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Propositional logics

Propositional logic L:

Language: formulas built from atoms xg, x1, X0, ... using a
fixed set of finitary connectives

Consequence relation: a relation ' -, ¢ between sets of
formulas and formulas s.t.

> oLy

» [, ¢ implies AL ¢

> AR, pand VY €e AT Fp ¢ imply T, ¢

» [+, ¢ implies o(I') k1 o(p) for every substitution o
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Unifiers and admissible rules

I, A: finite sets of formulas

L-unifier of I: substitution o s.t. -, o(p) forall ¢ € T
Single-conclusion rule: T / ¢

Multiple-conclusion rule: T/ A

» [/ Ais L-derivable (or valid) if ' -,  for some § € A

» [/ Ais L-admissible (written as ', A)
if every L-unifier of [ also unifies some 6 € A

NB: I is L-unifiable iff [ ¥, @
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Examples

v

CPC: admissible = derivable (structural completeness)

v

IPC and intermediate logics admit Kreisel-Putnam rule:
X —=yVzbt(-x—=y)V(-x—2)

Ox / x admissible in K, K4, derivable in KT, S4
Lob's rule Ox — x / x admissible in K, derivable in GL
Ox N <O=x / L admissible in all normal modal logics

1 b~ @ iff L is consistent

L has the (modal) disjunction property iff

vVvvyyvyy

Oxq V- VOx,xa, ..., X, (n>0)

» Rule of margins x — Ox / x, =x admissible in KT, KTB
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Basic questions

What rules are L-admissible?

» NB: i+, forms a (multiple-conclusion) consequence relation

» Semantic characterization of i, by a class of models
(algebras, Kripke models, .. .)

» Syntactic presentation of b :

» Basis of admissible rules = axiomatization of ~; over I,
» Can we describe an explicit basis?
> Are there finite bases? Independent bases?

How to check '~ A?
» |s admissibility algorithmically decidable?

» What is its computational complexity?
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Algebraizable logics

L a logic, K a class of algebras (quasivariety)

L is (finitely) algebraizable wrt K if there are

» formulas E(x,y) = {e1(x,y),...,en(x,¥)}
» equations T(x) = {t1(x) = s1(x), ..., tm(x) = su(x)}

such that

> YExtrse E(X) b E(t,s)
> x -, E(T(x))
> x~ydFx T(E(x,y))
In modal logic: T(x) ={x~ 1}, E(x,y) = {x < y},

K is a variety of modal algebras
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Elementary equational unification

©: equational theory (or a class of algebras)
Y ={t =~ s,...,t, = s,} finite set of equations
O-unifier of X: a substitution o s.t.

o(t1) =e o(s1),...,0(ty) =e o(sn)

Us(X) = set of ©-unifiers of ¥

If Lis a logic algebraizable wrt a quasivariety K:

» L-unifier of ¢ = K-unifier of T(p)
» K-unifier of t =~ s = L-unifier of E(t,s)
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Properties of unifiers

Preorder on substitutions:
o more general than 7 (0 g 7) if vvoo =g 7T

Complete set of unifiers (csu) of X: § C Ug(X) s.t.
Vr € Up(X)Jo € S (0 =0 T)

Most general unifier (mgu) of X: o s.t. {o} csu
Basic questions:

» Is X unifiable?
» Does every ¥ a finite csu? Or even mgu (if unifiable)?
» s it decidable if X is unifiable? Can we compute a csu?

» What is the computational complexity?
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Rules — algebraic clauses

L logic algebraizable wrt a quasivarety K
For simplicity: assume |E(x,y)| = |T(x)| =1

Clause: (universally quantified) disjunction of atomic
(= equations) and negated atomic formulas

Quasi-identity: clause with 1 positive literal

Rule ' / A translates to a clause T(I' / A):

AT =\ T)

pel PEA

I / A single-conclusion rule = T(I' / A) quasi-identity
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Conversely: clause C = A\._ ti =t —

translates to a rule E(C):

{Et )27 < n} / {E(s.5) :j < m}

~ !
i<n j<m5./ st

C quasi-identity = E(C) single-conclusion rule

> (T /A) - E(T(T / A))
> C 4k T(E(C))

(abusing the notation)



Admissible rules algebraically

Derivability:

» Single-concl. rules <= quasiequational theory of K
» Multiple-concl. rules <= clausal/universal theory of K

[+, A <= T(I['/A) holds in all K-algebras
Admissibility:

Mty A <= T(I'/A) holds in free K-algebras
— Fx(w)ET(F/A)
< Fy(n)E T(I'/A) forall new
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Parameters

In applications, propositional atoms model both “variables”
and “constants”

We don’t want substitution for constants
Example (description logic):

(i) Vchild.(—HasSon M 3spouse.T)
(i) Vchild.Vchild.—Male M Vchild.Married
Vchild.Vchild.—Female M Vchild. Married

Good: Unify (i) with (i) by HasSon +~ Jchild.Male,
Married — dspouse. T

Bad: Unify (i) with (i) by Male — Female
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Admissibility with parameters

In unification theory, it is customary to consider unification
with unconstrained constants

We consider setup with two kinds of atoms:

» variables xg, x1, X0, - - - € Var (countable infinite set)

» parameters (constants) po, p1, P2, - - - € Par
(countable, possibly finite)

Substitutions only modify variables, we require o(p,) = p,

Adapt accordingly other notions:
» [-unifier, L-admissible rule, ...

Exception: logics are always assumed to be closed under

substitution for parameters
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Parameters as signature expansion

Admissibility /unification with parameters in L
<= plain admissibility/unification in L'

» language expanded with nullary connectives p € Par

» I, rar = least consequence relation that contains -,
L algebraizable wrt K = L7 algebraizable wrt KT#':
» arbitrary expansions of K-algebras with the new constants

L-admissibility with parameters
<= validity in free KF*"-algebras

NB: |Par| = m =
Fyrar(n) =~ Fi(n+ m) with fixed valuation of m generators
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Transitive modal logics

We consider axiomatic extensions of the logic K4:

» Language: Boolean connectives, O
» Consequence relation:

> axioms of CPC

> o=y

> = 0(p = ¢) = (Op — OY)

> Op — O0O¢p

> o Dp

Algebraizable wrt the variety of K4-algebras:
Boolean algebras with operator O satisfying 01 = 1,
O(aA b) =D0aAOb, Oa < 0O0a
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Frame semantics

Kripke frames: (W, <), < C W x W transitive

— dual K4-algebra (P(W),0), OX = W ~ (W ~ X)|
General frames: (W, <, A), A subalgebra of (P(W),0O)

—> dual K4-algebra A

Back: K4-algebra A = dual frame (St(A), <, CO(St(A)))
duals of K4-algebras ~ descriptive frames

We will use frame semantics as it is more convenient, but the
general algebraic theory still applies

Convention: frame = general frame,
but finite frame = finite Kripke frame
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Notation & terminology

(W, <) transitive frame, u,v € W

| 4
>
>

vy

u reflexive <= u < u, otherwise irreflexive
u<v < u<voru=yv preorder

u~v <= u<vand v <u equivalence relation
equivalence classes = clusters:

> reflexive/irreflexive
> proper: size > 2 (= reflexive)
» cl(u) = the cluster containing u

umv <= u<vandv£u strict order
Xl={v:IveXu<v} XI={..u<v} XTI, X1

W rooted if W = r1 for some r € W
rcl(W) = cl(r) root cluster
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Examples of transitive logics

logic axiom (on top of K4) finite rooted frames

S4 Ox — x reflexive

D4 OT final clusters reflexive

GL O(Ox — x) — Ox irreflexive
K4Grz | O(0O(x — Ox) — x) — Ox no proper clusters
K4.1 OOx — ©0x no proper final clusters
K4.2 Olx — OGx unique final cluster
K4.3 | O(@Ex — y) VvV OOy — x) | linear (chain of clusters)
K4B x — OOx lone cluster

S5 =S40 B lone reflexive cluster

and their various combinations

Shorthands: Cp = —O-p, Hp = p A Oy, ©p = ~E-p
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Frame measures

A frame (W, <, A) has various invariants in NU {oo}:

» depth = maximal length of strict chains

» cluster size = maximal size of clusters

» width = maximal size of antichains in rooted subframes
>

branching = maximal number of immediate successor
clusters of any point

A logic L has depth (cl. size, width) < k
<= all descriptive L-frames have depth (cl. size, width) < k
< L D K4BD, (K4BC,, K4BW,)

Branching:
more complicated (directly works only for finite frames)
L O K4BB,
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Frames for rules

M = (W, <,E) Kripke model:

>» MEyp < uEpforallue W
>» MET /| A <~

ME pforallpe T = MFE 9 for some ¢ € A
(W, <, A) frame:

WET /A «— (W,<,F)ET /A for all admissible

Validity of rules preserved by p-morphic images, but not by
generated subframes

Only single-conclusion rules preserved by disjoint sums
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Parametric frames

K4-algebras are dual to frames
K4"*_algebras are dual to parametric frames (W, <, A, Epa;)

> (W, <, A) frame

» Ep,. fixed admissible valuation of parameters p € Par

Model based on (W, <, A, Fpa):
(W, <,EF) s.t.

» £ admissible valuation in the frame (W, <, A)
> F extends Fp,,
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Canonical frames

Free L-algebras F (V) are dual to canonical L-frames C,(V):

» points: maximal L-consistent subsets of Form(V/)
> X <Y <= VYo(OpeX=peY)
» A = definable sets: {X : ¢ € X}, ¢ € Form(V)

Free ["*"-algebras Fypar(V) are dual to
canonical parametric frames C;(Par, V):

» underlying frame C;(Par U V)
>» XEp < peX
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Universal frames of finite rank (1)

Canonical frames are too large
But: their top parts have an explicit description

Universal model Mkq(V), V C Var finite:

» start with empty model
» for each finite rooted model F with C = rcl(F): if
> points of C are distinguished by valuation of V/,
» F ~ Cis a generated submodel of Mka(V), and
» —( F~ Cis rooted, rcl(F ~\ C) is reflexive, and includes
a copy of C wrt valuation )
then extend Mka(V) with a copy of C below F ~ C
(unless there already is one)
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Universal frames of finite rank (2)

Characterization:
Mya (V') = unique model with valuation for V' s.t.

» Mka(V) is locally finite
(= rooted generated submodels are finite)

» each finite model with valuation for V' has a unique
p-morphism to Mka(V)

Universal frame Uka(V) = underlying frame of Mka(V)

P C Par finite:
Universal parametric frame Uka(P, V') = underlying frame of
Mya(P U V) with its valuation of P
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Universal frames of finite rank (3)

Generalization to L O K4 with finite model property (fmp):
M. (V) = the part of Mka(V') that's based on an L-frame
= UL (V), U(P,V)
Properties:

» all finite subsets of M, (P, V) definable

» the dual of U (P, V) is Fr(V)

» U, (P, V) is the top part of C,(P, V):

» U, (P, V) generated subframe of C (P, V)
(the points of finite depth)

» all remaining points of C;(P, V) see points of U (P, V)
of arbitrarily large depth

» all # @ admissible subsets of C;(P, V) intersect U, (P, V)
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Admissibility using universal frames

P C Par finite, ', A C Form(P, Var) finite, L © K4 fmp

Summary:
[~ A <= VYV CVar finite: Fip(V)ET /A
<= VV C Var finite: C,(P,V)ET /A
= YV C Var finite: (U, (P,V),<,D,Ep)ET /A

where D = subsets definable in M (P, V)

Typically:
Validity in U, (P, V) is not difficult to characterize,
but the restriction to D seriously complicates it
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Avoid the difficulties . ..

If Lis a logic of bounded depth:

> C(P,V)=U/(P,V)
» C.(P,V)is a finite frame

— admissibility easy to analyze

Teaser: Let L be a logic of bounded depth. If

» Par is finite, or
» the set of finite L-frames is decidable,

then L-unifiability is decidable.
Proof: ' C Form(P, Var) is unifiable iff

3 (U (P, @),E) ET.
We can compute U, (P, @). QED
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... but some remain

The characterization
MM A <= U(P,V)ET /A VYV finite

is not quite useful:

» U, (P, V) are too rigidly specified
|PuV|

» U, (P, V) are too large: ~ 22 (height =~ depth of L)

» we have no control over V, anyway

= need more convenient semantical description
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L-extensible models

L logic of bounded depth, fix P C Par finite
F finite rooted parametric L-frame, C = rcl(F):

» F has loosely separated root if points of C are
distinguished by valuation of parameters

» F has separated root if moreover ﬂ( F ~. C is rooted,
rcl(F ~ C) is reflexive, and includes a copy of C wrt
valuation )

W finite parametric L-frame:
» W is L-extensible if VF with a separated root:
if F~ rcl(F) C-W, it extends to F C- W

» W is strongly L-extensible if VF with a loosely separated

root ...
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Extensibility and canonical frames

Example: C,(P, @) is the minimal L-extensible frame

More generally:
C.(P, V) is L-extensible for any finite V C Var

Converse:
W L-extensible = p-morphic image of some C,(P, V)

Corollary: If W L-extensible,
M~ A —= WET / A

for all T, A C Form(P, Var)
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Injectivity of extensible frames

W finite parametric L-frame

W is L-injective if V finite par. L-frames Fy C- F:
any p-morphism Fy — W extends to a p-morphism F; — W

Proposition: The following are equivalent:

» W is L-extensible

» W is L-injective

» W is a retract of some C, (P, V): there are p-morphisms
f
g

st. fog=idw
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Connections among the properties

Proposition: The following are equivalent:

» W is a p-morphic image of some C.(P, V)
>» '~ A= WET/Aforall ,A C Form(P,Var)

Warning: In general, C,(P, V) are not strongly L-extensible

strongly L-ext. * L-ext. > image of C,(P, V)

Proposition: Any finite par. L-frame is a generated subframe
of a strongly L-extensible frame

Corollary: Any L-extensible frame is a retract of a strongly
L-extensible frame
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Extensibility and admissible rules

Recall: L logic of bounded depth, P C Par finite
Theorem: For any ', A C Form(P, Var), TFAE:
> [y A

» [/ A holds in all L-extensible frames
» [/ A holds in all strongly L-extensible frames

L-extensible frames are structurally important

strongly L-extensible frames are simpler to define and a bit
more robust to work with

Emil Jerabek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poreba 32:78




Application

What to do next depends on the logic

Logics of bounded depth can still be quite wild

Tame subclass: logics of bounded depth and width
» finitely axiomatizable

» polynomial-size model property

» frames recognizable in polynomial time

Theorem: Let L be a logic of bounded depth and width,
P C Par finite and I', A C Form(P, Var) of size n.

If [, A, then T / A fails in a strongly L-extensible model of
size at most poly(n22").

In particular, i, is decidable.
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Addendum: smaller models

For fixed finite P, the models are polynomial-size, but in
general doubly-exponential

Let = C Form finite, closed under subformulas

Y -pruned [-extensible model: Like L-extensible, but when
extending with a cluster C, allow it to shrink to a subset if
satisfaction of Y-formulas is preserved

Theorem: Let L be logic of bounded depth and width,
FrUA CX. TFAE:

> [ A
> I/ A holds in ¥-pruned L-extensible models of size 20(")
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Projective formulas introduced by [Ghilardi'00]:

» semantical characterization of projective formulas

> existence of projective approximations for extensible logics
= unification finitary

> parameter-free case only

We generalize it to the setup with parameters



Motivation

In the case of logics of bounded depth, we saw:
Admissibility closely connected to injective L-frames
These are dual to projective L-algebras

Finitely presented projective L-algebras are described by
projective formulas:

Definition: ¢ is L-projective if it has an L-unifier o s.t.

pFLo) < Vi € Form

» it suffices to check ¢) € Var
> general algebraizable logics: x <+ y stands for E(x, y)
» o is a mgu of ¢
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Lowenheim substitutions

If o1,...,0,, are substitutions s.t.

oL oi(V) <y Vi € Form, (%)
then this also holds for o, 0 --- 00y
— build projective unifier inductively by small steps
Lowenheim subtitutions satisfy (x):
Fix » € Form(P, V), where P C Par and V C Var finite
Let F = (f, : x € V), each f,: 2P — 2 Boolean function of
the parameters:

Opr(x) = (B Ax) V (2Bp A £(p))

6, = composition of all 6, ¢ (in any order)
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Characterization of projectivity

Theorem: Let L O K4 fmp, ¢ € Form(P, V). TFAE:

»  is projective

N . . o P
> ¢ is a unifier of p, where N = (271 4+ 1)
» o has the model extension property:

Definition:

» Mod; = finite rooted L-models
» F,F' € Mod, are variants
if they only differ in valuation of variables in root cluster

» M C Mod; has the model extension property
if any F € Mod; has a variant in M
whenever its proper rooted submodels belong to M
» © has m.e.p. iff Mod,(p) = {F € Mod, : F E ¢} does
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Projective approximations

NB: projective formulas 7 are admissibly saturated:

W%VLA — 7k A

I is a projective approximation of a formula ¢ if

» [ finite set of projective formulas
> (Y2 %’L ﬂ
» 71t pforeach m €l

If © has a projective approximation I1:

» the set of proj. unifiers of = € I is a finite csu of ¢
> o A = 7k Aforall T el

Price: existence of proj. apx. needs strong assumptions on L
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Cluster-extensible logics

L D K4 fmp, n € w, C finite cluster type:
irreflexive o, k-element reflexive (k)

A finite rooted frame F is of type (C, n) if
» rcl(F) is of type C

» rcl(F) has n immediate successor clusters (= branching n)

L (C, n)-extensible:
For each type-(C, n) frame F, if F ~ rcl(F)
is an L-frame, then so is F

L cluster-extensible (clx):
(C, n)-extensible whenever it has some At
type-(C, n) frame >
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Properties of clx logics

Examples: Any combinations of K4, S4, GL, D4, K4Grz,
K4.1, K4.3, K4B, S5, K4BB,, K4BC,

Closed under joins and directed intersections
(countable complete lattice)

Nonexamples: K4.2, S4.2, ...

Theorem: Every clx logic L

» is finitely axiomatizable

» has the exponential-size model property

» is Vd-definable on finite frames

> is described by finitely many forbidden types (C, n)

» is described by finitely many extension conditions:
(C.n) where n € wU {oo}, C cluster type or 9
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Projective approximation in clx logics

Theorem: L clx logic = every formula ¢ has a projective
approximation [1 s.t.

» each 7w € I is a Boolean combination of subformulas of ¢
> [MN] <22, |7| = O(n2") for each 7 € T

Corollary:

» each ¢ has a finite csu
> we can compute it
» [-admissibility and L-unifiability are decidable
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Admissibility in transitive modal logics studied in depth by
[Rybakov'97]

» semantical characterizations

» decidability results

» many results include parameters

We follow a different route, based on Ghilardi's work on
projectivity



Tight predecessors

P C Par finite, C finite cluster type, n € w

L clx logic, W parametric L-frame:

» W is (C, n)-extensible <=
VEC2P 0<|E| <|C|
VX={w:i<nfCW
3 tight predecessor (tp) T = {u.:e € E} C W:

X1 C=oe

wE P ut= j
XTUT C reflexive

» W is L-extensible if it is (C, n)-extensible whenever L is
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Extension rules

P C Par finite, C finite cluster type, n € w
(C, n)-extensible frames axiomatized by extension rules Ext’an:
» C = e: for each e € 27,
Pe/\Dy—>\/Dx,-/{Ely—>x,-:i<n}
i<n
» C = (: for each £ C 27 and ¢y € E, where |E| < k,
PoAB(y — \/ O(P = y))

E
° — v Ox;

AABOP 5Ty —y) |
ecE

{By — x; : i < n}
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Semantics of extension rules

Theorem: Let W be a parametric frame

> If Wis (C, n)-extensible, then W Ext'évn

> If WE Ext’é)n, then W is (C, n)-extensible,
provided W is descriptive or Kripke

Moreover: If L has fmp, then L + Extén is complete wrt
locally finite (C, n)-extensible Kripke frames

Theorem: If L O K4 has fmp, TFAE:

» Lis (C, n)-extensible
» Extc, is L-admissible
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Characterization of admissibility

Theorem: If L is clx logic, TFAE:
> [~ A

» [/ A holds in all L-extensible parametric frames

» [/ A holds in all locally finite L-extensible parametric
Kripke frames

» I/ Ais derivable in L + {Ext?ﬁ : Lis (C, n)-extensible}

NB: To pass from a locally finite L-extensible countermodel to
a definable valuation, use projective formulas
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Bases of admissible rules

Corollary: If L is clx, the rules Extc , are a basis of
L-admissible rules

Variation:

» Explicit single-conclusion bases
» If Par is finite:

» L has a finite basis <= L has bounded branching
» L has explicit independent bases (mc or sc)

» |f Par is infinite:

» No consistent logic has a finite basis
» Open problem: independent bases?
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Smaller models

L-extensible frames are usually infinite
Let > C Form finite, closed under subformulas

Finite models [-pseudoextensible wrt ¥:

Like L-extensible, but instead of tp's, have

tight pseudopredecessors wrt ¥

~ behave as tp as concerns satisfaction of ¥-formulas

Theorem: If L clx logic and ', A C X, TFAE:
> I~ A

» I/ A holds in all L-pseudoextensible models wrt ¥

» [/ A holds in all L-pseudoextensible models wrt ¥ of
size 20(")
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Variants of clx logics

Tweak the definition to cover other kinds of logics:

» Logics with a single top cluster (extensions of K4.2)
> Top-restricted cluster-extensible (tclx) logics: extension
conditions only for frames with a single top cluster
> Examples: joins of K4.2 with clx logics
» Superintuitionistic logics
» Behave much like their largest modal companions
(Blok—Esakia isomorphism)
» The only (t)clx si logics are IPC, T,, KC, KC+ T,
(NB: Ty =LC, To = CPC)
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Main questions

For a fixed logic L, what is the computational complexity of:

» Given I, A, is T / A L-admissible?
» Is a given [ L-unifiable?

Here, I and A may be sets of formulas

» without parameters
» with parameters
» with O(1) parameters

Recall: unifiability is a special case of inadmissibility
— typically, admissibility and unifiability
captured by dual complexity classes

Ideally:

» lower bounds for unifiability
» upper bounds for admissibility
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Complexity classes

Common classes of languages:

» P = deterministic polynomial time

» NP = nondeterministic polynomial time
» coX ={X"~L:Le X}, eg. coNP
» PX = polynomial time with oracle from X, etc.
» polynomial hierarchy: ¥§ = Af =T§ = P,
P =NP¥-1, AP =P¥oa [P = coNP¥i
» PSPACE = polynomial space
» EXP = deterministic exponential (2™) time
» NEXP = nondeterministic exponential time

» exponential hierarchy:
YOP — NEXP™1, A% = EXPT 1, %" = coNEXP™ 1
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Alternating Turing machines

alternating Turing machine (ATM):

| 4
>
>

v

>

multiple transitions from a given configuration (= NTM)
states labelled existential or universal

acceptance defined inductively:

> configuration in an 3 state is accepting <=
3 transition to an accepting configuration

> configuration in a V state is accepting <=
V transitions lead to accepting configurations

alternation: go from I state to V state or vice versa
Y- TIME(f(n)): computable by ATM in time f(n), start
in J state, make < k — 1 alternations
Me-TIME(f(n)): start in V state
» >;-TIME = NTIME, NM;-TIME = coNTIME
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Expressing classes with AT Ms

» polynomial and exponential hierarchies:

¥ = L -TIME(poly(n)) M} = M-TIME(poly(n))
PP = T TIME(2PY) - MPP = M, -TIME(2PM ()

» PSPACE = AP (alternating polynomial time)
» EXP = APSPACE (alternating polynomial space)
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Reductions and completeness

» Y (many-one) reducible to X if there is f: ©* — ¥* s.t.
weY << f(w)eX,

f efficiently computable:
» polynomial-time
» logspace: in space O(log n), excluding input tape
(read-only) and output tape (write-only)

» C aclass: X is C-hard if every Y € C reduces to X
» X C-complete if X € C and C-hard

Examples:

» SAT is NP-complete, TAUT (ie, CPC) is coNP-complete
» QSAT is complete for AP = PSPACE
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Completeness in exponential hierarchy

Theorem: Fix k > 1. The set of true Zi sentences
dX; C2"VX, C 27 ... QX §2"§t1,...,tm€2”<p

is a X} P-complete problem, where

> 2=1{0,1}
» @ = 3 for k odd, V for k even
» Q = dual of Q

» n given in unary

» ¢ Boolean combination of atomic formulas t, € X, t,(/)
(7 < n constant)
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Derivability and tautologicity

Before admissibility, let's consider a baseline problem:
» Given [ A, is T / A L-derivable?

In transitive logics, this is equivalent to L-tautologicity:
» Given ¢, is b, ©?

NB: Special case of L-admissibility, but also of L-unifiability
with parameters:

¢ € Form(Par, ) = (F, ¢ <= ¢ unifiable)
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coNP cases

Lower bound: By reduction from CPC,
L-derivability is coNP-hard for any consistent L

Upper bound: L-derivability is in coNP if:

» L has a polynomial-size model property

» finite L-frames are recognizable in P (or NP)
Corollary: L-derivability coNP-complete for:

» consistent linear (= width 1) clx logics

» consistent logics of bounded depth and width
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PSPACE cases

Theorem [Ladner'77]
Derivability in K, T, S4 is PSPACE-complete
For any K C L C S4, it is PSPACE-hard

Upper bound:

~ explore proof tree/countermodel one branch a time
Can be adapted (bounded branching little tricky):

Theorem: Derivability in any (t)clx logic is in PSPACE

Lower bound:
» reduction from QSAT

» easily adapted to all logics with the disjunction property
> reference?
» superintuitionistic logics with DP: [Chagrov'85]
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PSPACE lower bound

We give another generalization, using reduction from IPC

Theorem: Derivability is PSPACE-hard for all logics L © K4
that are subframe-universal for trees

» subreduction: &~ p-morphism from a subframe
» weak subreduction: ignore reflexivity

» [ subframe-universal for trees if V finite tree T
3 weak subreduction from an L-frame onto T

» cofinal subreduction: dom(f)1 C dom(f)J
= cofinal weak subreduction,
cofinally subframe-universal for trees
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Applications of the lower bound

Theorem: All logics L © K4 with the disjunction property are
cofinally subframe-universal for trees

Corollary:

» Derivability in L © K4 with DP is PSPACE-hard
» Derivability in nonlinear clx logics is PSPACE-complete

» Derivability is also PSPACE-complete in nonlinear tclx
logics: K4.2, S4.2, ...
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Summary: clx logics

Completeness results for complexity of clx logics:

logic unifiability, #,
bran- | clust. ¥ parameters: examples
ching | size no' ‘ 0(1) ‘ any
0 < ns S5 ¢ Alt,, CPC
00 NP coNEXP S5, K4B
1 < 00 PSPACE GL.3, LC
00 | coNEXP S4.3, K4.3
> 2 < 00 PSPACE NEXP GL, S4Grz, IPC
00 =4 K4, S4

T The parameter-free case is for i, only
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Summary: tclx logics

Completeness results for complexity of tclx logics:

logic unifiability,
cluster size: ¥ parameters: examples
inner | top no' ‘ o(1) ‘ any
<o < 00 GL.2, Grz.2, KC
00 PSPACE NEXP (Shes S41.4554.2
0 PR K4.2, S4.2

T The parameter-free case is for i, only

NB: branching > 2 by definition
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Summary: bounded depth and width

Complexity results for logics of bounded depth and width:

logic . ]
= Fro| unif. i ‘ " :
~C. ~C. notes
width | cluster () sing - mult.-c
size (unrestricted parameters)
1 < 00 NSy depth d
00 coNEXP
< o0 NP NEXP
> 2 DEXP | BHZ® | EXPYPIe7) | under
oS Chat certain
3P conditions

(1) also the complexity of unifiability and #*; with O(1) parameters
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Upper bounds

Semantic characterization:
pseudoextensible / pruned extensible models (size 2P°¥(")
—> inadmissibility in (t)clx or bd-dp-wd logics is in £5*:

Imodel VE C 2P ...

Optimization in certain cases:

» bounded cluster size:
VE C 2P, |E| < k becomes a poly-size quantifier

» constant number of parameters: same reason

» width 1:
» the model is an upside-down tree of clusters
» an ATM can explore it while keeping only one branch
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Lower bound conditions

Basic tenet: Hardness of L-unifiability stems from
finite patterns that occur as subframes in L-frames

That is, study conditions of the form:
= an L-frame that subreduces to F = L-unifiability C-hard

Example conditions:

» [ has unbounded depth:
L-frames weakly subreduce to arbitrary finite chains

» L has unbounded cluster size:
L-frames subreduce to arbitrary reflexive clusters

» L is nonlinear (= width > 2 = branching > 2):
an L-frame subreduces to a 2-prong fork
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Lower bound technique

Reduce a C-complete problem to L-unifiability:
> PSPACE, ¥°/M?: QSAT, ¥,/M,-SAT

> S0P /MP: special £2 /M2-sentences as above
Encode quantifiers:

» T simulated by variables, V by parameters

» t € 2" directly by n-tuple of atoms

> VX C 2" parameter assignments realized in a cluster
» X C 2": single variable x

> use antichains to enforce consistency:
> uF o(x) unaffected by a change of parameters in v % u
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> bounds

Lower bound:
If Vn an L-frame subreduces to a rooted frame containing

» an n-element cluster, and

» an incomparable point 03
:
o /
\

— L-unifiability is X5®-hard

Upper bound:
L (t)clx or bd-dp-wd logic = L-inadmissibility is in £5°

Examples:
K4, S4, S4.1, S4.2, K4BB,, S4BB,BD,, ...
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NEXP bounds

Lower bound:
L nonlinear = L-unifiability is NEXP-hard

(O(1) parameters? next slide) \ /

*

Upper bounds:

» L (t)clx logic of bounded cluster size, or a tabular logic
= L-inadmissibility is in NEXP

> L (t)clx logic =
L-inadmissibility with O(1) parameters is in NEXP

Examples:
GL, K4Grz, S4Grz, S4Grz.2, IPC, KC, ...
(+ bounded branching)
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NEXP lower bounds w/ O(1) parameters

Need stronger hypothesis (cf. logics of bounded depth)
Theorem: The following problems are NEXP-hard

» [-unifiability with 2 parameters
» if L subframe-universal for trees
» [-unifiability with 1 parameter
» if L cofinally subframe-universal for trees
(includes: logics with disjunction property)
» if L subframe-universal respecting reflexivity
» [-unifiability with 0 parameters
> if K4 C L C K4.2GrzBB,
» single-conclusion L-inadmissibility with 0 parameters

» if L has a certain weak extension property
» this includes: nonlinear clx logics
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Lower bound:
L unbounded cluster size
= L-unifiability is coNEXP-hard 0 %0

Upper bound:
L linear clx or bd-dp logic
= L-inadmissibility is in coNEXP

Examples: S5, K4.3, S4.3, ...



Lower bound:
L unbounded depth —
L-unifiability with 2 parameters is PSPACE-hard

Corollary:
L-unifiability is PSPACE-hard
unless L linear tabular logic

> K> % —> % —> ¥

Upper bound:
L linear clx logic of bounded cluster size
= L-admissibility is in PSPACE

Examples:
GL.3, K4Grz.3, S4Grz.3, LC, ...



Polynomial hierarchy

Recall: L-unifiability PSPACE-hard unless L linear tabular

Remaining case:
L linear tabular logic of depth d =
L-unification and L-inadmissibility are M5 -complete

Examples:
CPC, Gd+1, S50 Altk, K4opOl, ...

L unbounded depth = PSPACE-hard with 2 parameters

Theorem:
L bd-dp-wd logic —
L-inadmissibility with O(1) parameters is NP-complete
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More exotic classes

Exponential version of ©5:
eexp EXPNP[pO|y] _ EXPHNP PNEXP _ PSPACENEXP

Exponential version of the Boolean hierarchy:

» BH®® = closure of NEXP under Boolean operations
» Stratified into levels:

> BHY® = NEXP
> BHeXP1 = {A~ B:Ac NEXP, B € BH®}

» Special case:
DEXP = BHJ*” = {AN B : A€ NEXP, B € coNEXP}

NEXP, coNEXP C BH™® C ©%° C AS®
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Lower bound:
Vn 3 gaph-connected L-frame of cluster size > n and width > 2
= L-unifiability is ©5®"-hard

Upper bound:
L-admissibility is in ©3* if
» L is a tclx logic of bounded inner cluster size, or

> Lis a bd-dp-wd logic, doesn't satisfy the 5 LB
condition

Example: S4.2® S4.1.4



BH®® bounds

The NEXP and coNEXP lower bounds imply:

Lower bound:
L nonlinear logic of unbounded cluster size
= L-unifiability is DEXP-hard

Rare case where unifiability and inadmissibility (with
parameters) have different complexity:

Upper bound:
L bd-dp-wd logic, doesn't satisfy the ©5® LB condition —>

» L-unifiability is in DEXP
» single-conclusion L-inadmissibility is in BH;™®

» multiple-conclusion L-inadmissibility is in EXPNPlog ]
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Full classification?

Known: complexity of unifiability for (t)clx, bd-dp-wd logics
Could it be determined for all logics L © K47

» Hopeless:
already -, can be undecidable, arbitrary Turing degree
» The form of results that we've seen:
» Upper bounds: tame, nicely-behaved logics
> Lower bounds: logics allowing certain frame patterns
— downward-closed classes of logics
» Determine minimal complexity of unifiability among
sublogics of L7

Definition: Unifiability has hereditary hardness C below L if
» ['-unifiability is C-hard for all L’ C L
» ['-unifiability is in C for some L' C L
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Hereditary hardness

Theorem: Below any L D K4, one of the following applies:

logic L hereditary .
luster extra hardness witness
width | < T aness I'clL
size condition || of unifiability
< 0o depth d NSy =1L
1 depth oo PSPACE K4.3BC,
00 coNEXP K4.3
< 00 NEXP K4BC,
K4BC, N K4.3BIC,
certain DEXP D4.3 N D4BC,
>2 . D4BC, N D4.3BIC, N D4.3
00 conditions
eexp
2
(as before) P K4

(D4 = K4 @ ©0O 1, BIC, = bounded inner cluster size)

Except for DEXP, also applies to inadmissibility
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