On hardness of multilinearization,
and VNP-completeness
in characteristics two

Pavel Hrubeš

Preprint No. 40-2015

PRAHA 2015
On hardness of multilinearization, and VNP-completeness in characteristics two

Pavel Hrubeš*

April 21, 2015

Abstract

For a boolean function \(f : \{0,1\}^n \to \{0,1\} \), let \(\hat{f} \) be the unique multilinear polynomial such that \(f(x) = \hat{f}(x) \) holds for every \(x \in \{0,1\}^n \). We show that, assuming VP \(\neq \) VNP, there exists a polynomial-time computable \(f \) such that \(\hat{f} \) requires super-polynomial arithmetic circuits. In fact, this \(f \) can be taken as a monotone 2-CNF, or a product of affine functions.

This holds over any field. In order to prove the results in characteristics two, we design new VNP-complete families in this characteristics. This includes the polynomial \(\text{EC}_n \) counting edge covers in a graph, and the polynomial \(\text{mclique}_n \) counting cliques in a graph with deleted perfect matching. They both correspond to polynomial-time decidable problems, a phenomenon previously encountered only in characteristics \(\neq 2 \).

1 Introduction

Arithmetic circuit is a standard model for computing polynomials over a field. It resembles a boolean circuit, except that an arithmetic circuit uses +, \times as basic operations. The two most familiar arithmetic complexity classes, introduced by Valiant [10], are VP and VNP, and resemble the boolean classes P/poly and NP/poly. (For more details, we point the reader to, e.g., [7, 3].) Arguably, arithmetic circuits are better understood than boolean ones: several results which hold in the arithmetic setting have no known counterpart in the boolean world. Most notably, a polynomial-size arithmetic circuit computing a polynomial of polynomially-bounded degree can be simulated by a circuit of polynomial size and \(O(\log^2 n) \) depth, see [9]. In the boolean setting, this would amount to asserting P/poly = NC\(_2\)/poly. Moreover, main open problems in arithmetic complexity – such as proving super-polynomial lower bounds on circuit size of an explicit polynomial – can be seen as special cases of the corresponding boolean problems, and are therefore considered easier (at least in a finite underlying field). Hence, it would be desirable to have a means of translating results from arithmetic to boolean complexity.

One such possibility\(^1\) is the following. With a boolean function \(f \), associate the unique multilinear polynomial \(\hat{f} \) which takes the same values as \(f \) on 0,1-inputs. Can it be the case that \(\hat{f} \) has a polynomial size arithmetic circuit whenever \(f \) has polynomial size boolean circuit? This would have quite interesting consequences, including P/poly = NC\(_2\)/poly or that, in principle, arithmetic lower bounds imply boolean lower ones. Not surprisingly, we show that this is not the case: assuming VP \(\neq \) VNP, there exists a polynomial-time computable boolean function \(f \) such that \(\hat{f} \) requires superpolynomial arithmetic circuits. Moreover, the function \(f \) can be very simple, a monotone 2-CNF or a product of linear functions over \(\mathbb{F}_2 \).

The converse also holds: if VP = VNP then \(\hat{f} \) has complexity polynomial in that of \(f \). These results are similar to the VNP-dichotomy theorem in [1].

\(^* \)Institute of Mathematics of ASCR, Prague, Czech Republic, pahrubes@gmail.com. Supported by ERC grant FEALORA 339691.

\(^1 \)Suggested to the author by A. Rao
The above holds over any underlying field. We observe that the results are easy in characteristics different from 2, whereas characteristics 2 requires much more work. This is a frequent phenomenon in arithmetic complexity: for example, completeness results in Burgisser’s monograph [2] deal almost exclusively with char $\neq 2$, and similarly for the dichotomy in [1]. However, this is not caused by a pathological nature of char $= 2$, but rather by the lack of examples of VNP-complete families. In [10], Valiant has shown that the permanent polynomial, perm$_n$, is VNP-complete over any field of characteristics $\neq 2$, and the Hamiltonian cycle polynomial, HC$_n$, is complete over any field. The permanent counts the number of perfect matchings in a bipartite graph. In view of its simplicity, it has become synonymous with VNP in char $\neq 2$. HC$_n$ counts the number of Hamiltonian cycles in a graph, and is much more complicated than perm$_n$. One difference is the difficulty of the underlying decision problems: we can decide in polynomial time whether a graph has a perfect matching, whereas testing for a Hamiltonian cycle is NP-hard. This means that it is easier to deduce completeness of other polynomials by a reduction to perm$_n$, and an abundance of such families was presented in [2]. To the author’s knowledge, HC$_n$ was the only previously known VNP-complete family in characteristics two.

In this paper, we fill the gap by providing several new examples of VNP-complete families in characteristics two. This includes the polynomial clique$_n^\star$, which counts cliques of all sizes in a graph, the polynomial inclique$_n$, which counts n-cliques in $2n$-vertex graph with a deleted matching, or the edge cover polynomial. The latter families correspond to polynomial-time decision problems. We do not deduce VNP-completeness from the completeness of HC$_n$, but rather employ the \oplusP-completeness proof of \oplus2SAT, as given by Valiant in [11].

2 Preliminaries

Polynomials and arithmetic circuits

Let \mathbb{F} be field. A polynomial f over \mathbb{F} in variables x_1, \ldots, x_n is a finite sum of the form $\sum_J c_J x^J$, where $J = \langle j_1, \ldots, j_n \rangle \in \mathbb{N}^n$, $c_J \in \mathbb{F}$ and x^J denotes the monomial $\prod_{i \in [n]} x_i^{j_i}$. The degree of a monomial x^J is $\sum_{i \in [n]} j_i$, and the degree of a polynomial is the maximum degree of a monomial with a non-zero coefficient.

The standard model for computing polynomials over \mathbb{F} is that of arithmetic circuit. An arithmetic circuit starts from the variables x_1, \ldots, x_n and elements of \mathbb{F}, and computes f by means of the ring operations $+, \times$. The exact definition can be found in, e.g., in [7]. We denote

$$C(f) : = \text{the size of a smallest arithmetic circuit computing } f.$$

The classes VP, VNP, completeness and hardness

VP and VNP are the two most interesting complexity classes in arithmetic computation. The definitions are explained in greater detail in [7, 2, 3], and we give just the main points.

A family of polynomials $\{f_n\} = \{f_n\}_{n \in \mathbb{N}}$ is in VP, if f_n has polynomially bounded degree and circuit size. The family is in VNP, if $f_n(x) = \sum_{u \in \{0, 1\}^m} g_t(u, x)$ where $t : \mathbb{N} \to \mathbb{N}$ is polynomially bounded and $\{g_n\}$ is a family in VP. A polynomial $f(x_1, \ldots, x_n)$ is a projection of $g(y_1, \ldots, y_m)$, if there exist $a_1, \ldots, a_m \in \mathbb{F} \cup \{x_1, \ldots, x_n\}$ such that $f(x_1, \ldots, x_n) = g(a_1, \ldots, a_m)$. $\{g_n\}$ is a p-projection of $\{f_n\}$, if there exists a polynomially bounded $t : \mathbb{N} \to \mathbb{N}$ such that g_n is a projection of $f_{t(n)}$ for every n. A family $\{f_n\}$ is VNP-complete, if it is in VNP and every family in VNP is a p-projection of $\{f_n\}$. As customary, we will often identify a family $\{f_n\}$ with the polynomial f_n.

The best known VNP-complete polynomials are the permanent and the Hamiltonian cycle polynomial

$$\text{perm}_n := \sum_{\sigma} \prod_{i=1}^n x_i, \sigma(i), \quad \text{HC}_n := \sum_{\sigma'} \prod_{i=1}^n x_i, \sigma(i),$$

where σ ranges over permutations of $[n]$ and σ' over all cycles in S_n (i.e., every monomial in HC$_n$ corresponds to a Hamiltonian cycle in the complete directed graph on n vertices). Valiant [10] has shown that the permanent family is VNP complete over any field of characteristic different from 2, and HC$_n$ is VNP-complete over any field.
Our last definition is less standard. We will say that a family \(\{f_n\} \) is hard for VNP if for every family \(\{g_n\} \in \text{VNP} \), there exists a polynomially bounded \(t : \mathbb{N} \to \mathbb{N} \) and \(c \in \mathbb{N} \) such that

\[
C(g_n) = O(n^c \cdot C(f_{t(n)})).
\]

Clearly, it is enough to take for \(\{g_n\} \) a VNP-complete family. We do not require that \(g_n \) is somehow reducible to \(f_{t(n)} \), only that the arithmetic complexity of \(g_n \) is polynomially bounded by that of \(f_{t(n)} \). In Section 3.1, we will compare this with the more common notion of \(c \)-reduction.

Notation For \(v = \langle v_1, \ldots, v_n \rangle \in \{0,1\}^n \), \(|v| = \sum_{i=1}^n v_i \in \mathbb{N} \) denotes the number of 1’s in \(v \). If \(x = \langle x_1, \ldots, x_n \rangle \) is a vector of variables, we define the polynomials \(x^v \) and \(x_v \) as

\[
x^v := \prod_{i:v_i=1} x_i, \quad x_v := \prod_{i:v_i=0} (1 - x_i).
\]

(1)

We usually write \(x \) as \(\{x_1, \ldots, x_n\} \), identifying \(v \in \{0,1\}^n \) with a function from \(x \) to \(\{0,1\} \).

Multilinearization A polynomial \(f \) in variables \(x_1, \ldots, x_n \) is multilinear, if \(f = \sum_{v \in \{0,1\}^n} c_v x^v \). In other words, every monomial containing \(x_k^l \) with \(k > 1 \) has zero coefficient in \(f \). Let \(f \) be a function \(f : \{0,1\}^n \to \mathbb{F} \). The multilinearization of \(f \) is the unique multilinear polynomial \(\hat{f} \) over \(\mathbb{F} \) which satisfies \(\hat{f}(v) = f(v) \) for every \(v \in \{0,1\}^n \). The multilinearization can be explicitly written as

\[
\hat{f}(x_1, \ldots, x_n) = \sum_{v \in \{0,1\}^n} f(v)x^v x_v.
\]

(2)

A boolean function \(f : \{0,1\}^n \to \{0,1\} \) is automatically a function \(f : \{0,1\}^n \to \mathbb{F} \supseteq \{0,1\} \), and the definition applies also in this case. However, \(\hat{f} \) significantly depends on the ambient field \(\mathbb{F} \).

2.1 Main results

We are interested in the arithmetic circuit complexity of computing \(\hat{f} \), provided \(f \) itself is easy to compute. This is interesting in two cases. First, when \(f : \{0,1\}^n \to \{0,1\} \) is a boolean function with a small boolean circuit, or second, \(f \) is a polynomial computable by a small arithmetic circuit. The two cases are not unrelated, since a boolean circuit can be simulated by an arithmetic circuit on 0,1-inputs (e.g., replace \(\neg x \) by \(1 - x \), \(x \land y \) by \(x \cdot y \) and \(x \lor y \) by \(x y - x - y + 1 \)).

A monotone 2-CNF is a boolean formula of the form \(\bigwedge_{(i,j) \in A} (x_i \lor x_j) \) for some \(A \subseteq [n] \times [n] \). In the next section, we prove the following:

Theorem 1. Let \(\mathbb{F} \) be an arbitrary field. For every \(n \), there exists a boolean function \(\alpha_n : \{0,1\}^n \to \{0,1\} \) which can be computed by a monotone 2-CNF but the family \(\{\alpha_n\} \) is hard for VNP. Moreover, the 2-CNF is polynomial-time constructible and the family \(\{\alpha_n\} \) is VNP-complete in \(\text{char} (\mathbb{F}) \neq 2 \).

This implies:

Corollary 2. Assume that \(\text{VP} \neq \text{VNP} \). Then there exists \(\{f_n\} \in \text{VP} \) such that \(\{\hat{f}_n\} \notin \text{VP} \).

Theorem 1 and Corollary 2 show that boolean functions or polynomials cannot be efficiently multilinearized, unless \(\text{VP} = \text{VNP} \). The converse also holds:

Proposition 3. Assume that \(\{f_n\} \) is i) a family of polynomials in VNP, or ii) a family of boolean function which is in \(P/\text{poly} \). Then \(\{\hat{f}_n\} \) is in VNP.

\(^2\)Instead of \(P/\text{poly} \), one could have \(\#P/\text{poly} \).
Proof. i) Equation (2) can be written as \(\hat{f} = \sum_{v \in \{0,1\}^n} (f(v) \prod_{i=1}^n (x_i v_i + (1-x_i)(1-v_i))) \). This shows that \(\{\hat{f}_n\} \in \text{VNP} \). ii) If \(f : \{0,1\}^n \to \{0,1\} \) has a boolean circuit of size \(s \), we can find a polynomial \(f_1 \) with an arithmetic circuit of size \(O(s) \) such that \(f(u) = f_1(u) \) for every \(u \in \{0,1\}^n \). However, this polynomial may have an exponential degree. Instead, encode the boolean circuit as a 3-CNF in \(n = O(s) \) new variables, obtaining a polynomial of degree \(O(s) \) so that \(f_1(u) = \sum_{v \in \{0,1\}^n} f_2(u,v) \) holds for every \(u \in \{0,1\}^n \), and proceed as in i).

Other contributions of this paper are the following.

Multilinearization of linear products In Theorem 7, Section 4, we consider \(\hat{f} \) for \(f \) defined as a product of affine functions. We show that this is hard for VNP already when each affine function depends on two variables only. The exception is the two-element field where three variables are necessary.

VNP-completeness in characteristics 2 In Section 5 we provide new examples of VNP-complete families in characteristics two. In Theorem 10, we first prove VNP-completeness of the clique polynomial

\[
\text{clique}^*_n = \sum_{A \subseteq [n]} \prod_{i<j \in A} x_{i,j} .
\]

We use it to deduce completeness of other polynomials in Theorem 13. We focus on families based on polynomial-time decision problems, as well as polynomials whose coefficients can be expressed in terms of CNF’s. In particular, the polynomial \(D_{S_n} \) is used in the proof of Theorem 1. In Section 6, we discuss structural properties of the VNP-families in a greater detail.

3 Multilinearization of 2-CNFs

In this section, we prove Theorem 1. In order to appreciate the power of multilinearization, let us first sketch a simple proof of Corollary 2 in \(\text{char}(F) \neq 2 \). Let \(f_n \) be the polynomial

\[
f_n := \prod_{i \in [n]} \sum_{j \in [n]} x_{i,j} z_j .
\]

Then \(\hat{f}_n = (\prod_{i \in [n]} z_i) \cdot \text{perm}_n + g \), where \(g \) has degree \(< 2n \). \((\prod_{i \in [n]} z_i) \cdot \text{perm}_n \) is homogeneous of degree \(2n \), and so \((\prod_{i \in [n]} z_i) \cdot \text{perm}_n \) is the \(2n \)-homogeneous part of \(\hat{f}_n \). To conclude VNP-hardness, it is enough to recall the following:

Lemma 4. For \(k \in \mathbb{N} \), let \(f^{(k)} \) be the \(k \)-homogeneous part of the polynomial \(f \). Then \(f^{(0)}, \ldots, f^{(k)} \) can be simultaneously computed by a circuit of size \(O(f)k^2) \).

This fact traces back to Strassen [8], and appears in various places, including [7].

To prove Theorem 1, we need an appropriate 2-CNF, and the following lemma. The lemma shows that from a multilinear polynomial \(f(x,y) \), we can easily compute other polynomials such as \(\sum_{v \in \{0,1\}^n} f(v,y) \).

Lemma 5. Let \(f(x,y) \) be a multilinear polynomial in two disjoint sets of variables \(x,y \), with \(x = \{x_1, \ldots, x_n\} \) and \(\text{O}(f(x,y)) = s \). For every \(r \leq n \), the following can be computed by circuits of size \(O(sn^2) \):

\[
(i). \sum_{v \in \{0,1\}^n} f(v,y) x^v , \quad \sum_{v \in \{0,1\}^n, |v|=r} f(v,y) x^v ,
(ii). \sum_{v \in \{0,1\}^n} f(v,y) , \quad \sum_{v \in \{0,1\}^n, |v|=r} f(v,y)
\]

Moreover, if \(\text{char}(F) \neq 2 \), we have \(\sum_{v \in \{0,1\}^n} f(v,y) = 2^n f(1/2, \ldots, 1/2, y) \).

In characteristics \(\neq 2 \), the “moreover” part was observed in [6].
Proof. We will suppress the dependance on y, writing $f(x)$ instead of $f(x,y)$. Accordingly, degree of f is taken with respect to the variables x. Since f is multilinear, it can be written as (v ranges over $\{0,1\}^n$)

$$f(x) = \sum_v f(v)x^v = \sum_v \left(f(v) \prod_{i:v_i=1} x_i \prod_{i:v_i=0} (1-x_i) \right).$$

(3)

In $\text{char}(F) \neq 2$, if we set x_1, \ldots, x_n to $1/2$, we obtain $x^v x_v = 2^{-n}$, for every v. Hence, $f(1/2, \ldots, 1/2) = 2^{-n} \sum_v f(v)$, concluding the “moreover” part.

To prove (i), recall Lemma 4 and another useful fact, again due to Strassen [8]: if a polynomial g has degree d and can be computed by a circuit with division gates of size s, it can be computed by a circuit without divisions of size $O(sn^2)$. (Strictly speaking, this holds in infinite fields; in finite fields the complexity may be slightly larger [4].) This said, we claim that

$$\sum_v f(v)x^v = f(x_1/(1 + x_1), \ldots, x_n/(1 + x_n)) \prod_{i\in[n]} (1 + x_i).$$

(4)

This follows from (3): we have

$$\prod_{i:v_i=1} x_i \prod_{i:v_i=0} \left(1 - \frac{x_i}{1 + x_i} \right) = \prod_{i:v_i=1} x_i \cdot \left(\prod_{i\in[n]} (1 + x_i) \right)^{-1} = x^v \left(\prod_{i\in[n]} (1 + x_i) \right)^{-1},$$

giving (4). This shows that $\sum_v f(v)x^v$ has circuit complexity $O(sn^2)$. Furthermore, $\sum_{|v|=r} f(v)x^v$ is the r-homogeneous part of $\sum_v f(v)x^v$ – this would give circuit complexity $O(sn^3)$. In order to obtain the $O(sn^2)$ bound, it is enough to reproduce the division elimination proof directly. In (4), replace $(1 + x_i)^{-1}$ by its truncated power series, namely, with $\lambda(x_i) = \sum_{j=0}^{n-1} (-1)^j x_i^j$. Then $\sum_{|v|=r} f(v)x^v$ is the r-homogeneous part of $f(x_1 \lambda(x_1), \ldots, x_n \lambda(x_n)) \prod_{i\in[n]} (1 + x_i)$.

(ii) follows from (i) by setting $x_1, \ldots, x_n := 1$. \hfill \square

Proof of Theorem 1. Consider the DS$_n$ polynomial defined in (6), Section 5.2, where we will prove its VNP-completeness over any field. It depends on $m = n(n+1)/2$ variables $x = \{x_i, x_{j,k} : i \in [n], j < k \in [n]\}$. The definition can be rewritten as DS$_n = \sum_{v\in\{0,1\}^m} \alpha_n(v)x^v$, where α_n is the boolean function

$$\alpha_n(y) := \bigwedge_{i<j\in[n]} \left((\neg y_{i,j} \lor \neg y_i) \land (\neg y_{i,j} \lor \neg y_j) \right).$$

By Lemma 5 part (i), we have $C(\text{DS}_n) = O(C(\hat{\alpha}_n)m^2)$, and hence $\{\hat{\alpha}_n\}$ is VNP-hard. α_n is not monotone but rather antimonotone (i.e., all variables are negated). However, switching $\neg y_a$ to y_a in α_n amounts to switching y_a to $1 - y_a$ in $\hat{\alpha}_n$, and has negligible effect on complexity. We can achieve that α_n depends on n variables by reindexing the family.

To prove VNP-completeness in char $\neq 2$, consider the function

$$g_n(x, y, x_0) := x_0 \land \alpha_n(y) \land \bigwedge_{i\in[n], j<k\in[n]} \left((\neg y_i \lor x_i) \land (\neg y_{j,k} \lor x_{j,k}) \right).$$

It is easy to see that $\sum_{v\in\{0,1\}^m} \hat{g}_n(x, v, x_0) = x_0\text{DS}_n$. Hence, by the “moreover” part of Lemma 5, we have $x_0\text{DS}_n = 2^n \hat{g}_n(x, 1/2, \ldots, 1/2, x_0)$ and hence $\text{DS}_n = \hat{g}_n(x, 1/2, \ldots, 1/2, 2^n)$. That is, DS$_n$ is a projection of \hat{g}_n. The variables x, x_0 occur in g_n only positively and y only negatively. However, the y variables are all in the scope of the boolean sum, and replacing $\neg y_a$ by y_a in g_n yields the same result. \hfill \square
3.1 Comments

In the proof, we used the polynomial DS_n, since it can be easily expressed in terms of a 2-CNF. In characteristics \(\neq 2 \), we could have used the permanent instead. We can write \(\text{perm}_n(x) = \sum_{v} x^T f_n(v) \), where \(f_n \) is an antimonotone 2-CNF. Namely,

\[
 f_n(y) = \bigwedge_{i \neq j, i \in [n]} ((\neg y_{i,j} \vee \neg y_{i,j}) \land (\neg y_{j,i} \vee \neg y_{j,i})).
\]

This would give hardness of \(\hat{f}_n \) by Lemma 5 part (i). To obtain VNP-completeness, one can use the partial permanent polynomial, defined by

\[
 \text{perm}^*_n := \sum_{\beta} \prod_{i \in \text{dom}(\beta)} x_{i,\beta(i)},
\]

where \(\beta \) ranges over injective partial functions from \([n] \) to \([n] \) (the empty product equals 1). That the family \(\text{perm}^*_n \) is VNP-complete in char \(\neq 2 \) was shown in [5, 2]. The advantage of \(\text{perm}^*_n \) is that \(\text{perm}^*_n = \sum_n x^n f_n(v) \) with \(v \) ranging over all of \(\{0,1\}^n \). Furthermore, Theorem 1 in char = 2 can be proved directly using Proposition 9.

The difference between hardness and completeness in Theorem 1 is due to the restricted nature of \(p \)-projections, and the family \(\alpha_n \) is complete with respect to more general reductions. In Lemma 5, we need to compute \(\sum_{v \in \{0,1\}^n} f(v, y) \) from \(f(x, y) \) when \(f \) is multilinear. In characteristics different from two, this can be done by the projection \(x := 1/2, \ldots, 1/2 \). In general, the Lemma chiefly relies on computing homogeneous components of \(f(h, y) \), where \(h \) is a substitution from VP. In infinite field, this will be accommodated by the more general \(c \)-reduction (introduced in [2]). In this reduction, we think of \(f \) as an oracle and a computation can apply +, \(\times \) or \(f \) to previously computed values. By means of interpolation, the homogeneous components of \(f \) can be obtained from \(f \) via \(c \)-reductions (see [2]). We note:

Remark 6. (i) The polynomial \(\alpha_n \) from Theorem 1 can be evaluated in polynomial time on every 0,1-input. Hence, the family cannot be VNP-complete in \(\mathbb{F}_2 \) unless \(\oplus \mathbb{P} / \text{poly} \subseteq \mathbb{P} / \text{poly} \) (this is both with respect to \(p \)-projections and \(c \)-reductions).

(ii) If \(\mathbb{F} \) is infinite, but of arbitrary characteristics, \(\alpha_n \) is VNP-complete with respect to \(c \)-reductions.

4 Multilinearization of linear products

Here, we consider hardness of multilinearization of products of affine functions. An affine function over a field \(\mathbb{F} \) is a polynomial of the form \(\sum_{i=1}^n a_i x_i + a_0 \) with \(a_0, \ldots, a_n \in \mathbb{F} \). Its width is the number of non-zero \(a_i \)’s. The following theorem shows that products of functions of small width are hard to multilinearize.

Theorem 7. Assume that \(\mathbb{F} \) is of size at least three. Then

(i) for every \(n \), there exists a polynomial \(f_n \) in \(n \) variables which is a product of affine functions of width 2, but \(\{\hat{f}_n\} \) is hard for VNP.

If \(\mathbb{F} = \mathbb{F}_2 \), then

(ii) the above holds with affine functions of width 3,

(iii) if \(f \) is a product of affine functions, each depending on at most 2 variables, then \(C(\hat{f}) = O(n) \).

We deduce parts (i) and (ii) from Theorem 1. Let \(\alpha = \alpha_n = \bigwedge_{(i,j) \in A} (x_i \lor x_j) \) be the hard 2-CNF in \(n \) variables.

Proof of part (i). This is implied by the following:
Claim. There exists $h(x_1, x_2)$ which is a product of three affine functions of width 2 such that for every $x_1, x_2 \in \{0,1\}$, $x_1 \lor x_2 = h(x_1, x_2)$.

Proof. Assume that $\text{char}(\mathbb{F}) \neq 2$. Then take the product $2(1 - x_1/2)(1 - x_2/2)(x_1 + x_2)$. If $\text{char}(\mathbb{F}) = 2$ but $|\mathbb{F}| > 2$ then \mathbb{F} contains the 4-element field \mathbb{F}_4. Choose two distinct non-zero $a, b \in \mathbb{F}_4$ and take the product $(ax_1 + bx_2)^3$. This works because $t^4 = t$ for every $t \in \mathbb{F}_4$.

Instead of the 2-CNF α, we can take the product $\prod_{(i,j) \in A} h(x_i, x_j)$.

Proof of part (ii). With a disjunction $x_1 \lor x_2$, we associate L_{x_1,x_2}, a system of the three equations

$$z_{01} = x_1 + 1, \quad z_{10} = x_2 + 1, \quad z_{11} = x_1 + x_2 + 1,$$

where z_{01}, z_{10}, z_{11} are fresh variables. For the hard 2-CNF α, let $L := \bigcup_{(i,j) \in A} L_{x_i,x_j}$. Setting $k := |A|$, the system L depends on $3k$ extra variables z.

Claim. For every $x \in \{0,1\}^n$ the following are equivalent:

(i). $\alpha(x) = 1$

(ii). there exists $z \in \{0,1\}^{3k}$ with $|z| = k$ such that x, z is a solution of L over \mathbb{F}_2, and such a z is unique.

Proof. L_{x_1,x_2} is set up so that the following hold. If $x_1, x_2, z_{01}, z_{10}, z_{11} \in \{0,1\}$ is a solution and $x_1 \lor x_2 = 0$ then $|z_{01}, z_{10}, z_{11}| = 3$. If $x_1 \lor x_2 = 1$ then $|z_{01}, z_{10}, z_{11}| = 1$. Hence, every solution x, z of L satisfies $|z| \geq k$ and equality holds iff $\alpha(x) = 1$.

We can rewrite L as $\ell_1 = 1, \ldots, \ell_m = 1$, where every ℓ_i is a linear function of width ≤ 3. Define $g(x, z) := \prod_{i \in [m]} \ell_i$. The Claim entails that $\hat{\alpha}(x)$ can be written as $\hat{\alpha}(x) = \sum_{z \in \{0,1\}^{3k}, |z| = k} g(x, z)$. Therefore, \hat{g} is VNP-hard by Lemma 5 part (ii).

Proof of part (iii). Assume that f is in variables x_1, \ldots, x_n and $f = f_1 f_2 \cdots f_s$ where each f_i is an affine function depending on at most 2 variables. Consider the graph G on vertices x_1, \ldots, x_n defined as follows: there is an edge between $x_i \neq x_j$ iff there exists $k \in [s]$ such that f_k depends on both x_i and x_j (i.e., $f_k = x_i + x_j$ or $f_k = x_i + x_j + 1$). Suppose G has connected components G_1, \ldots, G_r. Then $f = g_1 \cdots g_r$, where for every i, g_i is the product of the f_j’s depending on some variable from G_i. Since g_1, \ldots, g_r depend on disjoint sets of variables, we have $\hat{f} = \hat{g}_1 \cdots \hat{g}_r$, and it is enough to multilinearize each g_i separately. It is therefore sufficient to consider the case when G is connected. But then there exist at most two $u \in \{0,1\}^n$ such that $f(u) = 1$. For if we fix $x_1 \in \{0,1\}$, the equations $f_1 = 1, \ldots, f_s = 1$ have at most one solution: a simple path from x_1 to x_k in G determines x_k uniquely. Writing $\hat{f} = \sum_{v \in \{0,1\}^n} x^v \hat{f}(v) = \sum_{v : f(v) \neq 0} \hat{f}(v)x^v$ gives a circuit of size $O(n)$.

We note that (ii) and (iii) of the theorem can be stated in a greater generality.

Remark 8. (i). Parts (ii) and (iii) hold for any field \mathbb{F}, if f and f_n are taken as boolean functions defined as conjunctions of affine functions over \mathbb{F}_2.

(ii). Given a set of linear equations over \mathbb{F}_2, we can count the number of solutions in polynomial time. Hence, the multilinearization in (ii) is easy to evaluate on every 0,1-input, and cannot be VNP-complete (unless $\oplus P/poly \subseteq P/poly$).
5 VNP completeness in characteristics two

In this section, we present new VNP-complete families in characteristics two. We emphasize that completeness is understood with respect to p-projections. The main tool is the following proposition, implicit in [11]. In this paper, Valiant proved $\oplus\mathbf{P}$-completeness of $\oplus\mathbf{2SAT}$, as well as of several other problems, including counting vertex covers in special kinds of bipartite graphs mod 2. (An antimonotone 2-CNF is obtained by negating all variables in a monotone 2-CNF.)

Proposition 9 ([11]). Let $f(x)$ be an n-variate boolean function computable by a circuit of size s. Then there exists a monotone (similarly, antimonotone) 2-CNF $g(x, y)$ in $m = O(s)$ auxiliary variables y such that for every $x \in \{0, 1\}^n$, $f(x) = \sum_{y \in \{0, 1\}^m} g(x, y)$ mod 2.

Proof sketch. First, it is enough to consider the case of f being a 3-CNF and, second, a single disjunction of three variables or their negations. Consider the disjunction $f(x, y, z) = \neg x \lor y \lor \neg z$. Then the 2-CNF $g(x, y, z)$ which is the conjunction of $u \lor x, u \lor y, u \lor z$. The key observation is that if $f(x, y, z) = 1$, then $g(x, y, z, u) = 1$ has unique solution $u = 1$, and if $f(x, y, z) = 0$ then every $u \in \{0, 1\}$ satisfies $g(x, y, z) = 1$. Hence, $f(x, y, z) = \sum_{u \in \{0, 1\}} g(x, y, z, u)$ mod 2, allowing to rewrite a 3-CNF as a 2-CNF. To convert a 2-CNF to a monotone one, we can replace $x \lor \neg y$ with the conjunction $x \lor \neg y$, $y / \neg y, \neg y \lor \neg y$, where the last disjunct can be treated as before. \(\square\)

In Section 5.1, we use the proposition to prove VNP-completeness of our first polynomial, clique_n^*. In Section 5.2, we use clique_n^* to conclude completeness of several other families.

5.1 Completeness of clique_n^*

The polynomial clique_n^* is defined as

$$\text{clique}_n^* := \sum_{A \subseteq [n]} \prod_{i,j \in A} x_{i,j},$$

where the empty products equal 1. Interpreting the variables as edges in a (simple and undirected) graph on n vertices, clique_n^* counts the number of cliques of all sizes. The polynomial has constant term $n+1$. In some contexts, it is more convenient to have the constant term equal 1, as in $(\text{clique}_n^* - n)$. In this modification, VNP-completeness of clique_n^* in char $\neq 2$ was proved in [2].

In the rest of this section, we show:

Theorem 10. The family $\{\text{clique}_n^*\}$ is VNP-complete over any field.

It is convenient to think of clique_n^* and similar polynomials in terms of edge-weighted graphs. Let $G = (V, E)$ be a (simple undirected) graph whose edges are weighted by a variable from a set x or an element of \mathbb{F}, via the function $w : E \to \mathbb{F} \cup x$. For $E' \subseteq E$, the weight of E' is defined as the product of weights in E' (empty products equal 1). A clique is a subset A of V such that every two distinct vertices in A are connected by an edge. The weight of a clique is the weight of its edge-set (hence, a clique of size ≤ 1 has weight 1). This guarantees that clique_n^* equals the sum of weights of all cliques in the complete graph on vertices $[n]$, where an edge between $i, j, i < j$, is weighted by $x_{i,j}$.

Lemma 11. Let $f(x)$ be an antimonotone 2-CNF in variables $x = \{x_1, \ldots, x_n\}$. Then there exists a graph $G = (V, E)$ with $|V| = O(n)$ and a weight function $w : E \to \mathbb{F} \cup x$, such that

$$\sum_{u \in \{0, 1\}^n} f(u) x^u = \sum_A w(A),$$

where A ranges over all cliques of G.

[8]
Proof. Assume that \(f \) can be written as a conjunction of clauses \(C = C_1, \ldots, C_m \), where each \(C_i \) is of the form \(\neg x_i \lor \neg x_j \) with \(i, j \in \{1, \ldots, n\} \). Let \(G \) be the graph whose vertices are \(x_0, x_1, \ldots, x_n \), where \(x_0 \) is a new variable not appearing in \(C \). There is an edge between \(x_i \) and \(x_j \), \(i \neq j \), iff every clause in \(C \) is consistent with the assignment \(x_i, x_j := 1 \). (In other words, \(C \) does not contain \(\neg x_i' \lor \neg x_j' \) for any \(i', j' \in \{i, j\} \).) This guarantees a one-to-one correspondence between cliques of \(G \) containing \(x_0 \) and satisfying assignments of \(C \): \(v \in \{0,1\}^n \) satisfies \(C \) iff \(A_v \cup \{x_0\} \) is a clique in \(G \), where \(A_v := \{x_i : v_i = 1, i \in \{1, \ldots, n\}\} \). Let us weigh the graph as follows: an edge between \(x_0 \) and \(x_i \) is weighted by \(x_i \) and all other edges by 1. Hence, the weight of \(A_v \cup \{x_0\} \) is \(\prod_{i \in A_v} x_i = x^v \). All cliques not containing \(x_0 \) have weight 1. In other words, the sum of weights of cliques in \(G \) equals
\[
\sum_{v \in \{0,1\}^n} x^v f(v) + a,
\]
for some \(a \in \mathbb{F} \). We can add to \(G \) an isolated edge with weight \(-a - 2 \) to obtain \(G' \) with the required property.

We can now prove the theorem.

Proof of Theorem 10. Clearly, the family is in VNP. The family is complete in char \(\neq 2 \) as shown in [2], and it remains to deal with char = 2. We deduce its completeness from VNP-completeness of HC\(_n\). The only property of HC\(_n\) we use is the following: it can be written as \(HC_n = \sum_{v \in \{0,1\}^{n_2}} g(v) x^v \), where \(x \) is the vector of its \(n^2 \) variables and \(f : \{0,1\}^{n^2} \to \{0,1\} \) is a boolean function of polynomial circuit size. By means of Proposition 9, we can write\nf
\[
HC_n = \sum_{v \in \{0,1\}^{n^2}, a \in \{0,1\}^m} g(v, u) x^v,
\]
where \(g \) is an antimonotone 2-CNF, \(m \) is polynomial in \(n \), and the summation is in characteristics 2. Lemma 11 shows that the polynomial
\[
\sum_{v \in \{0,1\}^{n^2}, u \in \{0,1\}^m} g(v, u) x^v y^u
\]
is a projection of \(\text{clique}^*_k \), with \(k \) polynomial in \(n \). Setting the variables \(y \) to 1 means that also \(HC_n \) is a projection of \(\text{clique}^*_k \). \(\square \)

5.2 Other VNP-complete families

Let \(\text{clique}_n \) and \(\text{mclique}_n \) be the polynomials
\[
\text{clique}_n := \sum_{A \subseteq [2n], |A| = n} \prod_{i < j \in [2n]} x_{i,j}, \quad \text{mclique}_n := \text{clique}_n(x_{1,n+1}, \ldots, x_{n,2n} := 0).
\]
They are both homogeneous of degree \(n(n-1)/2 \). \(\text{clique}_n \) counts the number of cliques of size \(n \) in a 2n-vertex graph. We can think of \(\text{mclique}_n \) as counting \(n \)-cliques in a special kind of graph, which we call a graph with forbidden matching. This is a graph on 2n vertices \(a_1, \ldots, a_n, b_1, \ldots, b_n \) such that there is no edge between \(a_i \) and \(b_i \) for every \(i \in [n] \). We note that completeness of clique could be proved directly via parsimonious reductions to 3-SAT. mclique is more interesting, because the corresponding decision problem is in polynomial time:

Observation 12. Given a 2n-vertex graph \(G \) with forbidden matching, we can decide in polynomial time whether it contains a clique of size \(n \).

Proof. We assume that the forbidden matching is part of the input (otherwise, we can find it in polynomial time by finding a perfect matching in the complementary graph). Note that every \(n \)-clique in \(G \) must contain
precisely one of the vertices \(a_i, b_i\) for every \(i \in [n]\). Identifying \(a_i\) with \(i\) and \(b_i\) with \(i + n\), we then see that
\[
G\ \text{has an } n\text{-clique iff the following clauses are satisfiable}
\]
\[
x_i \lor x_{i+n}, \ i \in [n], \ \neg x_j \lor \neg x_k, \ \text{for all } j \neq k \in [2n] \text{ such that } j, k \text{ are not incident}.
\]
This is a set of 2-clauses and its satisfiability can be determined in polynomial time.

We also define the \emph{subgraph counting polynomial} and \emph{disjoint subgraph polynomial} by
\[
CS_n := \sum_{A \subseteq [n], B \subseteq A^{(2)}} \left(\prod_{i \in A} x_i \prod_{(j,k) \in B} x_{j,k} \right), \quad DS_n := \sum_{A \subseteq [n], B \subseteq ([n] \setminus A)^{(2)}} \left(\prod_{i \in A} x_i \prod_{(j,k) \in B} x_{j,k} \right).
\] (6)
Here \(A^{(2)} := \{(j,k) : j < k \in A\}\). The motivation is the following: if \(B \subseteq A^{(2)}\) then \(B\) can be viewed as a set of edges on vertices \(A\), and so \((B,A)\) is a subgraph of the complete \(n\)-vertex graph.

Finally, we present two polynomials counting edge-coverings of a graph
\[
EC_n^* := \sum_B \prod_{(j,k) \in B} x_{j,k}, \quad EC_n := \sum_{|B| = \lfloor 3n/4 \rfloor} \prod_{(j,k) \in B} x_{j,k},
\]
where \(B\) ranges over \(B \subseteq [n]^{(2)}\) which form an edge cover of \([n]\) — that is, such that \(v(B) = [n]\), where \(v(B) := \{i,j : (i,j) \in B\}\). The factor \(3/4\) in \(EC_n\) is rather arbitrary. In the proof, it matters that \(1/2 < 3/4 < 1\). Note that any \(n\)-vertex graph, \(n > 1\), has a minimal edge cover of size between \(n/2\) and \(n - 1\), where an edge cover of size \(n/2\) is a perfect matching.

Theorem 13. The families \(\text{clique}_n\), \(\text{mclique}_n\), \(CS_n\) and \(DS_n\) are VNP-complete over any field. \(EC_n^*\) and \(EC_n\) are VNP-complete in characteristics equal to two.

We divide the proof into its constituent parts.

clique \(_n\) and mclique \(_n\). This is by reduction to clique \(^*\). Given an edge-weighted graph \(G\) on vertices \(a_1, \ldots, a_n\), consider the following graph \(H\) on \(2n\) vertices \(a_1, \ldots, a_n, b_1, \ldots, b_n\). \(H\) is the union of \(G\), a complete graph on \(b_1, \ldots, b_n\), as well as all edges \(<a_i, b_j>\) such that \(j \neq i\). All edges in \(H \setminus G\) have weight one. Every \(n\)-clique of \(H\) must contain precisely one of the vertices \(a_i, b_i\) for every \(i \in [n]\), and is of the form \(\{a_i : i \in A\} \cup \{b_i : i \in [n] \setminus A\}\), where \(\{a_i : i \in A\}\) is a clique in \(G\). This provides a one-to-one correspondence between cliques of \(G\) and \(n\)-cliques of \(H\), preserving clique-weight. This shows that \(\text{clique}^*_n\) is a projection of \(\text{mclique}_n\) and hence \(\{\text{mclique}_n\}\) is VNP-complete. By definition, \(\text{mclique}_n\) is a projection of \(\text{clique}_n\) and hence also \(\{\text{clique}_n\}\) is VNP-complete.

To prove the rest of the theorem, we first note:

Claim. The family \(\text{clique}^*_n|_{\bar{x}+1} := \sum_{A \subseteq [n]} \prod_{i<j \in A} (1 + x_{i,j})\) is VNP-complete.

Proof. In general, if \(a \in \mathbb{F}\) and \(\{f_n\}\) is VNP-complete then so is \(\{f_n|_{\bar{x}+a}\}\). Here, \(f_{\bar{x}+a}\) denotes the polynomial obtained by substituting \(z := z + a\), for every variable \(z\) in \(f\). First, if \(h\) is a projection of \(g\) then \(h_{\bar{x}+a}\) is a projection of \(g_{\bar{x}+a}\). (For, if \(h(x_1, \ldots, x_n) = g(q(y_1), \ldots, q(y_n))\) with \(q(y_i) \in \mathbb{F} \cup \{x_1, \ldots, x_n\}\) then \(h(x_1 + a, \ldots, x_n + a) = g(q'(y_1) + a, \ldots, q'(y_n) + a)\), where: \(q'(y_i) := q(y_i)\), if \(q(y_i)\) is a variable, and \(q'(y_i) = q(y_i) - a\) if \(q(y_i) \in \mathbb{F}\).) Second, VNP-completeness of \(\{f_n\}\) gives that \(\{f_n|_{\bar{x}-a}\}\) is a \(p\)-projection of \(\{f_n\}\) and so \(\{f_n\}\) is a \(p\)-projection of \(\{f_n|_{\bar{x}+a}\}\). \(\square\)

\(CS_n\) and \(DS_n\). \(\text{clique}^*_n|_{\bar{x}+1}\) can be rewritten as
\[
\text{clique}^*_n|_{\bar{x}+1} = \sum_{A \subseteq [n]} \prod_{1 < j \in A} (1 + x_{i,j}) = \sum_{A \subseteq [n], B \subseteq A^{(2)}} \prod_{(i,j) \in B} x_{i,j}.
\] (7)
This is precisely the polynomial obtained by setting \(x_1, \ldots, x_n\) to 1 in \(CS_n\) or \(DS_n\). \(\square\)

10
Edge covers EC^*_n. We work in characteristics two. We can further rewrite (7) as
\[
\text{clique}^*_n|\bar{x}+1 = \sum_{B \subseteq [n]^{(2)}} \sum_{A \supseteq B} \prod_{(j,k) \in B} x_{j,k} = c(B) \sum_{B \subseteq [n]^{(2)}} \prod_{(j,k) \in B} x_{j,k},
\]
where $c(B)$ is the number of sets $A \subseteq [n]$ with $B \subseteq A^{(2)}$. Hence, $c(B) = 2^n - |v(B)|$. In characteristics 2, the only non-zero terms are those with $v(B) = |n|$ corresponding to edge covers. \hfill \square

Edge covers EC_n. This will be by reduction to EC^*_n. Given an edge-weighted graph G on n vertices, it is enough to find an edge-weighted graph H with $m = O(n^2)$ vertices such that the sum of weights of edge-covers of G equals the sum of weights of edge-covers of size $3m/4$ of H.

Given N and k, let $G_{N,k}$ be the following graph on $2N + 2k + 1$ vertices. The vertices are partitioned into sets $\{a\}, A_1, A_2$, and B_1, B_2 with $|A_1| = |A_2| = N$ and $|B_1| = |B_2| = k$. Its $2N + k$ edges consist of all edges between a and A_1, a perfect matching between A_1 and A_2, and a perfect matching between B_1 and B_2. Every edge cover of $G_{N,k}$ must contain the two matchings and at least one edge between a and A_1. Hence, every edge cover has size at least $N + k + 1$ and the number of edge covers of size $N + k + r$ is exactly $\binom{N}{r}$ if $0 < r \leq N$. Furthermore, if $N = 2^q - 1$ for some $q \in \mathbb{N}$ then $\binom{N}{r}$ is odd for every $r \in [N]$.

Let H be the disjoint union of G and $G_{N,k}$, where N is the smallest $N > n(n-1)/2$ of the form $N = 2^q - 1$, $q \in \mathbb{N}$. Edges in $G_{N,k}$ are weighted by 1. We claim that, in characteristics 2,
\[
\sum_{E \text{ edge cover of } G} w(E) = \sum_{E' \text{ edge cover of } H, |E'| = 2N+k} w(E').
\]
This is because every edge cover E of G with $|E| = s$ can be extended to exactly $\binom{N}{N-s}$ covers E' of E with $|E'| = 2N + k$ and $E = E' \cap G$. The weight of E' equals the weight of E and $\binom{N}{N-s}$ is odd. The graph H has $v = n + 2N + 2k + 1$ vertices. If we choose $k = N - 3(n+1)/2$, the sum ranges over E' of size $3v/4$. (Without loss of generality, we assumed that n is odd.) \hfill \square

This concludes the proof of Theorem 13. We remark that:

Remark 14. By similar reductions, one can obtain VNP-completeness of analogous families defined on bipartite graphs. Namely, polynomials counting bicliques
\[
\sum_{A_1,A_2 \subseteq [n]} \prod_{i \in A_1,j \in A_2} x_{i,j}, \quad \sum_{A_1 \cup A_2 = [n]} \prod_{i \in A_1,j \in A_2} x_{i,j},
\]
as well as polynomials counting edge covers in a bipartite graph.

6 Defining functions and complexity of decision problems

In this section, we give a different perspective on Theorem 1, and discuss our VNP-complete families in terms of the complexity of their underlying decision problems.

With a boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$, we have associated the polynomial \hat{f} which agrees with f on the boolean cube. There is different way how to obtain a multilinear polynomial from f, namely, as the polynomial whose coefficients are computed by f. More generally, if $f : \{0,1\}^n \rightarrow \mathbb{F}$, let f^* be the polynomial in variables $x = \{x_1, \ldots, x_n\}$
\[
f^* := \sum_{v \in \{0,1\}^n} f(v)x^v.
\]
Hence, the function f computes the coefficient of x^v in f^*. We will call f the defining function of f^*. We can compare this with (2): $\hat{f} = \sum_{v \in \{0,1\}^n} x^v f(v)$. The difference between f^* and \hat{f} corresponds to generating function versus probability generating function of [2]. The two polynomials can be quite different. If 1 is the constant function from $\{0,1\}^2$ to $\{0,1\}$ then $1 = 1$ whereas $1^* = 1 + x_1 + x_2 + x_1x_2$. However, we observe that f and f^* are polynomially related.
Proposition 15. Let s_1 and s_2 be the circuit complexity of f^* and \hat{f}, respectively, where $f : \{0,1\}^n \to \mathbb{F}$. Then $s_1 = O(s_2 n^2)$ and $s_2 = O(s_1 n^2)$. Hence, VNP-hardness results of Theorem 1 and 7 hold for f^* instead of \hat{f}.

Proof. The first equality was proved in Lemma 5, the second one follows similarly from (4).

We believe that this is enough to reproduce the dichotomy results of [1] for both \hat{f} and f^* over fields of arbitrary characteristics.

Defining functions of VNP-complete families We now discuss the defining functions of the families from Section 5. For homogeneous polynomials, we consider slightly more general defining functions. If $f(x)$ is a homogeneous polynomial of degree k, we will call g its hom. defining function, if $f(x) = \sum_{|v|=k} g(v)x^v$.

We note:

- The defining function of perm_n^* and the hom. defining function of perm_n is an antimonotone 2-CNF.

In contrast, the hom. defining function of HC_n is not in AC0.

This is because the defining function of perm_n^* (and the hom. defining function of perm_n) checks whether a bipartite graph is a partial matching. This can be expressed as an antimonotone 2-CNF as in Section 3.1. For HC_n, the homogeneous defining function decides, given a graph with n edges and n vertices, whether it is a cycle (cf. [12]). For the polynomials in Section 5, we note the following:

(i) The defining function of $(\text{clique}_n^* - n)$, DS_n and EC_n^* is a 3-CNF, antimonotone 2-CNF and a monotone CNF of polynomial size, respectively.

(ii) The hom. defining function of clique_n, mclique_n and EC_n is a 3-CNF, antimonotone 2-CNF and a monotone CNF of polynomial size, respectively.

Underlying decision problems of VNP-complete families Let $\{f_n\}$ be a family of multilinear polynomials with 0, 1-coefficients such that f_n is in m_n variables. With $\{f_n\}$, we associate the following decision problem:

Given $n \in \mathbb{N}$, $v \in \{0,1\}^{m_n}$, and $k \leq m_n$, decide whether there exists $u \in \{0,1\}^{m_n}$ such that\footnote{$u \leq v$ means $u_i \leq v_i$ for every $i \in [m_n]$} $u \leq v$, $|u| = k$ and x^u has coefficient equal to 1 in f_n.

In characteristics zero, this is equivalent to checking whether $f^{(k)}(v) \neq 0$, where $f^{(k)}$ is the k-homogeneous part of f. For a family consisting of homogeneous polynomials, the parameter k can be dropped. For example, the decision problem associated with perm_n^* consists in checking whether a bipartite graph has a matching of size k, and a perfect matching in the case of perm_n. Hence, we note:

- The decision problem associated with perm_n or perm_n^* is in P. For HC_n, it is NP-hard.

As for the polynomials in Section 5, we note

Proposition 16. The decision problem associated with $(\text{clique}_n^* - n)$ or clique_n is NP-hard. For the other families in Theorem 13, the decision problem is in P.

Proof. The first part follows from NP-hardness of deciding whether a $2n$-vertex graph has an n-clique. For mclique_n, the statement is given by Observation 12. EC_n and EC_n^* follow from the fact that a smallest edge cover can be found in polynomial time. The decision problem associated with CS_n amounts to the following: given a graph $G = (V,E)$ and $k \in \mathbb{N}$, decide whether there exists a subgraph $G' = (V',E')$ with $|V'| + |E'| = k$. Such a subgraph exists if and only if $k \leq |V| + |E|$: if $k \leq |V|$ we can remove all but $k - |V|$ edges to achieve $|V'| + |E'| = k$. If $k < |V|$, remove all edges and all but k vertices. DS_n is similar.
Acknowledgement We thank Anup Rao for triggering this investigation and Amir Yehudayoff for useful discussions.

References

