An application of the stationary phase method to maximum entropy solutions of the multivariable moments problems

Călin-Grigore Ambrozie

Preprint No. 25-2010
(Old Series No. 226)
PRAHA 2010
An application of the stationary phase method to maximum entropy solutions of the multivariable moments problems

Călin-Grigore Ambrozie*

December 7, 2010

Abstract

We use Hörmander’s results on the method of the stationary phase to elaborate a technique of obtaining systems of algebraic equations, that can help the computation of the parameters defining the maximum entropy representing density of a finite set of moments.

Keywords: maximum entropy, moments problem, positive representing density.

Mathematics Subject Classification: MSC 44A60, 49J99

1 Statement of the problem

Fix $n, m \geq 1$ and let \mathbb{R}^n be the n-dimensional Euclidian space, endowed with the Lebesgue measure dt, where $t = (t_1, \ldots, t_n)$ denotes the variable in \mathbb{R}^n.

Let $A = A_{n,m} = \{\alpha \in \mathbb{Z}_n^\mathbb{N} : |\alpha| \leq 2m\}$, where $|\alpha| = \alpha_1 + \cdots + \alpha_n$ for any multiindex α. Given an arbitrary set $\gamma = (\gamma_\alpha)_\alpha$ of numbers γ_α ($\alpha \in A$), the truncated problem of moments under consideration here requires to establish if there are nonnegative, absolutely continuous measures $\mu = f \, dt \geq 0$ on \mathbb{R}^n such that

$$\int t^\alpha f(t) \, dt = \gamma_\alpha \quad (\alpha \in A).$$

*Supported by grants IAA100190903 of GA AV, 201/09/0473 GA CR
Thus we consider absolutely continuous representing measures $f dt$, with nonnegative density f from $L^1(\mathbb{R}^n)$ – the space of all classes of Lebesgue measurable functions that Lebesgue integrable on \mathbb{R}^n. Set $a := \text{card } A$.

In a previous work [] we characterized the existence of such representing densities by the solvability of the following system

$$\int_{\mathbb{R}^n} t^a e^{\sum_{\beta \in A} x_{\beta} t^\beta} dt = \gamma_\alpha \quad (\alpha \in A)$$

(2)

of a equations with a unknowns $x_{\alpha} (\alpha \in A)$. Therefore if our problem (1) has any absolutely continuous solution $\mu = f dt$, then it will necessarily have also a solution of the form from above. The concrete form of (2) then should allow to study the existence of (or approximate) the vector $x = (x_{\alpha})_{\alpha \in A} \in \mathbb{R}^a$, see for instance [7], [3] and [].

For powers moment problems, it is known [], [] that if there exists an integrable representing density of the form $f_\ast = \exp \left(\sum_{\alpha \in A} x_{\alpha} u_{\alpha} \right)$ on the whole space \mathbb{R}^n, then knowing a large set of its moments, namely all γ_{α}, $\alpha \in A + A$, provides the values of x_{α} ($\alpha \in A$) by solving a compatible and determined linear system (??). Note the following example. Let $n = 1$ and γ_0, γ_1, $\gamma_2 \in \mathbb{R}$. Set $u_{\alpha}(t) = t^\alpha (\alpha = 0, 1, 2)$. In this case one can use (2) to compute x_{α} by hand. Namely, assume that $f_\ast(t) := \exp (x_0 + x_1 t + x_2 t^2)$, $t \in \mathbb{R}$ is integrable and satisfies (2). Since $f_\ast \in L^1(\mathbb{R})$, then $x_2 < 0$. Hence by the Leibniz–Newton formula we have $\int f'_\ast dt = 0$ and $\int (tf'_\ast(t))' dt = 0$, where f' denotes the derivative of f. It follows $x_1 \gamma_0 + 2x_2 \gamma_1 = 0$ and $\gamma_0 + x_1 \gamma_1 + 2x_2 \gamma_2 = 0$. Then $x_1 = \gamma_0 \gamma_1 d^{-1}$, $x_2 = -\gamma_0^2 d^{-1}$ and $x_0 = \ln(\gamma_0) / \int \exp(x_1 t + x_2 t^2) dt$, where $d := \gamma_0 \gamma_2 - \gamma_1^2$. Hence $f_\ast(t) = C \exp \left[-(t-s)^2 / d \right]$ is a multiple of the Gauss distribution of mean $s = \gamma_1 / 2$ and dispersion d. Thus we get the well-known fact that the maximum entropy probability density of given mean and dispersion is the normal one, see [11] for instance. Similar computations providing x in terms of the known data γ_{α}, $\alpha \in A$ can be done also when $A = \{ \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n \ | \ \alpha_1 + \cdots + \alpha_n \leq 2 \}$ (this moment problem has been solved in [8] by different methods).

Namely, f_\ast maximizes the Boltzmann’s integral $-\int f \ln f dm$ amongst all the absolutely continuous measures $\mu = f m \geq 0$ satisfying the equalities (1).

To briefly recall the significance of the maximum entropy solution [7], [11], [12], let $V : (\Omega, A, P) \rightarrow \mathbb{R}$ be a random variable with values in T and absolutely continuous repartition $P \circ V^{-1} = \mu = f m$, where (Ω, A, P) is a probability field. Let T be finite with $m :=$ the normalized cardinal measure. The average of the minimum amount of information necessary
to determine the position of V in T proves then to be equal to Shannon’s entropy

$$H(f) := -\int_{\Omega} \log_2 f(V(\omega)) \, dP(\omega) \quad (= -\sum_{t \in T} f(t) \log_2 f(t)), $$

see for instance [11]. In general, if T is endowed with some arbitrary non-negative measure m, then the corresponding degree of randomness of V is measured by

$$H(V) := -\int_{\Omega} \ln f \circ V \, dP \quad (= -\int_{T} f \ln f \, dm).$$

Suppose that the repartition f of V is unknown, but we can find the mean values of some quantities u_α, $\alpha \in A$ depending on V. The available data on V are thus given by the knowledge of the numbers

$$\gamma_\alpha := \int_{\Omega} u_\alpha(V(\omega)) \, dP(\omega) \quad (= \int_{T} u_\alpha(t) f(t) \, dm(t)) \quad (\alpha \in A).$$

The problem is now to choose the most reliable f by using all this (and only this) information. The repartition f_* of the highest degree of randomness allowed by the conditions (1) is then the natural choice for f, see for instance [11], [12] for details. Note also in this sense the very interesting result from below.

Theorem 0 [7] Let $n := 1$ and $T := [a, b] \subset \mathbb{R}$. Let V be a random variable with uniform distribution on T. If V_1, V_2, \ldots are independent copies of V, then the conditional probability of V given the observation

$$k^{-1} \sum_{i=1}^{k} u_\alpha(V_i) = \gamma_\alpha \quad (\alpha \in A, k = 1, 2, \ldots)$$

converges to f_*,x as $k \rightarrow \infty$.

Therefore in certain moment–type problems it could be of interest to approximate f_*,x (that is, $x \in \mathbb{R}^a$).

The main concern of the present paper is then to find a way of computing / approximating the vector $x = (x_\alpha)_\alpha$ in the equation (2) from above.
2 Main results

Let p be a polynomial of degree $2m$ in n variables $t = (t_1, \ldots, t_n)$, with real coefficients x_i,

$$p(t) = \sum_{i \in \mathbb{Z}^n, |i| \leq 2m} x_i t^i,$$

s.t. $p(t) \leq -c\|t\|^2 + c'$ for all $t \in \mathbb{R}^n$, where $c, c' > 0$.

Set $x = (x_i)_i \in \mathbb{R}^N$, where $N := \text{card}\{i : |i| \leq 2m\}$.

Let $g_i = g_i(x)$ be defined by

$$g_i = \int_{\mathbb{R}^n} t^i e^{p(t)} dt \quad (|i| \leq 2m)$$

and set $g = (g_i)_i \in \mathbb{R}^N$. Thus $g = g(x)$.

Our problem is then to find a suitable way (analytic, numerical etc) of expressing x in terms of g; $x = x(g) = ?$

Our **Main theorem** is the following.

Theorem There exist $N - 1$ nontrivial polynomial functions f_k of $N - 1$ variables, the coefficients of which depend on g, s.t. the sets $\tilde{x} := (x_i)_{i \neq 0}$ satisfy

$$f_1(\tilde{x}) = 0, \ldots, f_{N-1}(\tilde{x}) = 0.$$

Lemma 1 Let $C \subset \mathbb{R}^n$ be a closed convex cone and $L, M \subset \mathbb{R}^n$ be linear subspaces with $L \subset M$ and $\dim M/L = 1$ s.t. $L + C \cap M \neq M$. Let f be a linear functional on L s.t. $fx > 0$ for every nonzero $x \in C \cap L$. Then there exists a linear extension F of f to M s.t. $Fx > 0$ for every nonzero $x \in C \cap M$.

Proof. We can suppose that $C \cap M \not\subset L$ (in particular, $C \cap M \neq \emptyset$). Fix also a unit vector $u \in M$, orthogonal to L. By a compactness argument, there is a constant $a > 0$ s.t.

$$d(x, C) \geq a\|x\| \quad (x \in L, fx \leq 0), \quad (3)$$
for otherwise we can find a sequence of unit vectors \(x_k \in L \) with \(fx_k \leq 0 \) s.t. \(d(x_k, C) \to 0 \) as \(k \to \infty \), and hence, a subsequence convergent to a unit vector \(x \in C \cap L \) with \(fx \leq 0 \), contrary to the hypotheses.

Let \(C := \ri (C \cap M) \). We prove that \(C \cap L = \emptyset \). Suppose there exists a vector \(v \in C \) with \(v \in L \). Let \(c_1 \in (C \cap M) \setminus L \). Then the inner product \(\langle c_1, u \rangle \neq 0 \). Since \(v \) is in the relative interior \(C \) of the set \(C \cap M \) and \(c_1 \in C \cap M \), by [Theorem II.6.4, [?]] we can find an \(\epsilon > 0 \) s.t. \(c_2 := -\epsilon c_1 + (1 + \epsilon)v \) is in \(C \cap M \). Since \(v \in L \) and \(u \perp L \), we have \(\langle c_2, u \rangle = -\epsilon \langle c_1, u \rangle \). The number \(\langle c_2, u \rangle \) is then \(\neq 0 \) and has opposite sign to \(\langle c_1, u \rangle \). Write \(c_i = \langle c_i, u \rangle u + h_i \) where \(h_i \in L \) for \(i = 1, 2 \). Then \(\langle c_i, u \rangle u \in (C \cap M) + L \). It follows, due to the signs of the coefficients, that both \(u, -u \in C \cap M + L \), and so \(\mathbb{R} \cdot u \subset C \cap M + L \), whence \(M = \mathbb{R} \cdot u + L \subset C \cap M + L \), that is contrary to the hypotheses \(L + C \cap M \neq M \).

Since \(C \cap L = \emptyset \), one of the half-spaces associated to the hyperplane \(L \) in \(M \) must contain \(C \) entirely, for if \(C \) contained points \(x \) and \(y \) in the two opposing half-spaces, some point of the line segment between \(x \) and \(y \) would be in \(L \), that is impossible. The corresponding closed half-space of \(M \) must then contain the closure

\[
\overline{C} = \ri (C \cap M) = C \cap M = C \cap M.
\]

Then there is a unit vector \(x_0 \in M \), namely one of the vectors \(u \) or \(-u \) orthogonal to \(L \) in \(M \), s.t. \(\langle c, x_0 \rangle \geq 0 \) for all \(c \in C \cap M \). Extend \(f \) by taking \(Fx_0 > \| f \| a^{-1} \). Then for any \(c \in C \cap M \), the orthogonal decomposition

\[
c = \lambda x_0 + h \quad (\lambda \in \mathbb{R}, \, h \in L)
\]

gives \(0 \leq \langle c, x_0 \rangle = \lambda \| x_0 \|^2 + 0 = \lambda \). To prove that \(Fc \geq 0 \) with strict inequality if \(c \neq 0 \), consider two cases.

If \(fh \geq 0 \), we obtain \(Fc = \lambda Fx_0 + fh \geq 0 \), and \(Fc \neq 0 \) unless both \(\lambda \), \(fh = 0 \) which means \(c = h \in C \cap L \) and \(fh = 0 \) that implies \(c = 0 \) by our hypotheses.

If \(fh < 0 \), by (3) we have

\[
|fh| \leq \| f \| \| h \| \leq \| f \| a^{-1} d(h, C) \leq \| f \| a^{-1} \| h - c \| \leq \| f \| a^{-1} \lambda,
\]

whence \(Fc = \lambda Fx_0 + fh \geq (Fx_0 - \| f \| a^{-1}) \lambda \geq 0 \), with strict inequality because \(Fc = 0 \) only when \(\lambda = 0 \) in which case \(c = h \in C \cap L \Rightarrow fh \geq 0 \) that is impossible when \(fh < 0 \).
For any multiindex $i = (i_1, \ldots, i_n) \in \mathbb{Z}_+^n$ we write as usual $i! = i_1! \cdots i_n!$, $|i| = i_1 + \cdots + i_n$ and $x^i = x_1^{i_1} \cdots x_n^{i_n}$ for a variable $x = (x_1, \ldots, x_n)$. Also, $i \leq j$ means $i_1 \leq j_1, \ldots, i_n \leq j_n$. Let $\deg p$ denote the degree of a polynomial p. Let p_n denote the homogeneous part of maximal degree of p.

Let $GL(n)$, resp. $O(n)$ denote as usual the group of all invertible, resp. orthogonal linear maps on \mathbb{R}^n.

Remind that a positive definite form in n variables is a polynomial $p = \sum_{i,j=1}^n a_{ij} X_i X_j$ s.t. the $n \times n$ matrix $[a_{ij}]_{i,j=1}^n$ is positive definite, namely $\sum_{i,j=1}^n a_{ij} x_i x_j > 0$ for every vector $(x_i)_{i=1}^n \neq 0$ in \mathbb{R}^n or, equivalently, s.t. $\lim_{\|x\| \to \infty} p(x) = +\infty$.

Definition We call an arbitrary polynomial $p \in \mathbb{R}[X]$ positive definite if there exist constants $c > 0$ and R s.t.

$$p(x) \geq c \|x\|^2$$

for all $x \in \mathbb{R}^n$ with $\|x\| \geq R$, or, equivalently, if there exist $c > 0$, c' s.t.

$$p(x) + c' \geq c \|x\|^2 \quad \forall x \in \mathbb{R}^n,$$

condition that easily proves also to be equivalent to

$$\lim_{\|x\| \to \infty} p(x) = +\infty.$$

Let $P = P_n = \{ p \in \mathbb{R}[X_1, \ldots, X_n] : p \text{ is positive definite } \}$.

Remark 2 (a) If $p = \sum_{i,j=1}^n a_{ij} X_i X_j + \sum_{i=1}^n b_i X_i + c$, then $p \in P_n$ is the form $\sum_{i,j=1}^n a_{ij} X_i X_j$ is positive definite.

(b) P_n is a convex cone, stable under multiplication.

(c) If $p \in P_n$, then for every $T \in GL(n)$, $x_0 \in \mathbb{R}^n$ and $c \in \mathbb{R}$ the polynomial $p(TX + x_0) + c$ also is in P_n.

(d) If $X = (X^1, \ldots, X^k)$ is a partition of the set $X = (X_1, \ldots, X_n)$ of variables and $p_j \in \mathbb{R}[X^j]$ is a positive definite form in $\mathbb{R}[X^j]$ for each $j = 1, \ldots, k$ then $p_1 + \cdots + p_k \in P_n$.

(e) P_n is the minimal set containing all polynomials $p_1 + \cdots + p_k$ with $1 \leq k \leq n$ from (e) and stable under the operations from (b) and (c).

(f) If $p \in P$, then $\deg p$ must be even ≥ 2.

(g) For p homogeneous, $p \in P \iff \inf_{\|x\| = 1} p(x) > 0 \iff p(x) \geq c \|x\|^{\deg p} \forall x$ for some $c > 0$.

6
(h) If the homogeneous part p_h of p is in P, then $p \in P$, but the converse is not true: for example, the polynomial $p = X_1^4 + X_2^2 \in \mathbb{R}[X_1, X_2]$ is in P_2 while $p_h = X_1^4 \not\in P_2$.

We remind from [?] the following lemma.

Lemma 3 For any $p \in \mathbb{R}[X]$ there exists a unique minimal linear subspace $Y \subset \mathbb{R}^n$ s.t. $p = p \circ P_Y$.

Let $\text{supp } p$ denote the unique minimal linear subspace provided by Lemma 3. We call $\text{supp } p$ the *support* of the polynomial p.

Lemma 4 Let $P : \mathbb{R}^n \to \mathbb{R}^n$ be linear s.t. $P^2 = P$ and $\dim \ker P = n - 1$. If $p \in \mathbb{R}[X]$ s.t. $p = p \circ P$, then $p = p \circ P_{\ker(I - P^*)}$.

Proof. Let $Z = \ker (I - P^*)$. Since P is a projection onto a hyperplane, $I - P$ is a projection onto a 1-dimensional space. Then there exist some vectors $v, w \in \mathbb{R}^n$ s.t. $x - Px = \langle x, v \rangle w$ for all $x \in \mathbb{R}^n$. The equality $P^2 = P$ is equivalent to $\langle v, w \rangle = 1$. We can assume that $\|w\| = 1$, replacing w by $\|w\|^{-1}w$ and v by $\|v\|v$. Set $e_1 = (1, 0, \ldots, 0) \in \mathbb{R}^n$. Let $O \in O(n)$ s.t. $Oe_1 = w$. Let $Q = O^*PO$ and $q = p \circ O$. Since $p = p \circ P$, we have $q \circ Q = q$. Write $O^*v = (a_1, \ldots, a_n)$. The equalities $1 = \langle v, w \rangle = \langle O^*v, O^*w \rangle = \langle (a_1, \ldots, a_n), e_1 \rangle = a_1$ show that $a_1 = 1$. It follows that $Qx = x - \langle Ox, v \rangle O^*w = x - \langle x, O^*v \rangle e_1$. Hence for every $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, we have $\langle (x_1, x_2, \ldots, x_n), (1, a_2, \ldots, a_n) \rangle = x_1 + a_2x_2 + \cdots + a_nx_n$ and so

$$Qx = (x_1, x_2, \ldots, x_n) - \langle (x_1, x_2, \ldots, x_n), (1, a_2, \ldots, a_n) \rangle (1, 0, \ldots, 0)$$

$$= (- \sum_{j=2}^n a_jx_j, x_2, \ldots, x_n).$$

Then $\partial_1 Q = 0$, that is, the polynomial function $Q = Q(x)$ does not depend on the variable x_1. Hence

$$Q(x_1, x_2, \ldots, x_n) \equiv Q(0, x_2, \ldots, x_n).$$

(4)

Now $(I - P)^* = (\langle \cdot, v \rangle w)^* = \langle \cdot, w \rangle v$ and hence $Z = \ker (I - P^*) = w^\perp$. Then for every $x = (x_j)_{j=1}^n \in \mathbb{R}^n$ we have

$$P_{O^*Z}x = O^*P_{w^\perp}Ox = O^*(I - P_{\mathbb{R}^n \setminus w})Ox = 7$$
\[O^*(Ox - (Ox, w)w) = x - (x, O^*w)O^*w \]
\[= x - (x, e_1)e_1 = (x_1, x_2, \ldots, x_n) - (x_1, 0, \ldots, 0) = (0, x_2, \ldots, x_n). \]

Then, using (4) also, we obtain \(q(P_{O^*Z}x) = q(0, x_2, \ldots, x_n) = q(x) \), namely \(q \circ P_{O^*Z} = q \). Hence \(p \circ O P_{O^*Z}O^* = p \). But \(P_{O^*Z} = O^*P_ZO \), and so, \(p \circ P_Z = p \).

Lemma 5 Let \(\tilde{\pi}, \tilde{\eta}, \tilde{\gamma} \) be polynomials with \(\deg \tilde{\gamma} < \deg \tilde{\eta}(< \deg \tilde{\pi}) \) and \(\tilde{\eta} \) homogeneous of degree \(k \). Write \(\tilde{\eta} = \sum_{j=0}^k \tilde{P}_jX_n^j \) with \(\tilde{P}_j \in \mathbb{R}[X'] \) homogeneous of degree \(k-j \). Suppose there is an index \(j \in \{1, \ldots, k-1\} \) s.t. \(\tilde{P}_j \neq 0 \). Suppose also that \(\tilde{\pi} \in \mathbb{R}[X'] \). Then \(e^{\tilde{\pi}+\tilde{\gamma}+\tilde{\eta}} \notin L^1 \).

Lemma 6 Let \(\pi, q, r \in \mathbb{R}[X] \) s.t. \(\deg r < \deg q(\deg \pi) \) and \(q \) is homogeneous. Let \(Y \subset \mathbb{R}^n \) be a linear subspace s.t. \(\pi = \pi \circ P_Y \). Suppose that \(\sup \{d(z, Y) : z \in \text{supp} q \parallel z \parallel = 1, q(z) \geq 0\} = 1 \). Then \(e^{\pi+q+r} \notin L^1 \).

Remind that we have obtained in [1] the following theorem.

Theorem 7 Let \(p \in \mathbb{R}[X_1, \ldots, X_n] \) be arbitrary. Set \(f(t) = e^{p(t)} \) for \(t \in \mathbb{R}^n \). The following statements are equivalent:

(a) The function \(f = e^p \) is Lebesgue integrable on \(\mathbb{R}^n \).

(b) The polynomial \(-p\) is positive definite in \(\mathbb{R}[X_1, \ldots, X_n] \).

The idea is to be used firstly can be described by the following elementary example.

Example: \(n = 1, m = 1 \)

In this case, the equations of moments are:
\[
\int e^{x_0+x_1t+x_2t^2}dt = g_0, \quad \int te^{x_0+x_1t+x_2t^2}dt = g_1, \quad \int t^2 e^{x_0+x_1t+x_2t^2}dt = g_2
\]
\[
\Rightarrow \quad x_1g_0 + 2x_2g_1 = 0, \quad g_0 + x_1g_1 + 2x_2g_2 = 0
\]
\[
\Rightarrow \quad x_1 = x_1(g), \quad x_2 = x_2(g) \text{ by solving the system of equations } f_1(x_1, x_2) = 0, \quad f_2(x_1, x_2) = 0 \text{ from above}
\]
\[
\text{ (while } x_0 \text{ can be obtained from } \int e^{x_0+x_1t+x_2t^2}dt = g_0 \)
\]

Proof: Leibniz-Newton formula
\[
\int_{-\infty}^{\infty} \frac{d}{dt}(e^{x_0 + x_1 t + x_2 t^2})dt = e^{x_0 + x_1 t + x_2 t^2}\bigg|_{t=-\infty}^{t=+\infty} = 0
\]

\[
\Rightarrow \int_{-\infty}^{\infty} (x_1 + 2x_2 t)e^{x_0 + x_1 t + x_2 t^2} dt = 0, \text{ that is,}
\]

\[
x_1 g_0 + 2x_2 g_1 = x_1 \int e^{x_0 + x_1 t + x_2 t^2} dt + 2x_2 \int t e^{x_0 + x_1 t + x_2 t^2} dt = 0
\]

and we similarly use \(\int_{-\infty}^{\infty} \frac{d}{dt}(t e^{x_0 + x_1 t + x_2 t^2}) dt = 0 \)

2.1 Notions of multivariable moments problems

Fix \(n, m \in \mathbb{N} \)

Problem:

Characterize those sets \(g = (g_i)_{i \in \mathbb{Z}_+^n, |i| \leq 2m} \) of real numbers \(g_i \) that admit nonnegative representing measures on \(\mathbb{R}^n \) with respect to the powers \(t^i (|i| \leq 2m) \), that is,

\[
\int_{\mathbb{R}^n} t^i d\mu(t) = g_i \quad (i \in \mathbb{Z}_+^n, |i| \leq 2m)
\]

where we used the multiindex notation,

\[
i = (i_1, \ldots, i_n) \quad |i| = i_1 + \cdots + i_n
\]

\[
t = (t_1, \ldots, t_n) \quad t^i = t_1^{i_1} \cdots t_n^{i_n}
\]

\[
\mu : \text{Bor}(\mathbb{R}^n) \to [0, \infty) \text{ measure}
\]

s.t. \(t^i \in L^1(\mathbb{R}^n, dt) \forall i \) with \(|i| \leq 2m \)

We call \(\mu \) a representing measure for \(g \)

We call \(\int t^i d\mu(t) \) the moments of \(\mu \)

If \(\mu = f dt \) with \(f \in L^1(\mathbb{R}^n, dt) \), we call \(f \) a representing density for \(g \)

Example 1 \(n = 1, m = \text{arbitrary}, g = (g_i)_{i=0}^{2m} \)

Theorem (Hamburger, Markov, Chebyshev,...) A set \(g = (g_0, g_1, \ldots, g_{2m}) \) is a sequence of moments of some nontrivial representing density \(f \geq 0 \), that
is,
\[\int_{-\infty}^{\infty} t^i f(t) dt = g_i \quad (i = 0, \ldots, 2m), \]
if and only the Hankel matrix
\[H_g := [g_{i+j}]_{i, j \leq m} \]
is positive definite, namely \(\sum_{i, j=0}^{m} g_{i+j} \lambda_i \lambda_j > 0 \) for all \((\lambda_0, \ldots, \lambda_m) \neq 0 \), or equivalently,
\[g_0 > 0, \ g_0 g_2 - g_1^2 > 0, \ldots, \ \text{det} \ H_g > 0. \]

Proof

- Riesz-Haviland’s theorem: \(g \) is a set of moments \(\Leftrightarrow \) the functional \(L : X^i \mapsto g_i \) satisfies \(Lp \geq 0 \) for all polynomials \(p \geq 0 \) \((Lp = \int pd\mu) \)
- On the real line, \(p \geq 0 \Leftrightarrow p = \sum q^2 = \text{sum of squares of polynomials} \)
 \[q = \sum \lambda_i X^i \]
- \(L(q^2) = L(\sum_{i,j} \lambda_i \lambda_j X^{i+j}) = \sum_{i,j} \lambda_i \lambda_j g_{i+j} \)

In this case (real line), various numerical algorithms can provide approximate solutions \(\mu = \int fd\mu \)

Example 2

\(m = 1, n = \text{arbitrary}, \ g = (g_i)_{|i| \leq 2} \)

Since any polynomial of degree 2 in several variables is a sum of squares, we obtain the (also, well known):

Theorem A set \(g = (g_{i_1, \ldots, i_n})_{i_1 + \ldots + i_n \leq 2} \) has representing measures \(\mu \geq 0 \) on \(\mathbb{R}^n \Leftrightarrow \)
\[\sum_{i,j \in \mathbb{Z}^n_+ : |i|, |j| \leq m} g_{i+j} \lambda_i \lambda_j \geq 0 \]
for all \((\lambda_i)_{|i| \leq m} \).

In this case (moments of order 2), there exist elementary ways of finding solutions \(\mu \).
In the general case, for arbitrary \(n \) and \(m (\geq 2) \), no such characterizations or analytic solutions are known (there are positive polynomials that are not sums of squares).

We remind from [] the following basic result.

Theorem Let \(g = (g_i)_{i \in \mathbb{Z}^n, |i| \leq 2m} \) be a set of powers moments of a measure \(\mu = f dt + \nu \geq 0 \), with \(f \in L^1(\mathbb{R}^n, dt) \setminus \{0\} \) and \(\nu \) singular with respect to \(dt \). Namely,

\[
\int_{\mathbb{R}^n} t^i d\mu(t) = g_i (|i| \leq 2m).
\]

Then there exist \(x_j \in \mathbb{R} (|j| \leq 2m) \), uniquely determined by \(g \), such that the polynomial

\[
p(t) := \sum_{|j| \leq 2m} x_j t^j
\]
satisfies \(p(t) \leq -c\|t\|^2 + c' \) and

\[
\int_{\mathbb{R}^n} t^i \exp \left(\sum_{|j| \leq 2m} x_j t^j \right) dt = g_i (|i| \leq 2m).
\]

2.2 On the maximum entropy principle

Let

\[
V : (\Omega, \mathcal{A}, P) \to (T, m)
\]
be a random variable with values in \(T \) and absolutely continuous repartition

\[
P \circ V^{-1} = \mu = fm,
\]

where \((\Omega, \mathcal{A}, P) \) is a probability field and \(T \) is a measurable space.

If \(T = \text{finite} \) and \(m := \text{the normalized cardinal measure} \):

Theorem (Shannon) The average of the minimum amount of information necessary to determine the position of \(V \) in \(T \) equals the *entropy* \(H(f) \) of \(V \),

\[
H(f) := -\int_{\Omega} \log_2 f(V(\omega)) \, dP(\omega) = -\sum_{t \in T} f(t) \log_2 f(t).
\]
In general, the degree of randomness of V is measured by

$$H(V) := -\int_{\Omega} \ln f \circ V \, dP = -\int_{T} f \ln f \, dm.$$

Suppose the repartition f of V is unknown but we can find the average values g_i of some quantities u_i depending on V.

The available data on V are thus given by the knowledge of the numbers

$$g_i := \int_{\Omega} u_i(V(\omega)) \, dP(\omega) = \int_{T} u_i(t) f(t) \, dm(t) \quad (5)$$

The problem is now to choose the most reliable f, by using all this, and only this information.

Solution: $f = f_*$, maximizing $H(\cdot)$ subject to eqs. (5)

Formula: $f_*(t) = \exp \sum_i x_i u_i(t)$

Other motivations for H:

- Let $T = \mathbb{R}$ and $m = dt$;
 Boltzmann’s integral formula for the physical entropy,

 $$H(f) = -\int_{\mathbb{R}} f(t) \ln f(t) dt.$$

- **Theorem** (Van Campenhout; Cover) Let $T = [a, b]$ be endowed with $m = dt$. Let V be a random variable with uniform distribution on T. Let V_1, V_2, \ldots be independent copies of V.
 Then the conditional probability of V given the observation

 $$k^{-1} \sum_{p=1}^{k} u_i(V_p) = g_i \quad (p = 1, 2, \ldots)$$

 converges to f_* as $k \to \infty$.

12
Suppose we look for a joint repartition

\[f_m := P \circ (V_1, \ldots, V_n)^{-1} \]

of \(n \) random variables \(V_1, \ldots, V_n \) with values in \(\mathbb{R} \) by knowing only the average values

\[g_i = \int_{\Omega} V_1^{i_1} \cdots V_n^{i_n} dP = \int_{\mathbb{R}^n} t_1^{i_1} \cdots t_n^{i_n} f(t) dt \]

for all multiindices \(i = (i_1, \ldots, i_n) \) with \(|i| \leq 2m \).

Then let \(T := \mathbb{R}^n, m = dt, u_i(t) = t^i \) and maximize

\[H(f) := -\int f \ln f dm \]

among all absolutely continuous measures \(\mu = f m \geq 0 \) having the prescribed moments

\[\int t^i f(t) dt = g_i \quad (|i| \leq 2m) \]

Conclusion: \(f_*(t) = \exp p(t), \quad p(t) = \sum_{|i| \leq 2m} x_i t^i \)

Problem: computation of the coefficients \(x_i \)

3 Method of the stationary phase

\[\mathcal{M} = M_{n,m} := \{ i \in \mathbb{Z}^n_+ : |i| \leq m, i \neq 0 \} \]

\[M = M_{n,m} := \text{card} \mathcal{M} \]

\[\tau : \mathbb{R}^n \to \mathbb{R}^M, \quad \tau(t) := (t^i)_{i \in \mathcal{M}} \]

Lemma There is a map

\[a : \{ i \in \mathbb{Z}^n_+ : |i| \leq 2m \} \to \{ \alpha \in \mathbb{Z}^M_+ : |\alpha| \leq 2 \} \]

s.t.

\[t^i \equiv \tau(a(t))^i \quad \forall i \]

Instead of the variables \(t_1, \ldots, t_n \), we introduce new variables \(T_1, \ldots, T_M \), s.t.
the monomials t^i of order $|i| \leq 2m$
can be expressed as
monomials T^α with $\alpha = a(i)$ of order $|\alpha| \leq 2$,
by
\[t^i = T^\alpha |_{T = \tau(t)} \]

Example

$n = 1, m = 2$

$\tau(t) = (t, t^2)$

$\mathcal{M} = \{1, 2\}$, $M = 2$;

$\mathbb{R}^n = \{t \in \mathbb{R} | T = \tau(t)\}$

The variables T_1, T_2 are: "$T_1 = t$", "$T_2 = t^2$"
(dependent, $T_2 = T_1^2$), when restricted to the image of τ:

\[
\begin{align*}
t^0 &= 1 = (t, t^2)^{(0,0)} \\
t^1 &= T_1 = (t, t^2)^{(1,0)} \\
t^2 &= T_2^2 = (t, t^2)^{(2,0)} \\
t^3 &= T_1T_2 = (t, t^2)^{(1,1)} = a(3); \text{ here } t^3 = \tau(t)^a(3) \\
t^4 &= T_2^2 = (t, t^2)^{(0,2)}
\end{align*}
\]

The equations of moments $\int_{\mathbb{R}^n} t^i e^{P(t)} dt = g_i$ become

$$\int_{\mathbb{R}^M} T^\alpha e^{P(T)} d\mu(T) = g_i$$

where:

$P(T) =$ polynomial of degree 2 s.t. $P |_{T = \tau(t)} = p(t)$;

μ is a singular measure of integration along the n-dimensional submanifold $\{\tau(t)\}_t$ of \mathbb{R}^M;

write $\int T^\alpha e^{P(T)} d\mu(T) = \langle \mu, T^\alpha e^{P(T)} \rangle = g_i$

$\psi(T) := e^{-\|T\|^2}$

$T = (T_1, \ldots, T_M) \in \mathbb{R}^M$ independent variables

$\psi_k(T) := c_k \psi(kT) = c_k e^{-k^2\|T\|^2}$

c_k constant s.t. $\int_{\mathbb{R}^M} \psi_k(T) dT = 1 \forall k \geq 1$

$\psi_k \rightarrow \delta$
in $D'(\mathbb{R}^M)$, as $k \rightarrow \infty$

$\mu \ast \psi_k \rightarrow \mu \ast \delta = \mu$

14
\[
\langle \mu * \psi_k, T^\alpha e^{P(T)} \rangle \rightarrow \langle \mu, T^\alpha e^{P(T)} \rangle = g_i. \tag{6}
\]

\[
\langle \mu * \psi_k, T^\alpha e^{P(T)} \rangle = \int_{\mathbb{R}^n} \int_{\mathbb{R}^M} \psi_k(T - \tau(\lambda)) T^\alpha e^{P(T)} dT d\lambda
\]

\[
= \int_{\mathbb{R}^M} T^\alpha d\tilde{\mu}(T),
\]

\[
\tilde{\mu} = |c_k \int_{\mathbb{R}^n} e^{-k^2\|T - \tau(\lambda)\|^2 + P(T)} d\lambda|dT
\]

\[
\tilde{\mu} \text{ is a continuous integral of gaussian densities (6), (7) } \Rightarrow \text{ for large } k, \text{ we get a small perturbation of the moments equations}
\]

\[
\int_{\mathbb{R}^M} T^\alpha d\tilde{\mu}(T) \approx g_i
\]

for which "the coefficients of } p \text{ in } e^p \text{ are computable."

For every fixed } \lambda \in \mathbb{R}^n \text{ and } j \in \mathcal{M} (\subset \mathbb{Z}_+^n), \text{ by Stokes' formula on large spheres, we have:}

\[
\int_{\mathbb{R}^M} \frac{d}{dT_j}(c_k e^{-k^2\|T - \tau(\lambda)\|^2} e^{P(T)}) dT = 0 \Rightarrow
\]

\[
-2 \int_{\mathbb{R}^M} k^2 c_k e^{-k^2\|T - \tau(\lambda)\|^2} (T_j - \lambda^j) e^{P(T)} dT
\]

\[
+ \int_{\mathbb{R}^M} \psi_k(T - \tau(\lambda)) \frac{d}{dT_j}(e^{P(T)}) dT = 0
\]

\[
(\psi_k(T) = c_k e^{-k^2\|T\|^2}). \text{ After integration over } \mathbb{R}^n:
\]

\text{2nd term } = \langle \mu * \psi_k, \frac{d}{dT_j}(e^{P(T)}) \rangle \rightarrow \langle \mu, \frac{d}{dT_j}(e^{P(T)}) \rangle = \text{ a linear combination of the coefficients } x_i, \text{ with coefficients depending on known data } g

\text{1st term } = \text{ rational expression in terms of integrals of the form}

\[
\int u(y) e^{ikf(y)} dy
\]

where } y \text{ = either } T \text{ or } t, \text{ and } f \text{ is complex-valued (for ex. } f(y) = i\|y - \tau(\lambda)\|^2 \).

15
Theorem (Hörmander,...) Let $f = f(y)$ be a complex valued C^∞ function in a neighborhood of 0 in \mathbb{R}^m s.t.
$\text{Im } f \geq 0$, $f(0) = 0$, $f'(0) = 0$, $\det f''(0) \neq 0$.
Then there is a compact neighborhood $K = K_f$ of 0 s.t. for every $u \in C^\infty_0(K)$ and $p \geq 1$ we have

$$| \int ue^{ikf}dy - R_k \cdot (L_0u + \frac{1}{k}L_1u + \frac{1}{k^2}L_2u + \cdots + \frac{1}{k^{p-1}})| \leq C_p \frac{1}{k^{p+\frac{m}{2}}}$$

where $R_k = (\det(kf''(0))/2\pi i)^{-1/2}$ and each L_j is a differential operator of order $2j$ acting on u at 0, given by

$$L_ju = \sum_{\nu-\mu=j} \sum_{2\nu \geq 3\mu} i^{-j}2^{-\nu}(f''(0)D,D)^\nu(g''u)(0)/\mu!\nu!$$

where $D = (\frac{1}{i} \frac{\partial}{\partial y_1}, \ldots, \frac{\partial}{\partial y_m})$ and
$$g(y) = f(y) - f(0) - \langle f''(0)y, y \rangle / 2.$$

Moreover, the coefficients of L_j are rational homogeneous functions of degree $-j$ in $f''(0), \ldots, f^{(2j+2)}(0)$ with denominator $(\det f''(0))^{3j}$. In every term the total number of derivatives of u and f'' is at most $2j$.

Also, each constant $C_p = C_p(f,u)$ is bounded "when f, f', u are controlled".

Example of use of (8): $p = 2$, $m = N$, $y = T$,
$f(y) = i\|y - \tau(\lambda)\|^2$; for simplicity, $\lambda := 0$
$u(y) = y^\alpha e^{P(y)}$ with $\alpha \neq 0$;

we multiply the equation

$$\int ue^{ikf}dy = R_k(L_0u + \frac{1}{k}L_1u + O(\frac{1}{k^2})) = R_k(u(0) + \frac{1}{k}(\Delta u)(0) + O(\frac{1}{k^2})) = R_k(\frac{1}{k}\Delta u(0) + O(\frac{1}{k^2}))$$

by k, then divide the result by
\[
\int e^{if} dy = R_k \cdot (1 + O(1/k))
\]

and obtain that
\[
k \int ue^{ikf} dy \int e^{ikf} dy = \Delta u(0) + O(1/k) = \Delta u(0) + O(1/k),
\]

that provides
\[
k \int e^{-k\|T-\tau(\lambda)\|^2} T^\alpha e^{P(T)} dT = (\Delta u) \cdot \int \psi_k(T - \tau(\lambda)) e^{P(T)} dT
\]

\[
+ O(1/k) \rightarrow (\Delta u) \times \text{known data}
\]

Integration with resp. to \(\lambda \) gives, since \(u = T^\alpha e^{P(T)} \), a 1st term = quadratic function of \(x \), with coefficients depending on \(g \)

Conclusions:
– larger \(p \) are necessary to deal with higher order moments \(m = 3, 4, \ldots \);
– also, \(f \) is not always quadratic; may be given by the implicit function theorem;
– this method can be used, in principle, for arbitrary data \(n, m \) etc;
– the usefulness of the results for concrete moments problems would only occur by means of explicitly computing the functions \(f_i(X) \) in the main Theorem; this seems to be a routine, but difficult task, to be completed in future papers.

References

Institute of Mathematics AV CR
Zitna 25, 115 67 Prague 1
Czech Republic

ambrozie@math.cas.cz