((p, q), r) which forces ((p∗, ∅), r∗) into C.

Proof. By the Prikry property, there is a direct extension of ((p, q), r) which decides the
statement “((p∗, ∅), r∗) is in C”. The negative decision contradicts Claim 3.7 (when applied
to the direct extension); it follows that the decision must be positive. �

Returning to our proof, we get:

Claim 3.9 There is a direct extension of ((p̄, q̄), r̄) which forces 1(∗) and 2(∗) into C.

Proof. ((p̄, q̄), r̄) and 1(∗) satisfy the conditions in Claim 3.7, and therefore by Claim 3.8,
there is a direct extension a1 ≤ ((p̄, q̄), r̄) which forces 1(∗) into C. a1 and 2(∗) satisfy the
conditions in Claim 3.7, and therefore by Claim 3.8 there is a direct extension a2 ≤ a1 as
desired. �

This finishes the proof since a2 forces that (1(∗), 2(∗)) is in C a witness for compatibility of
(1ai, 2ai) and (1aj , 2aj) in the antichain A. As a2 is below ((p, q), r), it also forces that A
is an antichain. Contradiction. �

The good chain condition of (C)2 and the closure of T are enough to argue that C×T, and
therefore Qπ, do not add branches to λ-trees, finishing the argument in the standard way.

For completeness we state the relevant facts below.

The following Fact is implicit in Mitchell’s [12], and stated in Unger’s [15].

Fact 3.10 Suppose γ is a regular infinite cardinal and P adds a subset x of γ such that x
is not in V but x ∩ α is in V for all α < γ. Then P × P is not γ-cc.
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Proof. It suffices to show that if G is P -generic then P is not γ-cc in V [G]. In V [G]
let x = (ẋ)G be a subset of γ as in the hypothesis and choose a sequence 〈pi | i < γ〉 of
conditions in G and an increasing sequence of ordinals 〈αi | i < γ〉 less than γ such that pi
fixes ẋ ∩ αi (i.e. forces it to equal a specific element of V ) but does not fix ẋ ∩ αi+1. This
is possible as x ∩ α is fixed by some condition in G for each α < γ but x itself is fixed by
no condition in G. Now choose qi+1 extending pi to disagree with pi+1 about ẋ ∩ αi+1.
This is possible as pi does not fix ẋ ∩ αi+1. But then the qi+1’s form an antichain as any
condition extending qi+1 disagrees with pi+1 (and therefore with pj for all j > i) about ẋ
and therefore cannot extend qj+1 for j > i, as qj+1 extends pj . �

The following Fact is due to Silver:

Fact 3.11 Suppose γ is an infinite cardinal and P is γ+-closed. Suppose µ > γ is a regular
cardinal and T is a tree of height µ which has all levels of size less than 2γ . Then P does
not add cofinal branches to T .

Finally, the following Fact is due to Unger [14], generalising Fact 3.11:

Fact 3.12 Suppose γ is an infinite cardinal, P is γ+-cc, Q is γ+-closed, and 2γ > γ+. If
T is a γ++-tree in V [P ], then in V [P ][Q], T has no new cofinal branches.

Suppose T is a λ-tree in the model N [h][x], where λ = κ++. By Lemma 3.6 and Fact 3.10,
C does not add new branches to T . As PrkCol(U,Gg) ∗ C has the κ+-cc in N [h], we can
apply Fact 3.12 over N [h] (with Q being T), and conclude that T does not add branches to
trees in N [h][PrkCol(U,Gg) ∗C], and therefore C× T does not add new branches to trees
in N [h][x].

This finishes the proof of Theorem 3.3.

4 The tree property with a finite gap

We would like to generalise the result of the previous section to a finite gap m, i.e. obtain
the tree property at ℵω+2 and have 2ℵω = ℵω+m for any 2 < m < ω. To this end, we need
to do some straightforward modifications to definitions and lemmas we used to obtain gap
3. To simplify indexing of the forcing notions, we will use the index n, where m = n + 2
(thus gap 3 is obtained with n = 1).

As in the previous section, let κ be the large cardinal which will be collapsed to ℵω, and λ
the least weakly compact cardinal above κ.

We now list the modifications we need to do:

• In Section 2.1, we choose µ = λ+n so that the preparation, which we now call Qn,
ensures that κ stays measurable after adding µ-many Cohen subsets of κ. Let us
denote the resulting model as V 1.
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• The definition of Pκ in (2.3) is to be modified as follows:

(4.19) Pnκ = 〈(Pnα , Q̇nα) |α < κ is measurable〉,

where Q̇nα denotes the forcing M(α, λα, λ
+n
α ).

• Let Gκ ∗ H be a generic filter for Pnκ ∗ M(κ, λ, λ+n), and let j : V 1[Gκ ∗ H] →
M1(j(Gκ ∗H)) be the lifting of j as in Theorem 2.3.

• Let Colln denote the forcing Coll((κ+3+n, < j(κ)))M
1[j(Gκ∗H)]. As in Lemma 3.1, we

can fix a guiding generic Gg for Colln over M1[j(Gκ ∗H)].

• The definition of the forcing P in (3.5) is modified as follows:

(4.20) Pn = Qn ∗ Pnκ ∗M(κ, λ, λ+n) ∗ PrkCol(U̇ , Ġg),

where U̇ is a name for a normal measure and Ġg is a name for a guiding generic
(defined with respect to U̇).

Now we get the following generalisation of Theorem 3.3:

Theorem 4.1 (GCH) Let 1 ≤ n < ω be fixed and assume that κ is H(λ+n)-hyper-
measurable, where λ > κ is the least weakly compact cardinal above κ. The forcing Pn
in (4.20) forces κ = ℵω, ℵω strong limit, 2ℵω = ℵω+2+n, and the tree property holds at
λ = ℵω+2.

Proof. The basic strategy of the proof is to reduce the general case to a configuration
essentially indentical to the argument for the gap 3 (see Remark 4.2).

Recall that the whole forcing in V looks as follows:

(4.21) Pn = Qn ∗ Pnκ ∗M(κ, λ, λ+n) ∗ PrkCol(U̇ , Ġg),

where Qn is the preparation i(Add(κ, λ+n))N = (Add(i(κ), λ+n)N (i is the normal measure
embedding derived from j which witnesses the H(λ+n)-hypermeasurability of κ). Let us
denote by Qnβ the natural truncation of Qn to length β < λ+n. Note that the forcing (4.21)
is λ-cc.

Suppose for contradiction that the forcing in (4.21) adds a λ-Aronszajn tree Ṫ (and assume
for simplicity that the weakest condition forces it).

Let A be an elementary substructure of large enough H(θ)V which has size λ+, is closed
under λ-sequences, and contains the name Ṫ and other relevant data. Let c : A → Ā be
the transitive collapse. Then the following hold:

(i) c(λ+n) is an ordinal between λ+ and λ++, let us denote this ordinal as β.
(ii) c(Qn) is isomorphic to Qnβ .
(iii) The name c(Pnκ ) interprets in V [Qnβ ] as Pnκ does in V [Qn].

(iv) The name c(M(κ, λ, λ+n)) interprets in V [Qnβ∗Pnκ ] as a forcing equivalent to M(κ, λ, β)
as intepreted in V [Qn ∗ Pnκ ].
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(v) The name c(U̇) interprets in V [Qnβ ∗ Pnκ ∗ M(κ, λ, β)] as a normal ultrafilter on κ

generating some guiding generic c(Ġg), and therefore Qnκ ∗Pnκ ∗M(κ, λ, β) forces that
PrkCol(c(U̇), c(Ġg)) is a Prikry forcing with collapses.

(vi) c(Ṫ ) is forced (over Ā ) by

Qnβ ∗ Pnκ ∗M(κ, λ, β) ∗ PrkCol(c(U̇), c(Ġg))

to be a λ-Aronszajn tree.

In contrast to the analogous construction in Section 3.2.2, we cannot claim now that c(Ṫ )
is equal to Ṫ . However, since this time the model Ā has size λ+ and is closed under λ
sequences, the forcing Qnβ ∗ Pnκ ∗M(κ, λ, β) ∗ PrkCol(c(U̇), c(Ġg)) (which is λ-cc) adds a

λ-Aronszajn tree not only over Ā (which follows by elementarity), but also over V . The
reason is that by λ-closure of Ā , a name for a cofinal branch in c(Ṫ ) would appear already
in Ā .

Let us work in V [Qnβ ∗Pnκ ] and let f be any bijection between β and λ+ which is the identity

on λ. This bijection extends into an isomorphism between M(κ, λ, β) ∗PrkCol(c(U̇), c(Ġg))
and M(κ, λ, λ+) ∗ PrkCol(U̇λ+ , Ġgλ+), where U̇λ+ and Ġgλ+ are names obtained naturally
from f .

This is a contradiction since we can argue as in Theorem 3.3 that the forcing M(κ, λ, λ+) ∗
PrkCol(U̇λ+ , Ġgλ+) does not add a λ-Aronszajn tree over V [Qnβ ∗ Pnκ ]. �

Remark 4.2 Strictly speaking, the forcing M(κ, λ, λ+)∗PrkCol(U̇λ+ , Ġgλ+) in the previous
proof is not of the type considered in Theorem 3.3: Instead of Pκ, we now have Pnκ , and the
guiding generic Ġgλ+ is generic for the forcing Coll(κ+3+n, < j(κ)) of the measure ultrapower

generated by U̇λ+ , and not for Coll(κ+4, < j(κ)) as in Theorem 3.3 (where j is generated
by U̇λ+). However, it is easy to check that the argument for the tree property at ℵω+2 only
uses the chain condition and closure properties of the relevant forcings, and these are not
affected by these modifications.

5 Open questions

The following questions are not solved by the methods of this paper:

Q1. Can we obtain an infinite gap at 2ℵω? More precisely, given an ω ≤ α < ω1, is there
a model where ℵω is strong limit, 2ℵω = ℵω+α+1, and the tree property holds at ℵω+2?

It seems that an entirely different method is required for this configuration (perhaps based
on the methods of Magidor [11] and Shelah [13]).

Q2. Can we obtain a similar result for ℵω1? Or in general, for any uncountable cofinality?

The last question is more general. Let P ∗ Q̇ be a forcing notion and assume P is κ+-cc for
a cardinal κ. Then the following are equivalent:

(i) P ∗ Q̇ is κ+-cc.
(ii) P  “Q̇ is κ+-cc”.
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Consider Lemma 3.6 where we argued that (C)2 is κ+-cc in N [h][x], which is useful by
Fact 3.10 for showing that certain trees do not get new branches in a generic extension by
C. It would be helpful in various contexts to have a generalisation of the equivalence (i)
and (ii) for the “square-cc condition” for some – rich enough – class of forcing notions.

Q3. Let P ∗ Q̇ be a forcing notion. Assume that

(∗) P ∗ Q̇ is κ+-Knaster (and therefore P is κ+-Knaster as well).

Is there a useful characterisation of the forcings P ∗ Q̇ for which (∗) already implies P 
“(Q̇)2 is κ+-cc”?

Note that this cannot hold for all P ∗ Q̇ by the following example: Work in a model where
MA (Martin’s Axiom) holds and assume P is Add(ω, 1) and Q̇ is a name for the Souslin tree
constructed from the generic filter for P (see Jech [9] for details). Then P ∗ Q̇ is ℵ1-Knaster
by MA, and yet P forces that (Q̇)2 is not ℵ1-cc.
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