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Propositional logics

Propositional logic L:

Language: formulas built from atoms x0, x1, x2, . . . using a
fixed set of finitary connectives

Consequence relation: a relation Γ `L ϕ between sets of
formulas and formulas s.t.

I ϕ `L ϕ
I Γ `L ϕ implies Γ,∆ `L ϕ
I Γ,∆ `L ϕ and ∀ψ ∈ ∆ Γ `L ψ imply Γ `L ϕ
I Γ `L ϕ implies σ(Γ) `L σ(ϕ) for every substitution σ
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Unifiers and admissible rules

Γ,∆: finite sets of formulas

L-unifier of Γ: substitution σ s.t. `L σ(ϕ) for all ϕ ∈ Γ

Single-conclusion rule: Γ / ϕ

Multiple-conclusion rule: Γ / ∆

I Γ / ∆ is L-derivable (or valid) if Γ `L δ for some δ ∈ ∆

I Γ / ∆ is L-admissible (written as Γ ∼L ∆)
if every L-unifier of Γ also unifies some δ ∈ ∆

NB: Γ is L-unifiable iff Γ /∼L ∅
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Examples

I CPC: admissible = derivable (structural completeness)
I IPC and intermediate logics admit Kreisel–Putnam rule:

¬x → y ∨ z ∼ (¬x → y) ∨ (¬x → z)

I 2x / x admissible in K, K4, derivable in KT, S4
I Löb’s rule 2x → x / x admissible in K, derivable in GL
I 3x ∧3¬x / ⊥ admissible in all normal modal logics
I ⊥ ∼L ∅ iff L is consistent
I L has the (modal) disjunction property iff

2x1 ∨ · · · ∨2xn ∼L x1, . . . , xn (n ≥ 0)

I Rule of margins x → 2x / x ,¬x admissible in KT, KTB
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Basic questions

What rules are L-admissible?

I NB: ∼L forms a (multiple-conclusion) consequence relation
I Semantic characterization of ∼L by a class of models

(algebras, Kripke models, . . . )
I Syntactic presentation of ∼L:

I Basis of admissible rules = axiomatization of ∼L over `L
I Can we describe an explicit basis?
I Are there finite bases? Independent bases?

How to check Γ ∼L ∆?

I Is admissibility algorithmically decidable?
I What is its computational complexity?
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Algebraizable logics

L a logic, K a class of algebras (quasivariety)

L is (finitely) algebraizable wrt K if there are

I formulas E (x , y) = {ε1(x , y), . . . , εn(x , y)}
I equations T (x) = {t1(x) ≈ s1(x), . . . , tm(x) ≈ sm(x)}

such that

I Γ `L ϕ⇔ T (Γ) �K T (ϕ)

I Σ �K t ≈ s ⇔ E (Σ) `L E (t, s)

I x a`L E (T (x))

I x ≈ y ��K T (E (x , y))

In modal logic: T (x) = {x ≈ 1}, E (x , y) = {x ↔ y},
K is a variety of modal algebras
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Elementary equational unification

Θ: equational theory (or a class of algebras)

Σ = {t1 ≈ s1, . . . , tn ≈ sn} finite set of equations

Θ-unifier of Σ: a substitution σ s.t.

σ(t1) =Θ σ(s1), . . . , σ(tn) =Θ σ(sn)

UΘ(Σ) = set of Θ-unifiers of Σ

If L is a logic algebraizable wrt a quasivariety K :

I L-unifier of ϕ = K -unifier of T (ϕ)

I K -unifier of t ≈ s = L-unifier of E (t, s)
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Properties of unifiers

Preorder on substitutions:
σ more general than τ (σ �Θ τ) if ∃υ υ ◦ σ =Θ τ

Complete set of unifiers (csu) of Σ: S ⊆ UΘ(Σ) s.t.
∀τ ∈ UΘ(Σ) ∃σ ∈ S (σ �Θ τ)

Most general unifier (mgu) of Σ: σ s.t. {σ} csu

Basic questions:

I Is Σ unifiable?
I Does every Σ a finite csu? Or even mgu (if unifiable)?
I Is it decidable if Σ is unifiable? Can we compute a csu?
I What is the computational complexity?
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Rules → algebraic clauses

L logic algebraizable wrt a quasivarety K

For simplicity: assume |E (x , y)| = |T (x)| = 1

Clause: (universally quantified) disjunction of atomic
(= equations) and negated atomic formulas

Quasi-identity: clause with 1 positive literal

Rule Γ / ∆ translates to a clause T (Γ / ∆):∧
ϕ∈Γ

T (ϕ)→
∨
ψ∈∆

T (ψ)

Γ / ∆ single-conclusion rule =⇒ T (Γ / ∆) quasi-identity
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Clauses → rules

Conversely: clause C =
∧

i<n ti ≈ t ′i →
∨

j<m sj ≈ s ′j
translates to a rule E (C ):

{E (ti , t
′
i ) : i < n} / {E (sj , s

′
j ) : j < m}

C quasi-identity =⇒ E (C ) single-conclusion rule

I (Γ / ∆) a`L E (T (Γ / ∆))

I C ��K T (E (C ))

(abusing the notation)
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Admissible rules algebraically

Derivability:

I Single-concl. rules ⇐⇒ quasiequational theory of K
I Multiple-concl. rules ⇐⇒ clausal/universal theory of K

Γ `L ∆ ⇐⇒ T (Γ/∆) holds in all K -algebras

Admissibility:

Γ ∼L ∆ ⇐⇒ T (Γ/∆) holds in free K -algebras
⇐⇒ FK (ω) � T (Γ/∆)

⇐⇒ FK (n) � T (Γ/∆) for all n ∈ ω
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Parameters

In applications, propositional atoms model both “variables”
and “constants”

We don’t want substitution for constants

Example (description logic):

i ∀child.(¬HasSon u ∃spouse.>)

ii ∀child.∀child.¬Male u ∀child.Married
iii ∀child.∀child.¬Female u ∀child.Married

Good: Unify i with ii by HasSon 7→ ∃child.Male,
Married 7→ ∃spouse.>

Bad: Unify ii with iii by Male 7→ Female
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Admissibility with parameters

In unification theory, it is customary to consider unification
with unconstrained constants

We consider setup with two kinds of atoms:

I variables x0, x1, x2, · · · ∈ Var (countable infinite set)
I parameters (constants) p0, p1, p2, · · · ∈ Par

(countable, possibly finite)

Substitutions only modify variables, we require σ(pn) = pn

Adapt accordingly other notions:

I L-unifier, L-admissible rule, . . .

Exception: logics are always assumed to be closed under
substitution for parameters
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Parameters as signature expansion

Admissibility/unification with parameters in L
⇐⇒ plain admissibility/unification in LPar:

I language expanded with nullary connectives p ∈ Par
I `LPar = least consequence relation that contains `L

L algebraizable wrt K =⇒ LPar algebraizable wrt KPar:

I arbitrary expansions of K -algebras with the new constants

L-admissibility with parameters
⇐⇒ validity in free KPar-algebras

NB: |Par| = m =⇒

FKPar(n) ' FK (n + m) with fixed valuation of m generators
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Transitive modal logics

We consider axiomatic extensions of the logic K4:

I Language: Boolean connectives, 2
I Consequence relation:

I axioms of CPC
I ϕ,ϕ→ ψ ` ψ
I ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
I ` 2ϕ→ 22ϕ
I ϕ ` 2ϕ

Algebraizable wrt the variety of K4-algebras:
Boolean algebras with operator 2 satisfying 21 = 1,
2(a ∧ b) = 2a ∧2b, 2a ≤ 22a
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Frame semantics

Kripke frames: 〈W , <〉, < ⊆ W ×W transitive

=⇒ dual K4-algebra 〈P(W ),2〉, 2X = W r (W r X )↓

General frames: 〈W , <,A〉, A subalgebra of 〈P(W ),2〉

=⇒ dual K4-algebra A

Back: K4-algebra A =⇒ dual frame 〈St(A), <,CO(St(A))〉

duals of K4-algebras ' descriptive frames

We will use frame semantics as it is more convenient, but the
general algebraic theory still applies

Convention: frame = general frame,
but finite frame = finite Kripke frame
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Notation & terminology

〈W , <〉 transitive frame, u, v ∈ W

I u reflexive ⇐⇒ u < u, otherwise irreflexive
I u ≤ v ⇐⇒ u < v or u = v preorder
I u ∼ v ⇐⇒ u ≤ v and v ≤ u equivalence relation

equivalence classes = clusters:
I reflexive/irreflexive
I proper: size ≥ 2 ( =⇒ reflexive)
I cl(u) = the cluster containing u

I u � v ⇐⇒ u < v and v ≮ u strict order
I X↓ = {u : ∃v ∈ X u < v}, X↓ = {. . . u ≤ v}, X↑, X↑
I W rooted if W = r↑ for some r ∈ W

rcl(W ) = cl(r) root cluster
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Examples of transitive logics

logic axiom (on top of K4) finite rooted frames

S4 2x → x reflexive
D4 3> final clusters reflexive
GL 2(2x → x)→ 2x irreflexive

K4Grz 2(2(x → 2x)→ x)→ 2x no proper clusters
K4.1 ·23x → ·32x no proper final clusters
K4.2 3 ·2x → 2 ·3x unique final cluster
K4.3 2( ·2x → y) ∨2(2y → x) linear (chain of clusters)
K4B x → 23x lone cluster
S5 = S4⊕ B lone reflexive cluster

and their various combinations

Shorthands: 3ϕ = ¬2¬ϕ, ·2ϕ = ϕ ∧2ϕ, ·3ϕ = ¬ ·2¬ϕ
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Frame measures

A frame 〈W , <,A〉 has various invariants in N ∪ {∞}:

I depth = maximal length of strict chains
I cluster size = maximal size of clusters
I width = maximal size of antichains in rooted subframes
I branching = maximal number of immediate successor

clusters of any point

A logic L has depth (cl. size, width) ≤ k
⇐⇒ all descriptive L-frames have depth (cl. size, width) ≤ k
⇐⇒ L ⊇ K4BDk (K4BCk , K4BWk)

Branching:
more complicated (directly works only for finite frames)
L ⊇ K4BBk
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Frames for rules

M = 〈W , <,�〉 Kripke model:

I M � ϕ ⇐⇒ u � ϕ for all u ∈ W

I M � Γ / ∆ ⇐⇒

M � ϕ for all ϕ ∈ Γ =⇒ M � ψ for some ψ ∈ ∆

〈W , <,A〉 frame:

W � Γ / ∆ ⇐⇒ 〈W , <,�〉 � Γ / ∆ for all admissible �

Validity of rules preserved by p-morphic images, but not by
generated subframes

Only single-conclusion rules preserved by disjoint sums
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Parametric frames

K4-algebras are dual to frames

K4Par-algebras are dual to parametric frames 〈W , <,A,�Par〉

I 〈W , <,A〉 frame
I �Par fixed admissible valuation of parameters p ∈ Par

Model based on 〈W , <,A,�Par〉:
〈W , <,�〉 s.t.

I � admissible valuation in the frame 〈W , <,A〉
I � extends �Par
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Canonical frames

Free L-algebras FL(V ) are dual to canonical L-frames CL(V ):

I points: maximal L-consistent subsets of Form(V )

I X < Y ⇐⇒ ∀ϕ (2ϕ ∈ X ⇒ ϕ ∈ Y )

I A = definable sets: {X : ϕ ∈ X}, ϕ ∈ Form(V )

Free LPar-algebras FLPar(V ) are dual to
canonical parametric frames CL(Par,V ):

I underlying frame CL(Par ∪ V )

I X � p ⇐⇒ p ∈ X
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Universal frames of finite rank (1)

Canonical frames are too large
But: their top parts have an explicit description

Universal model MK4(V ), V ⊆ Var finite:

I start with empty model
I for each finite rooted model F with C = rcl(F ): if

I points of C are distinguished by valuation of V ,
I F r C is a generated submodel of MK4(V ), and
I ¬

(
F r C is rooted, rcl(F r C ) is reflexive, and includes

a copy of C wrt valuation
)

then extend MK4(V ) with a copy of C below F r C
(unless there already is one)
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Universal frames of finite rank (2)

Characterization:
MK4(V ) = unique model with valuation for V s.t.

I MK4(V ) is locally finite
(= rooted generated submodels are finite)

I each finite model with valuation for V has a unique
p-morphism to MK4(V )

Universal frame UK4(V ) = underlying frame of MK4(V )

P ⊆ Par finite:
Universal parametric frame UK4(P ,V ) = underlying frame of
MK4(P ∪ V ) with its valuation of P
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Universal frames of finite rank (3)

Generalization to L ⊇ K4 with finite model property (fmp):

ML(V ) = the part of MK4(V ) that’s based on an L-frame

=⇒ UL(V ), UL(P ,V )

Properties:
I all finite subsets of ML(P ,V ) definable
I the dual of UL(P ,V ) is FLP (V )

I UL(P ,V ) is the top part of CL(P ,V ):

I UL(P,V ) generated subframe of CL(P,V )
(the points of finite depth)

I all remaining points of CL(P,V ) see points of UL(P,V )
of arbitrarily large depth

I all 6= ∅ admissible subsets of CL(P ,V ) intersect UL(P ,V )
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Admissibility using universal frames

P ⊆ Par finite, Γ,∆ ⊆ Form(P ,Var) finite, L ⊇ K4 fmp

Summary:

Γ ∼L ∆ ⇐⇒ ∀V ⊆ Var finite: FLP (V ) � Γ / ∆

⇐⇒ ∀V ⊆ Var finite: CL(P ,V ) � Γ / ∆

⇐⇒ ∀V ⊆ Var finite: 〈UL(P ,V ), <,D,�P〉 � Γ / ∆

where D = subsets definable in ML(P ,V )

Typically:
Validity in UL(P ,V ) is not difficult to characterize,
but the restriction to D seriously complicates it

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba 25:78



Toy model:
logics of bounded depth

1 Logics and admissibility

2 Transitive modal logics

3 Toy model: logics of bounded depth

4 Projective formulas

5 Admissibility in clx logics

6 Problems and complexity classes

7 Complexity of derivability

8 Complexity of admissibility



Avoid the difficulties . . .

If L is a logic of bounded depth:

I CL(P ,V ) = UL(P ,V )
I CL(P ,V ) is a finite frame

=⇒ admissibility easy to analyze

Teaser: Let L be a logic of bounded depth. If

I Par is finite, or
I the set of finite L-frames is decidable,

then L-unifiability is decidable.

Proof: Γ ⊆ Form(P ,Var) is unifiable iff

∃� 〈UL(P ,∅),�〉 � Γ.

We can compute UL(P ,∅). QED
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. . . but some remain

The characterization

Γ ∼L ∆ ⇐⇒ UL(P ,V ) � Γ / ∆ ∀V finite

is not quite useful:

I UL(P ,V ) are too rigidly specified

I UL(P ,V ) are too large: ≈ 22·
··
|P∪V |

(height ≈ depth of L)
I we have no control over V , anyway

=⇒ need more convenient semantical description

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba 27:78



L-extensible models

L logic of bounded depth, fix P ⊆ Par finite

F finite rooted parametric L-frame, C = rcl(F ):

I F has loosely separated root if points of C are
distinguished by valuation of parameters

I F has separated root if moreover ¬
(
F r C is rooted,

rcl(F r C ) is reflexive, and includes a copy of C wrt
valuation

)
W finite parametric L-frame:

I W is L-extensible if ∀F with a separated root:
if F r rcl(F ) ⊆·W , it extends to F ⊆·W

I W is strongly L-extensible if ∀F with a loosely separated
root . . .
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Extensibility and canonical frames

Example: CL(P ,∅) is the minimal L-extensible frame

More generally:
CL(P ,V ) is L-extensible for any finite V ⊆ Var

Converse:
W L-extensible =⇒ p-morphic image of some CL(P ,V )

Corollary: If W L-extensible,

Γ ∼L ∆ =⇒ W � Γ / ∆

for all Γ,∆ ⊆ Form(P ,Var)
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Injectivity of extensible frames

W finite parametric L-frame

W is L-injective if ∀ finite par. L-frames F0 ⊆·F1:
any p-morphism F0 → W extends to a p-morphism F1 → W

Proposition: The following are equivalent:

I W is L-extensible
I W is L-injective
I W is a retract of some CL(P ,V ): there are p-morphisms

CL(P ,V )
f

−−−−−�
←−−−−−↩

g
W

s.t. f ◦ g = idW
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Connections among the properties

Proposition: The following are equivalent:

I W is a p-morphic image of some CL(P ,V )

I Γ ∼L ∆ =⇒ W � Γ / ∆ for all Γ,∆ ⊆ Form(P ,Var)

Warning: In general, CL(P ,V ) are not strongly L-extensible

strongly L-ext. −−−−−→←−−−−−/ L-ext. −−−−−→←−−−−−/ image of CL(P ,V )

Proposition: Any finite par. L-frame is a generated subframe
of a strongly L-extensible frame

Corollary: Any L-extensible frame is a retract of a strongly
L-extensible frame
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Extensibility and admissible rules

Recall: L logic of bounded depth, P ⊆ Par finite

Theorem: For any Γ,∆ ⊆ Form(P ,Var), TFAE:

I Γ ∼L ∆

I Γ / ∆ holds in all L-extensible frames
I Γ / ∆ holds in all strongly L-extensible frames

L-extensible frames are structurally important

strongly L-extensible frames are simpler to define and a bit
more robust to work with
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Application

What to do next depends on the logic

Logics of bounded depth can still be quite wild

Tame subclass: logics of bounded depth and width

I finitely axiomatizable
I polynomial-size model property
I frames recognizable in polynomial time

Theorem: Let L be a logic of bounded depth and width,
P ⊆ Par finite and Γ,∆ ⊆ Form(P ,Var) of size n.

If Γ /∼L ∆, then Γ / ∆ fails in a strongly L-extensible model of
size at most poly(n22|P|).

In particular, ∼L is decidable.
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Addendum: smaller models

For fixed finite P , the models are polynomial-size, but in
general doubly-exponential

Let Σ ⊆ Form finite, closed under subformulas

Σ-pruned L-extensible model: Like L-extensible, but when
extending with a cluster C , allow it to shrink to a subset if
satisfaction of Σ-formulas is preserved

Theorem: Let L be logic of bounded depth and width,
Γ ∪∆ ⊆ Σ. TFAE:

I Γ ∼L ∆

I Γ / ∆ holds in Σ-pruned L-extensible models of size 2O(n2)
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Historical note

Projective formulas introduced by [Ghilardi’00]:

I semantical characterization of projective formulas
I existence of projective approximations for extensible logics

=⇒ unification finitary
I parameter-free case only

We generalize it to the setup with parameters
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Motivation

In the case of logics of bounded depth, we saw:

Admissibility closely connected to injective L-frames

These are dual to projective L-algebras

Finitely presented projective L-algebras are described by
projective formulas:

Definition: ϕ is L-projective if it has an L-unifier σ s.t.

ϕ `L σ(ψ)↔ ψ ∀ψ ∈ Form

I it suffices to check ψ ∈ Var

I general algebraizable logics: x ↔ y stands for E (x , y)

I σ is a mgu of ϕ
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Löwenheim substitutions

If σ1, . . . , σm are substitutions s.t.

ϕ `L σi(ψ)↔ ψ ∀ψ ∈ Form, (∗)

then this also holds for σm ◦ · · · ◦ σ1

=⇒ build projective unifier inductively by small steps

Löwenheim subtitutions satisfy (∗):
Fix ϕ ∈ Form(P ,V ), where P ⊆ Par and V ⊆ Var finite

Let F = 〈fx : x ∈ V 〉, each fx : 2P → 2 Boolean function of
the parameters:

θϕ,F (x) = ( ·2ϕ ∧ x) ∨ (¬ ·2ϕ ∧ fx(~p))

θϕ = composition of all θϕ,F (in any order)
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Characterization of projectivity

Theorem: Let L ⊇ K4 fmp, ϕ ∈ Form(P ,V ). TFAE:

I ϕ is projective
I θNϕ is a unifier of ϕ, where N = (2|P| + 1)|ϕ|
I ϕ has the model extension property:

Definition:

I ModL = finite rooted L-models
I F ,F ′ ∈ ModL are variants

if they only differ in valuation of variables in root cluster
I M ⊆ ModL has the model extension property

if any F ∈ ModL has a variant in M
whenever its proper rooted submodels belong to M

I ϕ has m.e.p. iff ModL(ϕ) = {F ∈ ModL : F � ϕ} does
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Projective approximations

NB: projective formulas π are admissibly saturated:

π ∼L ∆ ⇐⇒ π `L ∆

Π is a projective approximation of a formula ϕ if

I Π finite set of projective formulas
I ϕ ∼L Π

I π `L ϕ for each π ∈ Π

If ϕ has a projective approximation Π:

I the set of proj. unifiers of π ∈ Π is a finite csu of ϕ
I ϕ ∼L ∆ ⇐⇒ π `L ∆ for all π ∈ Π

Price: existence of proj. apx. needs strong assumptions on L
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Cluster-extensible logics

L ⊇ K4 fmp, n ∈ ω, C finite cluster type:
irreflexive •, k-element reflexive k©

A finite rooted frame F is of type 〈C , n〉 if

I rcl(F ) is of type C

I rcl(F ) has n immediate successor clusters (= branching n)

-frameL

C

1 2 n

L 〈C , n〉-extensible:
For each type-〈C , n〉 frame F , if F r rcl(F )
is an L-frame, then so is F

L cluster-extensible (clx):
〈C , n〉-extensible whenever it has some
type-〈C , n〉 frame
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Properties of clx logics

Examples: Any combinations of K4, S4, GL, D4, K4Grz,
K4.1, K4.3, K4B, S5, K4BBk , K4BCk

Closed under joins and directed intersections
(countable complete lattice)

Nonexamples: K4.2, S4.2, . . .

Theorem: Every clx logic L

I is finitely axiomatizable
I has the exponential-size model property
I is ∀∃-definable on finite frames
I is described by finitely many forbidden types 〈C , n〉
I is described by finitely many extension conditions:
〈C , n〉 where n ∈ ω ∪ {∞}, C cluster type or ∞©
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Projective approximation in clx logics

Theorem: L clx logic =⇒ every formula ϕ has a projective
approximation Π s.t.

I each π ∈ Π is a Boolean combination of subformulas of ϕ
I |Π| ≤ 22n , |π| = O(n2n) for each π ∈ Π

Corollary:

I each ϕ has a finite csu
I we can compute it
I L-admissibility and L-unifiability are decidable
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Historical note

Admissibility in transitive modal logics studied in depth by
[Rybakov’97]

I semantical characterizations
I decidability results
I many results include parameters

We follow a different route, based on Ghilardi’s work on
projectivity
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Tight predecessors

P ⊆ Par finite, C finite cluster type, n ∈ ω

L clx logic, W parametric L-frame:

I W is 〈C , n〉-extensible ⇐⇒
∀ E ⊆ 2P , 0 < |E | ≤ |C |
∀ X = {wi : i < n} ⊆ W
∃ tight predecessor (tp) T = {ue : e ∈ E} ⊆ W :

ue � Pe , ue↑ =

{
X↑ C = •
X↑ ∪ T C reflexive

I W is L-extensible if it is 〈C , n〉-extensible whenever L is
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Extension rules

P ⊆ Par finite, C finite cluster type, n ∈ ω
〈C , n〉-extensible frames axiomatized by extension rules ExtPC ,n:

I C = •: for each e ∈ 2P ,

Pe ∧2y →
∨
i<n

2xi
/
{ ·2y → xi : i < n}

I C = k©: for each E ⊆ 2P and e0 ∈ E , where |E | ≤ k ,
Pe0 ∧ ·2

(
y →

∨
e∈E

2(Pe → y)
)

∧
∧
e∈E
·2
(
2(Pe → 2y)→ y

)
→ ∨

i<n

2xi

{ ·2y → xi : i < n}
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Semantics of extension rules

Theorem: Let W be a parametric frame

I If W is 〈C , n〉-extensible, then W � ExtPC ,n
I If W � ExtPC ,n, then W is 〈C , n〉-extensible,

provided W is descriptive or Kripke

Moreover: If L has fmp, then L + ExtPC ,n is complete wrt
locally finite 〈C , n〉-extensible Kripke frames

Theorem: If L ⊇ K4 has fmp, TFAE:

I L is 〈C , n〉-extensible
I ExtC ,n is L-admissible
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Characterization of admissibility

Theorem: If L is clx logic, TFAE:

I Γ ∼L ∆

I Γ / ∆ holds in all L-extensible parametric frames
I Γ / ∆ holds in all locally finite L-extensible parametric

Kripke frames
I Γ / ∆ is derivable in L + {ExtPar

C ,n : L is 〈C , n〉-extensible}

NB: To pass from a locally finite L-extensible countermodel to
a definable valuation, use projective formulas
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Bases of admissible rules

Corollary: If L is clx, the rules ExtC ,n are a basis of
L-admissible rules

Variation:

I Explicit single-conclusion bases
I If Par is finite:

I L has a finite basis ⇐⇒ L has bounded branching
I L has explicit independent bases (mc or sc)

I If Par is infinite:
I No consistent logic has a finite basis
I Open problem: independent bases?
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Smaller models

L-extensible frames are usually infinite

Let Σ ⊆ Form finite, closed under subformulas

Finite models L-pseudoextensible wrt Σ:
Like L-extensible, but instead of tp’s, have
tight pseudopredecessors wrt Σ
≈ behave as tp as concerns satisfaction of Σ-formulas

Theorem: If L clx logic and Γ,∆ ⊆ Σ, TFAE:

I Γ ∼L ∆

I Γ / ∆ holds in all L-pseudoextensible models wrt Σ

I Γ / ∆ holds in all L-pseudoextensible models wrt Σ of
size 2O(n)
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Variants of clx logics

Tweak the definition to cover other kinds of logics:

I Logics with a single top cluster (extensions of K4.2)
I Top-restricted cluster-extensible (tclx) logics: extension

conditions only for frames with a single top cluster
I Examples: joins of K4.2 with clx logics

I Superintuitionistic logics
I Behave much like their largest modal companions

(Blok–Esakia isomorphism)
I The only (t)clx si logics are IPC, Tn, KC, KC + Tn

(NB: T1 = LC, T0 = CPC)
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Main questions

For a fixed logic L, what is the computational complexity of:
I Given Γ,∆, is Γ / ∆ L-admissible?
I Is a given Γ L-unifiable?

Here, Γ and ∆ may be sets of formulas
I without parameters
I with parameters
I with O(1) parameters

Recall: unifiability is a special case of inadmissibility
=⇒ typically, admissibility and unifiability
captured by dual complexity classes

Ideally:
I lower bounds for unifiability
I upper bounds for admissibility
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Complexity classes

Common classes of languages:

I P = deterministic polynomial time
I NP = nondeterministic polynomial time
I coX = {Σ∗ r L : L ∈ X}, e.g. coNP
I PX = polynomial time with oracle from X , etc.
I polynomial hierarchy: Σp

0 = ∆p
0 = Πp

0 = P,

Σp
k = NPΣp

k−1 , ∆p
k = PΣp

k−1 , Πp
k = coNPΣp

k−1

I PSPACE = polynomial space
I EXP = deterministic exponential (2nc ) time
I NEXP = nondeterministic exponential time
I exponential hierarchy:

Σexp
k = NEXPΣp

k−1 , ∆exp
k = EXPΣp

k−1 , Πexp
k = coNEXPΣp

k−1
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Alternating Turing machines

alternating Turing machine (ATM):

I multiple transitions from a given configuration (≈ NTM)
I states labelled existential or universal
I acceptance defined inductively:

I configuration in an ∃ state is accepting ⇐⇒
∃ transition to an accepting configuration

I configuration in a ∀ state is accepting ⇐⇒
∀ transitions lead to accepting configurations

I alternation: go from ∃ state to ∀ state or vice versa
I Σk-TIME(f (n)): computable by ATM in time f (n), start

in ∃ state, make ≤ k − 1 alternations
I Πk-TIME(f (n)): start in ∀ state

I Σ1-TIME = NTIME, Π1-TIME = coNTIME
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Expressing classes with ATMs

I polynomial and exponential hierarchies:

Σp
k = Σk-TIME

(
poly(n)

)
Πp

k = Πk-TIME
(
poly(n)

)
Σexp

k = Σk-TIME
(
2poly(n)

)
Πexp

k = Πk-TIME
(
2poly(n)

)
I PSPACE = AP (alternating polynomial time)
I EXP = APSPACE (alternating polynomial space)
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Reductions and completeness
I Y (many-one) reducible to X if there is f : Σ∗ → Σ∗ s.t.

w ∈ Y ⇐⇒ f (w) ∈ X ,

f efficiently computable:
I polynomial-time
I logspace: in space O(log n), excluding input tape

(read-only) and output tape (write-only)
I C a class: X is C -hard if every Y ∈ C reduces to X

I X C -complete if X ∈ C and C -hard

Examples:

I SAT is NP-complete, TAUT (ie, CPC) is coNP-complete
I QSAT is complete for AP = PSPACE
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Completeness in exponential hierarchy

Theorem: Fix k ≥ 1. The set of true Σ2
k sentences

∃X1 ⊆ 2n ∀X2 ⊆ 2n . . . QXk ⊆ 2n Qt1, . . . , tm ∈ 2n ϕ

is a Σexp
k -complete problem, where

I 2 = {0, 1}
I Q = ∃ for k odd, ∀ for k even
I Q = dual of Q
I n given in unary
I ϕ Boolean combination of atomic formulas tα ∈ Xj , tα(i)

(i < n constant)
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Derivability and tautologicity

Before admissibility, let’s consider a baseline problem:

I Given Γ,∆, is Γ / ∆ L-derivable?

In transitive logics, this is equivalent to L-tautologicity:

I Given ϕ, is `L ϕ?

NB: Special case of L-admissibility, but also of L-unifiability
with parameters:

ϕ ∈ Form(Par,∅) =⇒ (`L ϕ ⇐⇒ ϕ unifiable)
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coNP cases

Lower bound: By reduction from CPC,
L-derivability is coNP-hard for any consistent L

Upper bound: L-derivability is in coNP if:

I L has a polynomial-size model property
I finite L-frames are recognizable in P (or NP)

Corollary: L-derivability coNP-complete for:

I consistent linear (= width 1) clx logics
I consistent logics of bounded depth and width
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PSPACE cases

Theorem [Ladner’77]
Derivability in K, T, S4 is PSPACE-complete
For any K ⊆ L ⊆ S4, it is PSPACE-hard

Upper bound:

≈ explore proof tree/countermodel one branch a time
Can be adapted (bounded branching little tricky):

Theorem: Derivability in any (t)clx logic is in PSPACE

Lower bound:
I reduction from QSAT
I easily adapted to all logics with the disjunction property

I reference?
I superintuitionistic logics with DP: [Chagrov’85]
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PSPACE lower bound

We give another generalization, using reduction from IPC

Theorem: Derivability is PSPACE-hard for all logics L ⊇ K4
that are subframe-universal for trees

I subreduction: ≈ p-morphism from a subframe
I weak subreduction: ignore reflexivity
I L subframe-universal for trees if ∀ finite tree T
∃ weak subreduction from an L-frame onto T

I cofinal subreduction: dom(f )↑ ⊆ dom(f )↓
=⇒ cofinal weak subreduction,
cofinally subframe-universal for trees
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Applications of the lower bound

Theorem: All logics L ⊇ K4 with the disjunction property are
cofinally subframe-universal for trees

Corollary:

I Derivability in L ⊇ K4 with DP is PSPACE-hard
I Derivability in nonlinear clx logics is PSPACE-complete
I Derivability is also PSPACE-complete in nonlinear tclx

logics: K4.2, S4.2, . . .
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Summary: clx logics

Completeness results for complexity of clx logics:

logic
0L

unifiability, /∼L

examplesbran- clust. parameters:
ching size no† O(1) any

0
<∞ Πp

2 S5⊕ Altk ,CPC
∞

NP
coNEXP S5, K4B

1
<∞ PSPACE GL.3, LC
∞ coNEXP S4.3, K4.3

≥ 2
<∞

PSPACE NEXP
GL, S4Grz, IPC

∞ Σexp
2 K4, S4

† The parameter-free case is for /∼L only
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Summary: tclx logics

Completeness results for complexity of tclx logics:

logic
0L

unifiability, /∼L

examplescluster size: parameters:
inner top no† O(1) any

<∞ <∞
PSPACE

GL.2, Grz.2, KC
∞ NEXP Θexp

2 S4.1.4⊕ S4.2
∞ Σexp

2 K4.2, S4.2

† The parameter-free case is for /∼L only

NB: branching ≥ 2 by definition
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Summary: bounded depth and width

Complexity results for logics of bounded depth and width:

logic
0L unif.

/∼L

notes
width

cluster
(†) sing.-c. mult.-c.

size (unrestricted parameters)

1
<∞

NP

Πp
2d depth d

∞ coNEXP

≥ 2

<∞ NEXP

∞
DEXP BHexp

4 EXPNP[log n] under
Θexp

2 certain
Σexp

2 conditions

(†) also the complexity of unifiability and /∼L with O(1) parameters
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Upper bounds

Semantic characterization:
pseudoextensible / pruned extensible models (size 2poly(n))
=⇒ inadmissibility in (t)clx or bd-dp-wd logics is in Σexp

2 :

∃model ∀E ⊆ 2P . . .

Optimization in certain cases:

I bounded cluster size:
∀E ⊆ 2P , |E | ≤ k becomes a poly-size quantifier

I constant number of parameters: same reason
I width 1:

I the model is an upside-down tree of clusters
I an ATM can explore it while keeping only one branch
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Lower bound conditions

Basic tenet: Hardness of L-unifiability stems from
finite patterns that occur as subframes in L-frames

That is, study conditions of the form:
∃ an L-frame that subreduces to F =⇒ L-unifiability C -hard

Example conditions:

I L has unbounded depth:
L-frames weakly subreduce to arbitrary finite chains

I L has unbounded cluster size:
L-frames subreduce to arbitrary reflexive clusters

I L is nonlinear (= width ≥ 2 = branching ≥ 2):
an L-frame subreduces to a 2-prong fork
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Lower bound technique

Reduce a C -complete problem to L-unifiability:

I PSPACE, Σp
k/Πp

k : QSAT, Σk/Πk-SAT
I Σexp

k /Πexp
k : special Σ2

k/Π2
k-sentences as above

Encode quantifiers:

I ∃ simulated by variables, ∀ by parameters
I t ∈ 2n: directly by n-tuple of atoms
I ∀X ⊆ 2n: parameter assignments realized in a cluster
I ∃X ⊆ 2n: single variable x

I use antichains to enforce consistency:
I u � σ(x) unaffected by a change of parameters in v � u
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Σexp
2 bounds

Lower bound:
If ∀n an L-frame subreduces to a rooted frame containing

I an n-element cluster, and
I an incomparable point

=⇒ L-unifiability is Σexp
2 -hard

∗

∗

Upper bound:
L (t)clx or bd-dp-wd logic =⇒ L-inadmissibility is in Σexp

2

Examples:
K4, S4, S4.1, S4.2, K4BB2, S4BB2BD2, . . .
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NEXP bounds

Lower bound:
L nonlinear =⇒ L-unifiability is NEXP-hard

(O(1) parameters? next slide)
∗

∗∗

Upper bounds:

I L (t)clx logic of bounded cluster size, or a tabular logic
=⇒ L-inadmissibility is in NEXP

I L (t)clx logic =⇒
L-inadmissibility with O(1) parameters is in NEXP

Examples:
GL, K4Grz, S4Grz, S4Grz.2, IPC, KC, . . .
(± bounded branching)
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NEXP lower bounds w/ O(1) parameters

Need stronger hypothesis (cf. logics of bounded depth)

Theorem: The following problems are NEXP-hard

I L-unifiability with 2 parameters
I if L subframe-universal for trees

I L-unifiability with 1 parameter
I if L cofinally subframe-universal for trees

(includes: logics with disjunction property)
I if L subframe-universal respecting reflexivity

I L-unifiability with 0 parameters
I if K4 ⊆ L ⊆ K4.2GrzBB2

I single-conclusion L-inadmissibility with 0 parameters
I if L has a certain weak extension property
I this includes: nonlinear clx logics
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coNEXP bounds

Lower bound:
L unbounded cluster size
=⇒ L-unifiability is coNEXP-hard

Upper bound:
L linear clx or bd-dp logic
=⇒ L-inadmissibility is in coNEXP

Examples: S5, K4.3, S4.3, . . .
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PSPACE bounds

Lower bound:
L unbounded depth =⇒
L-unifiability with 2 parameters is PSPACE-hard

Corollary:
L-unifiability is PSPACE-hard
unless L linear tabular logic

∗

∗

∗

∗

∗

Upper bound:
L linear clx logic of bounded cluster size
=⇒ L-admissibility is in PSPACE

Examples:
GL.3, K4Grz.3, S4Grz.3, LC, . . .
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Polynomial hierarchy

Recall: L-unifiability PSPACE-hard unless L linear tabular

Remaining case:
L linear tabular logic of depth d =⇒
L-unification and L-inadmissibility are Πp

2d -complete

Examples:
CPC, Gd+1, S5⊕Altk , K4⊕2⊥, . . .

L unbounded depth =⇒ PSPACE-hard with 2 parameters

Theorem:
L bd-dp-wd logic =⇒
L-inadmissibility with O(1) parameters is NP-complete
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More exotic classes

Exponential version of Θp
2:

Θexp
2 = EXPNP[poly] = EXP‖NP = PNEXP = PSPACENEXP

Exponential version of the Boolean hierarchy:

I BHexp = closure of NEXP under Boolean operations
I Stratified into levels:

I BHexp
1 = NEXP

I BHexp
k+1 = {Ar B : A ∈ NEXP,B ∈ BHexp

k }
I Special case:

DEXP = BHexp
2 = {A ∩ B : A ∈ NEXP,B ∈ coNEXP}

NEXP, coNEXP ⊆ BHexp ⊆ Θexp
2 ⊆ ∆exp

2
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Θexp
2 bounds

Lower bound:
∀n ∃ graph-connected L-frame of cluster size ≥ n and width ≥ 2
=⇒ L-unifiability is Θexp

2 -hard

Upper bound:
L-admissibility is in Θexp

2 if

I L is a tclx logic of bounded inner cluster size, or
I L is a bd-dp-wd logic, doesn’t satisfy the Σexp

2 LB
condition

Example: S4.2⊕ S4.1.4
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BHexp bounds

The NEXP and coNEXP lower bounds imply:

Lower bound:
L nonlinear logic of unbounded cluster size
=⇒ L-unifiability is DEXP-hard

Rare case where unifiability and inadmissibility (with
parameters) have different complexity:

Upper bound:
L bd-dp-wd logic, doesn’t satisfy the Θexp

2 LB condition =⇒

I L-unifiability is in DEXP
I single-conclusion L-inadmissibility is in BHexp

4

I multiple-conclusion L-inadmissibility is in EXPNP[log n]
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Full classification?

Known: complexity of unifiability for (t)clx, bd-dp-wd logics

Could it be determined for all logics L ⊇ K4?

I Hopeless:
already `L can be undecidable, arbitrary Turing degree

I The form of results that we’ve seen:
I Upper bounds: tame, nicely-behaved logics
I Lower bounds: logics allowing certain frame patterns

=⇒ downward-closed classes of logics
I Determine minimal complexity of unifiability among

sublogics of L?

Definition: Unifiability has hereditary hardness C below L if

I L′-unifiability is C -hard for all L′ ⊆ L
I L′-unifiability is in C for some L′ ⊆ L
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Hereditary hardness

Theorem: Below any L ⊇ K4, one of the following applies:

logic L hereditary
witness

width
cluster extra hardness

L′ ⊆ L
size condition of unifiability

<∞ depth d Πp
2d = L

1 depth ∞ PSPACE K4.3BCk

∞ coNEXP K4.3

≥ 2

<∞ NEXP K4BCk

∞
certain DEXP

K4BCk ∩ K4.3BICk

D4.3 ∩ D4BCk

D4BCk ∩ D4.3BICk ∩ D4.3
conditions

Θexp
2

(as before) Σexp
2 K4

(D4 = K4⊕ ·32⊥, BICk = bounded inner cluster size)

Except for DEXP, also applies to inadmissibility
Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba 78:78



Thank you for attention!
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