A topological approach to periodic oscillations related to the Liebau phenomenon

Milan Tvrdý

jointly with

José Angel Cid, Gennaro Infante, Miroslawa Zima

Institute of Mathematics
Academy of Sciences of the Czech Republic

Ariel, August 2014
A topological approach to periodic oscillations related to the Liebau phenomenon

Milan Tvrdý

jointly with

José Angel Cid, Gennaro Infante, Miroslawa Zima

Institute of Mathematics
Academy of Sciences of the Czech Republic

Ariel, August 2014
1. VALVELESS PUMPING
 (Liebau phenomena)
In 1954 G. Liebau showed experimentally that a periodic compression made on an asymmetric part of a fluid-mechanical model could produce the circulation of the fluid without the necessity of a valve to ensure a preferential direction of the flow.
In 1954 G. Liebau showed experimentally that a periodic compression made on an asymmetric part of a fluid-mechanical model could produce the circulation of the fluid without the necessity of a valve to ensure a preferential direction of the flow.

DEFINITION

Let \(T > 0 \), \(g: \mathbb{R}^3 \to \mathbb{R} \) and let \(e: \mathbb{R} \to \mathbb{R} \) be nonconstant and \(T \)-periodic. Then the equation

\[
x'' = g(x, x', e(t))
\]

generates a **\(T \)-periodically forced pump** if it has a \(T \)-periodic solution \(x \) such that

\[
g(\bar{x}, 0, \bar{e}) \neq 0,
\]

i.e. the mean value \(\bar{x} \) of \(x \) is not an equilibrium of \(x'' = g(x, x', \bar{e}) \).
1 tank - 1 pipe model

G. Propst (2006)

\(\rho \), ... density of the liquid (constant)
\(p(t) \), ... \(T \) – periodic pressure
\(g \), ... acceleration of gravity
\(r_0 \), ... friction coefficient
\(\zeta \), ... junction coefficient

\(A_P/A_T \), ... cross sections of pipe/tank
\(V_0 \), ... constant total volume of liquid
\(w = -\ell' \), ... velocity in the pipe

\[A_P \ell(t) + A_T h(t) \equiv V_0 \quad \Longrightarrow \quad h(t) \equiv \frac{1}{A_T} (V_0 - A_P \ell(t)) . \]

Momentum balance with Poiseuille’s law and Bernoulli’s equation
1 tank - 1 pipe model

G. Propst (2006)

\(\rho \) \ldots density of the liquid (constant)
\(p(t) \) \ldots \(T \) – periodic pressure
\(g \) \ldots acceleration of gravity
\(r_0 \) \ldots friction coefficient
\(\zeta \) \ldots junction coefficient
\(A_P/A_T \) \ldots cross sections of pipe/tank
\(V_0 \) \ldots constant total volume of liquid
\(w = -\ell' \) \ldots velocity in the pipe

\[
A_P \ell(t) + A_T h(t) \equiv V_0 \implies h(t) \equiv \frac{1}{A_T} \left(V_0 - A_P \ell(t) \right).
\]

Momentum balance with Poiseuille’s law and Bernoulli’s equation \(\implies \)

\[
\ell \ell'' + a \ell \ell' + b (\ell')^2 + c \ell = e(t),
\]

where
\[
T > 0, \quad a = \frac{r_0}{\rho} \geq 0, \quad b = \left(1 + \frac{\zeta}{2} \right) \geq 3/2,
\]

\[
e(t) = \frac{g V_0}{A_T} - \frac{p(t)}{\rho} \text{ is } T \text{ – periodic, } 0 < c = \frac{g A_p}{A_T} < 1.
\]
First observations

This leads to singular periodic problem:

(1) \[u'' + au' = \frac{1}{u} \left(e(t) - b (u')^2 \right) - c, \quad u(0) = u(T), \quad u'(0) = u'(T), \]

\[T > 0, \quad a = \frac{r_0}{\rho} \geq 0, \quad b = \left(1 + \frac{\zeta}{2} \right) \geq 3/2, \quad 0 < c = \frac{gA_p}{A_T} < 1, \quad e(t) = \frac{gV_0}{A_T} - \frac{p(t)}{\rho}. \]
First observations

This leads to singular periodic problem:

\[
(1) \quad u'' + a u' = \frac{1}{u} \left(e(t) - b (u')^2 \right) - c, \quad u(0) = u(T), \quad u'(0) = u'(T),
\]

\[
T > 0, \quad a = \frac{r_0}{\rho} \geq 0, \quad b = \left(1 + \frac{\zeta}{2} \right) \geq 3/2, \quad 0 < c = \frac{g A_p}{A_T} < 1, \quad e(t) = \frac{g V_0}{A_T} - \frac{p(t)}{\rho}.
\]

Multiplying the equation by \(u \) and integrating over \([0, T]\) gives

THEOREM 1

(1) has a positive solution only if \(\bar{e} \geq 0 \) (i.e. \(\bar{p} \leq \rho g \frac{V_0}{A_T} \)).
First observations

This leads to singular periodic problem:

$$(1) \quad u'' + au' = \frac{1}{u} \left(e(t) - b(u')^2 \right) - c, \quad u(0) = u(T), \quad u'(0) = u'(T),$$

$$T > 0, \quad a = \frac{r_0}{\rho} \geq 0, \quad b = \left(1 + \frac{\zeta}{2}\right) \geq 3/2, \quad 0 < c = \frac{g A_p}{A_T} < 1, \quad e(t) = \frac{g V_0}{A_T} - \frac{p(t)}{\rho}.$$

Multiplying the equation by u and integrating over $[0, T]$ gives

THEOREM 1

(1) has a positive solution only if \(\overline{e} \geq 0 \) (i.e. \(\overline{p} \leq \rho \frac{V_0}{A_T} \)).

THEOREM 2

If (1) has a positive solution, then it generates a T-periodically forced pump.
Examples

(E) \(u'' + ku = \frac{b}{u^{\lambda}} + e(t) \), \(u(0) = u(T) \), \(u'(0) = u'(T) \) \((b > 0, \ \lambda > 0, \ k \geq 0, \ e \in L_1[0, T])\)

has a solution if:

- \(k = 0, \ \lambda \geq 1, \ \bar{e} < 0 \) \[\text{[Lazer & Solimini]},\]
- \(k \neq \left(n \frac{\pi}{T}\right)^2 \) for all \(n \in \mathbb{N}, \ \lambda \geq 1, \ e \in C \) \[\text{[del Pino, Manásevich & Montero]}\]
- \(0 < k < \left(\frac{\pi}{T}\right)^2, \ \lambda \geq 1, \ e \in L_\infty \) \[\text{[Omari & Ye]},\]
- \(k = 0, \ \bar{e} < 0, \ e_* := \inf \text{ess} \inf_{t \in [0, T]} e(t) > -\left(\frac{1}{T^2 \lambda b}\right)^{\lambda+1} (\lambda+1) b, \)

\(0 < k < \left(\frac{\pi}{T}\right)^2, \ e_* := \inf \text{ess} \inf_{t \in [0, T]} e(t) > -\left(\frac{\pi^2 - T^2 k}{T^2 \lambda b}\right)^{\lambda+1} (\lambda+1) b \)

[supplementary results by Torres, Hakl & Torres, Chu & Franco et al.],

\(k = \left(\frac{\pi}{T}\right)^2, \ \inf \text{ess} \inf_{t \in [0, T]} e(t) > 0 \) \[\text{[Rachůnková, Tvrdý & Vrkoč]},\]

[supplementary results by Bonheure & De Coster, Chu & Torres et al.]
2. EXISTENCE OF A PERIODIC SOLUTION
Existence of a periodic solution

(1) \[u'' + au' = \frac{1}{u} (e(t) - b(u')^2) - c, \quad u(0) = u(T), \quad u'(0) = u'(T), \]

THEOREM 3

ASSUME:
- \(a \geq 0, \quad b > 1, \quad c > 0, \)
- \(e \) is continuous and \(T \)-periodic on \(\mathbb{R}, \ e_* > 0, \)
- \(\frac{(b + 1)c^2}{4e_*} < \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4}. \)

THEN: (1) has a positive solution.
Existence of a periodic solution

\[(1) \quad u'' + a u' = \frac{1}{u} \left(e(t) - b (u')^2 \right) - c, \quad u(0) = u(T), \ u'(0) = u'(T), \]

THEOREM 3

ASSUME:

- \(a \geq 0, \quad b > 1, \quad c > 0, \)
- \(e \) is continuous and \(T \)-periodic on \(\mathbb{R}, \ e_* > 0, \)
- \(\frac{(b + 1) c^2}{4 e_*} < \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4}. \)

THEN: \((1) \) has a positive solution.

DEFINITION

A \(T \)-periodic function \(\sigma_1 \in C^2[0, T] \) is a **lower function** for

\[u'' + a u' = f(t, u), \quad u(0) = u(T), \ u'(0) = u'(T), \]

if

\[\sigma_1''(t) + a \sigma_1'(t) \geq f(t, \sigma_1(t)) \quad \text{for} \quad t \in [0, T], \]

while an **upper function** is defined analogously, but with reversed inequality.
\((1) \quad u'' + au' = \frac{1}{u} (e(t) - b(u')^2) - c, \quad u(0) = u(T), \quad u'(0) = u'(T), \)

STEP 1: \(u : [0, T] \rightarrow \mathbb{R} \) is a positive solution of (1) iff \(x = u^{1/\mu} \) is a positive solution of

\((2) \quad x'' + ax'(t) = r(t)x^\alpha - s(t)x^\beta, \quad x(0) = x(T), \quad x'(0) = x'(T), \)

where

\[0 < \mu = \frac{1}{b+1} < \frac{2}{5}, \quad r(t) = \frac{e(t)}{\mu} > 0, \quad s(t) = \frac{c}{\mu} > 0, \quad 0 < \alpha = 1 - 2\mu, \quad \beta = 1 - \mu < 1. \]
\(u'' + au' = \frac{1}{u}(e(t) - b(u')^2) - c, \quad u(0) = u(T), \ u'(0) = u'(T), \)

STEP 1: \(u: [0, T] \rightarrow \mathbb{R} \) is a positive solution of (1) iff \(x = u^{1/\mu} \) is a positive solution of

\[x'' + ax'(t) = r(t)x^\alpha - s(t)x^\beta, \quad x(0) = x(T), \ x'(0) = x'(T), \]

where
\[
0 < \mu = \frac{1}{b+1} < \frac{2}{5}, \quad r(t) = \frac{e(t)}{\mu} > 0, \quad s(t) = \frac{c}{\mu} > 0, \quad 0 < \alpha = 1 - 2\mu, \quad \beta = 1 - \mu < 1.
\]

STEP 2: There are constant lower and upper functions \(\sigma_1 \) and \(\sigma_2 \) of (2) such that
\[
0 < \sigma_2 < x_0 = (r_*/s^*)^{1/(\beta-\alpha)} < x_1 = (r_*/s^*)^{1/(\beta-\alpha)} < \sigma_1.
\]
\(u'' + au' = \frac{1}{u} (e(t) - b(u')^2) - c \), \(u(0) = u(T), \ u'(0) = u'(T) \),

STEP 1: \(u : [0, T] \to \mathbb{R} \) is a positive solution of (1) iff \(x = u^{1/\mu} \) is a positive solution of

\(x'' + ax'(t) = r(t) x^\alpha - s(t) x^\beta \), \(x(0) = x(T), \ x'(0) = x'(T) \),

where \(0 < \mu = \frac{1}{b+1} < \frac{2}{5} \), \(r(t) = \frac{e(t)}{\mu} > 0 \), \(s(t) = \frac{c}{\mu} > 0 \), \(0 < \alpha = 1 - 2\mu \), \(< \beta = 1 - \mu < 1 \).

STEP 2: There are constant lower and upper functions \(\sigma_1 \) and \(\sigma_2 \) of (2) such that

\(0 < \sigma_2 < x_0 = (r*/s*)^{1/(\beta-\alpha)} < x_1 = (r*/s*)^{1/(\beta-\alpha)} < \sigma_1 \).

STEP 3: We show that there is \(\delta_0 \in (0, \sigma_2) \) such that

\(r(t) x^\alpha - s(t) x^\beta < 0 \) for \(t \in [0, T], \ x \in (0, \delta_0) \)

and

\[- \left(\left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4} \right) x + r(t) x^\alpha - s(t) x^\beta < 0 \] for \(t \in [0, T], \ x \geq \delta_0 \).
\[u'' + a u' = \frac{1}{u} (e(t) - b (u')^2) - c, \quad u(0) = u(T), \; u'(0) = u'(T), \]

STEP 1: \(u : [0, T] \rightarrow \mathbb{R} \) is a positive solution of (1) iff \(x = u^{1/\mu} \) is a positive solution of

\[x'' + a x'(t) = r(t) x^\alpha - s(t) x^\beta, \quad x(0) = x(T), \; x'(0) = x'(T), \]

where

\[0 < \mu = \frac{1}{b+1} < \frac{2}{5}, \; r(t) = \frac{e(t)}{\mu} > 0, \; s(t) = \frac{c}{\mu} > 0, \; 0 < \alpha = 1 - 2 \mu, \; < \beta = 1 - \mu < 1. \]

STEP 2: There are constant lower and upper functions \(\sigma_1 \) and \(\sigma_2 \) of (2) such that

\[0 < \sigma_2 < x_0 = \left(\frac{r^*}{s^*}\right)^{1/(\beta - \alpha)} < x_1 = \left(\frac{r^*}{s^*}\right)^{1/(\beta - \alpha)} < \sigma_1. \]

STEP 3: We show that there is \(\delta_0 \in (0, \sigma_2) \) such that

\[r(t) x^\alpha - s(t) x^\beta < 0 \quad \text{for} \; t \in [0, T], \; x \in (0, \delta_0) \]

and

\[-\left(\left(\frac{\pi}{T}\right)^2 + \frac{a^2}{4}\right) x + r(t) x^\alpha - s(t) x^\beta < 0 \quad \text{for} \; t \in [0, T], \; x \geq \delta_0. \]

STEP 4: We choose \(\delta \in (0, \delta_0) \), put \(\lambda^* = \left(\frac{\pi}{T}\right)^2 + \frac{a^2}{4} \),

\[\tilde{f}(t, x) = \begin{cases} r(t) \delta^\alpha - s(t) \delta^\beta - \lambda^* (x - \delta) & \text{for} \; x < \delta, \\ r(t) x^\alpha - s(t) x^\beta & \text{for} \; x \geq \delta \end{cases} \]

and consider auxiliary problem

\[(\text{Aux}) \quad x'' + a x'(t) = \tilde{f}(t, x), \quad x(0) = x(T), \; x'(0) = x'(T), \]
(1) \[u'' + a u' = \frac{1}{u} \left(e(t) - b (u')^2 \right) - c, \quad u(0) = u(T), \quad u'(0) = u'(T), \]

STEP 1: \(u: [0, T] \rightarrow \mathbb{R} \) is a positive solution of (1) iff \(x = u^{1/\mu} \) is a positive solution of

(2) \[x'' + a x' = r(t) x^\alpha - s(t) x^\beta, \quad x(0) = x(T), \quad x'(0) = x'(T), \]

where

\[0 < \mu = \frac{1}{b+1} < \frac{2}{5}, \quad r(t) = \frac{e(t)}{\mu} > 0, \quad s(t) = \frac{c}{\mu} > 0, \quad 0 < \alpha = 1 - 2 \mu, \quad < \beta = 1 - \mu < 1. \]

STEP 2: There are constant lower and upper functions \(\sigma_1 \) and \(\sigma_2 \) of (2) such that

\[0 < \sigma_2 < x_0 = (r_*/s_*)^{1/(\beta - \alpha)} < x_1 = (r_*/s_*)^{1/(\beta - \alpha)} < \sigma_1. \]

STEP 3: We show that there is \(\delta_0 \in (0, \sigma_2) \) such that

\[r(t) x^\alpha - s(t) x^\beta < 0 \quad \text{for} \quad t \in [0, T], \quad x \in (0, \delta_0) \]

and

\[\left(\left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4} \right) x - r(t) x^\alpha - s(t) x^\beta < 0 \quad \text{for} \quad t \in [0, T], \quad x \geq \delta_0. \]

STEP 4: We choose \(\delta \in (0, \delta_0) \), put \(\lambda^* = \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4} \),

\[\widetilde{f}(t, x) = \begin{cases} r(t) \delta^\alpha - s(t) \delta^\beta - \lambda^* (x - \delta) & \text{for} \ x < \delta, \\ r(t) x^\alpha - s(t) x^\beta & \text{for} \ x \geq \delta \end{cases} \]

and consider auxiliary problem

(\text{Aux}) \[x'' + a x' = \widetilde{f}(t, x), \quad x(0) = x(T), \quad x'(0) = x'(T), \]

Method of non-ordered lower and upper functions (BONHEURE & De COSTER)

\(\implies \) (Aux) has a solution \(x \).
Sketch of the proof

Steps 1–4:

1. \(u'' + au' = \frac{1}{u} \left(e(t) - b(u')^2 \right) - c, \quad u(0) = u(T), \quad u'(0) = u'(T), \quad \updownarrow \)

2. \(x'' + ax'(t) = r(t)x^\alpha - s(t)x^\beta, \quad x(0) = x(T), \quad x'(0) = x'(T), \quad \)

where \(0 < \mu = \frac{1}{b+1} < \frac{2}{5}, \quad r(t) = \frac{e(t)}{\mu} > 0, \quad s(t) = \frac{c}{\mu} > 0, \quad 0 < \alpha = 1 - 2\mu, \quad < \beta = 1 - \mu < 1. \)

We have a solution \(x \) to

(Aux) \(x'' + ax'(t) = \tilde{f}(t, x), \quad x(0) = x(T), \quad x'(0) = x'(T), \quad \)

where

\[
\tilde{f}(t, x) = \begin{cases}
 r(t) \delta^\alpha - s(t) \delta^\beta - \lambda^* (x - \delta) & \text{for } x < \delta, \\
 r(t)x^\alpha - s(t)x^\beta & \text{for } x \geq \delta
\end{cases}
\]

Step 5: Put \(v = x - \delta \). Then

\(v''(t) + av'(t) + \lambda^* v(t) = h(t) \quad \text{for } t \in [0, T], \quad v(0) = v(T), \quad v'(0) = v'(T), \quad \)

where (by Step 3) \(h(t) := \lambda^* (x(t) - \delta) - \tilde{f}(t, x(t)) \geq 0 \quad \text{on } [0, T]. \)
Sketch of the proof

Steps 1–4:

(1) \[u'' + a u' = \frac{1}{u} \left(e(t) - b(u')^2 \right) - c, \quad u(0) = u(T), \quad u'(0) = u'(T), \]

\Downarrow

(2) \[x'' + a x'(t) = r(t) x^\alpha - s(t) x^\beta 0, \quad x(0) = x(T), \quad x'(0) = x'(T), \]

where

\[0 < \mu = \frac{1}{b+1} < \frac{2}{5}, \quad r(t) = \frac{e(t)}{\mu} > 0, \quad s(t) = \frac{c}{\mu} > 0, \quad 0 < \alpha = 1 - 2 \mu, \quad \beta = 1 - \mu < 1. \]

We have a solution \(x \) to

(Aux) \[x'' + a x'(t) = \tilde{f}(t, x), \quad x(0) = x(T), \quad x'(0) = x'(T), \]

where

\[\tilde{f}(t, x) = \begin{cases} r(t) \delta^\alpha - s(t) \delta^\beta - \lambda^* (x - \delta) & \text{for } x < \delta, \\ r(t) x^\alpha - s(t) x^\beta & \text{for } x \geq \delta \end{cases} \]

Step 5: Put \(v = x - \delta \). Then

\[v''(t) + a v'(t) + \lambda^* v(t) = h(t) \quad \text{for } t \in [0, T], \quad v(0) = v(T), \quad v'(0) = v'(T), \]

where (by Step 3) \(h(t) := \lambda^* (x(t) - \delta) - \tilde{f}(t, x(t)) \geq 0 \) on \([0, T]\).

Antimaximum principle \(\text{ (OMARI & TROMBETTA or HAKL & ZAMORA) } \implies \quad v \geq 0, \quad \text{i.e. } x \geq \delta \quad \square \)
Existence of a periodic solution

(2) \[u'' + au' = r(t) u^\alpha - s(t) u^\beta, \quad u(0) = u(T), \quad u'(0) = u'(T), \]

THEOREM 4

Assume:
- \(a \geq 0, \quad b > 1, \quad c > 0, \quad 0 < \alpha < \beta < 1, \)
- \(r_* > 0, \quad s_* > 0, \)
- there is \(\delta_0 > 0 \) such that
 \[r(t) u^\alpha - s(t) u^\beta < 0 \quad \text{for} \quad t \in [0, T], \quad x \in (0, \delta_0) \]
 and
 \[- \left(\left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4} \right) x + r(t) x^\alpha - s(t) x^\beta < 0 \quad \text{for} \quad t \in [0, T], \quad x \geq \delta_0. \]

Then: (2) has a positive solution.
3. ASYMPTOTIC STABILITY
Asymptotic stability

(3) \[x'' + a x'(t) = f(t, x), \quad x(0) = x(T), \, x'(0) = x'(T) \]

Lemma (Omari & Njoku, 2003)

Assume: \(a > 0, \)

- \(\sigma_1 \) is a strict lower function, \(\sigma_2 \) is a strict upper function of (3) and \(\sigma_2 < \sigma_1 \) on \([0, T] \).
- \[\frac{\partial}{\partial x} f(t, x) \geq - \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4} \quad \text{for} \quad t \in [0, T], \, x \in [\sigma_2(t), \sigma_1(t)], \]
- there is a continuous \(\gamma : [0, T] \to [0, \infty) \) such that \(\tilde{\gamma} > 0 \) and \(\frac{\partial}{\partial x} f(t, x) \leq - \gamma(t) \quad \text{for} \quad t \in [0, T], \, x \in [\sigma_2(t), \sigma_1(t)]. \)

Then (3) has at least one asymptotically stable \(T \)-periodic solution \(x \) fulfilling \(\sigma_2 \leq x \leq \sigma_1 \) on \([0, T] \).
\[x'' + ax'(t) = f(t, x), \quad x(0) = x(T), \ x'(0) = x'(T) \]

THEOREM 5

Assume: \(a > 0, \ f(t, x) = r(t) x^\alpha - s(t) x^\beta, \)

- \(r, s \) are continuous and positive on \([0, T], 0 < \alpha < \beta < 1, \)
- \(\beta s^* \left(\frac{s^*}{r^*} \right)^{(1-\beta)/(\beta-\alpha)} - \alpha r^* \left(\frac{s^*}{r^*} \right)^{(1-\alpha)/(\beta-\alpha)} < \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4}, \)
- \(\frac{\alpha}{\beta} \frac{r^*}{s^*} < \frac{r^*}{s^*}. \)

Then: (3) has at least one asymptotically stable positive solution.
THEOREM 5

Assume: $a > 0$, $f(t, x) = r(t) x^\alpha - s(t) x^\beta$,

- r, s are continuous and positive on $[0, T]$, $0 < \alpha < \beta < 1$,
- $\beta s^* \left(\frac{s^*}{r^*} \right)^{(1-\beta)/(\beta-\alpha)} - \alpha r^* \left(\frac{s^*}{r^*} \right)^{(1-\alpha)/(\beta-\alpha)} < \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4}$,
- $\frac{\alpha}{\beta} \frac{r^*}{s^*} < \frac{r^*}{s^*}$.

Then: (3) has at least one asymptotically stable positive solution.

COROLLARY

(1) has at least one asymptotically stable positive solution if

$$\frac{c^2 \left(b (e^*)^2 - (b - 1) (e^*)^2 \right)}{e^* (e^*)^2} < \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4} \quad \text{and} \quad \frac{e^* - e^*}{e^*} < \frac{1}{b}.$$
4. APPLICATION OF KRASNOSELSKIđII
COMPRESION/EXPANSION THEOREM
\[x'' + ax' + m^2 x = 0, \quad x(0) - x(T), \quad x'(0) = x'(T) \quad \begin{bmatrix} a \geq 0, & 0 < m^2 < \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \end{bmatrix} \]
(4) \(x'' + a x' + m^2 x = 0, \ x(0) - x(T), \ x'(0) = x'(T) \)

\[a \geq 0, \ 0 < m^2 < \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \]

has Green's function \(G_m(t, s) \) such that

- \(G_m(t, s) > 0 \) for all \(t, s \in [0, T] \),
- there exists \(c_m \in (0, 1) \) such that \(G_m(s, s) \geq c_m G_m(t, s) \) for all \(t, s \in [0, T] \).
(4) \(x'' + ax' + m^2 x = 0, \ x(0) - x(T), \ x'(0) = x'(T) \) \(a \geq 0, \ 0 < m^2 < \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \) has Green's function \(G_m(t, s) \) such that

- \(G_m(t, s) > 0 \) for all \(t, s \in [0, T] \),
- there exists \(c_m \in (0, 1) \) such that \(G_m(s, s) \geq c_m G_m(t, s) \) for all \(t, s \in [0, T] \),

Put \((Fx)(t) = \int_0^T G_m(t, s) \left[r(s)x^\alpha(s) - s(t)x^\beta(s) + m^2 x(s) \right] ds \)
(4) \(x'' + ax' + m^2 x = 0, \ x(0) - x(T), \ x'(0) = x'(T) \quad \left[a \geq 0, \ 0 < m^2 < \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \right] \)

has Green's function \(G_m(t, s) \) such that

- \(G_m(t, s) > 0 \) for all \(t, s \in [0, T] \),
- there exists \(c_m \in (0, 1) \) such that \(G_m(s, s) \geq c_m G_m(t, s) \) for all \(t, s \in [0, T] \),

Put \((Fx)(t) = \int_0^T G_m(t, s) \left[r(s) x^\alpha(s) - s(t) x^\beta(s) + m^2 x(s) \right] ds \)

Then \(x \) is a solution to

(2) \(x'' + ax' = r(t) x^\alpha - s(t) x^\beta, \quad x(0) = x(T), \ x'(0) = x'(T) \)

iff \(x = Fx \).
(4) \[x'' + ax' + m^2x = 0, \quad x(0) - x(T), \quad x'(0) = x'(T) \quad \left[a \geq 0, \quad 0 < m^2 < \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \right] \]

has Green's function \(G_m(t, s) \) such that
- \(G_m(t, s) > 0 \) for all \(t, s \in [0, T] \),
- there exists \(c_m \in (0, 1) \) such that \(G_m(s, s) \geq c_m G_m(t, s) \) for all \(t, s \in [0, T] \),

Put \((Fx)(t) = \int_0^T G_m(t, s) \left[r(s) x^\alpha(s) - s(t) x^\beta(s) + m^2 x(s) \right] ds \)

Then \(x \) is a solution to
\[
(2) \quad x'' + ax' = r(t) x^\alpha - s(t) x^\beta, \quad x(0) = x(T), \quad x'(0) = x'(T)
\]

iff \(x = Fx \).

Krasnoselskii Fixed Point Theorem

Let \(P \) be a cone in \(X \), \(\Omega_1 \) and \(\Omega_2 \) be bounded open sets in \(X \) such that \(0 \in \Omega_1 \) and \(\overline{\Omega}_1 \subset \Omega_2 \). Let \(F : P \cap (\overline{\Omega}_2 \setminus \Omega_1) \to P \) be a completely continuous operator such that one of the following conditions holds:
- \(\|Fx\| \geq \|x\| \) for \(x \in P \cap \partial \Omega_1 \) and \(\|Fx\| \leq \|x\| \) for \(x \in P \cap \partial \Omega_2 \),
- \(\|Fx\| \leq \|x\| \) for \(x \in P \cap \partial \Omega_1 \) and \(\|Fx\| \geq \|x\| \) for \(x \in P \cap \partial \Omega_2 \).

Then \(F \) has a fixed point in the set \(P \cap (\overline{\Omega}_2 \setminus \Omega_1) \).
\[(2) \quad x'' + ax' = r(t)x^\alpha - s(t)x^\beta, \quad x(0) = x(T), \ x'(0) = x'(T) \]

- \(G_m(t, s) > 0 \) for all \(t, s \in [0, T] \),
- there exists \(c_m \in (0, 1) \) such that \(G_m(s, s) \geq c_m G_m(t, s) \) for all \(t, s \in [0, T] \),

Put
- \(P = \{ x \in C[0, T]: x(t) \geq 0 \text{ on } [0, T] \text{ and } x(t) \geq c_m \|x\| \text{ on } [0, T] \} \),
- \(\Omega_1 = \{ x \in C[0, T]: \|x\| < R_1 \} \), \(\Omega_2 = \{ x \in C[0, T]: \|x\| < R_2 \} \).
(2) \[x'' + ax' = r(t)x^\alpha - s(t)x^\beta, \quad x(0) = x(T), \quad x'(0) = x'(T) \]

- \(G_m(t, s) > 0 \) for all \(t, s \in [0, T] \),
- there exists \(c_m \in (0, 1) \) such that \(G_m(s, s) \geq c_m G_m(t, s) \) for all \(t, s \in [0, T] \),

Put

- \(P = \{ x \in C[0, T] : x(t) \geq 0 \text{ on } [0, T] \text{ and } x(t) \geq c_m \|x\| \text{ on } [0, T] \} \),
- \(\Omega_1 = \{ x \in C[0, T] : \|x\| < R_1 \} \), \(\Omega_2 = \{ x \in C[0, T] : \|x\| < R_2 \} \).

THEOREM 6

ASSUME: \(a \geq 0, \ r, s \in C[0, T], \ 0 < \alpha < \beta < 1, \)

there exist \(m > 0 \) and \(0 < R_1 < R_2 \) such that \(m^2 < \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \),

\[
\begin{align*}
 r(t)x^\alpha - s(t)x^\beta + m^2x &\geq 0 & \text{for } t \in [0, T], \ x \in [c_m R_1, R_2], \\
 r(t)x^\alpha - s(t)x^\beta + m^2x &\geq m^2 R_1 & \text{for } t \in [0, T], \ x \in [c_m R_1, R_1], \\
 r(t)x^\alpha - s(t)x^\beta + m^2x &\leq m^2 R_2 & \text{for } t \in [0, T], \ x \in [c_m R_2, R_2],
\end{align*}
\]

THEN: (2) has a positive solution \(x \in [c_m R_1, R_2] \).
Application of Krasnoselskii compression/expansion theorem

(2) \[x'' + ax' = r(t) x^\alpha - s(t) x^\beta, \quad x(0) = x(T), \quad x'(0) = x'(T) \]

COROLLARY = THEOREM 3

Assume:
- \(a \geq 0, \quad b > 1, \quad c > 0, \)
- \(e \) is continuous and \(T \)-periodic on \(\mathbb{R}, \quad e_* > 0, \)
- \[\frac{(b + 1)c^2}{4e_*} < \left(\frac{\pi}{T} \right)^2 + \frac{a^2}{4}. \]

Then: (1) has a positive solution.

Remark

Compare conditions:
- **Theorem 3:** there is \(\delta > 0 \) such that
 \[\left(\left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \right) x - f(t, x) \geq \left(\left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \right) \delta \quad \text{for} \ t \in [0, T], \ x \geq \delta, \]

- **Theorem 6:** there is \(m \in \left(0, \left(\frac{\pi}{T} \right)^2 + \left(\frac{a}{2} \right)^2 \right), \) such that
 \[m^2 x - f(t, x) \geq 0 \quad \text{for} \ t \in [0, T], \ x \in [c_m R_1, R_2] \]

References

JOAN MIRÓ. The man with a pipe. 1925.
GUSTAVE COURBET. The man with a pipe. 1849.
James McNeill Whistler. The man with a pipe. 1859.
PAUL CÉZANNE. The man with a pipe. 1892.
PABLO PICASSO. The man with a pipe. 1915.
JOAN MIRÓ. The man with a pipe. 1928.
ROYALTY FREE STOCK PHOTO. The man with a pipe. 1954.
PRAY FOR PEACE OF JERUSALEM.