Deterministic and stochastic models of circadian rhythms

Tomáš Vejchodský
vejchod@math.cas.cz

Centre for Mathematical Biology
Mathematical Institute
University of Oxford

Institute of Mathematics
Academy of Sciences
Czech Republic

Equadiff 2013, Prague, 26–30 August
VKBL model of circadian rhythms

Deterministic and stochastic models

- Comparable behaviour for $\delta_R = 0.2$
- Qualitatively different behaviour for $\delta_R = 0.05$

Explanation
VKBL model – parameters

\[\alpha_A = 50 \text{ h}^{-1} \]
\[\alpha'_A = 500 \text{ h}^{-1} \]
\[\alpha_R = 0.01 \text{ h}^{-1} \]
\[\alpha'_R = 50 \text{ h}^{-1} \]
\[\beta_A = 50 \text{ h}^{-1} \]
\[\beta_R = 5 \text{ h}^{-1} \]
\[\gamma_A = 1 \text{ mol}^{-1} \text{ h}^{-1} \]
\[\gamma_R = 1 \text{ mol}^{-1} \text{ h}^{-1} \]
\[\gamma_C = 2 \text{ mol}^{-1} \text{ h}^{-1} \]
\[\delta_A = 1 \text{ h}^{-1} \]
\[\delta_R = 0.2 \text{ h}^{-1} \]
\[\delta_{MA} = 10 \text{ h}^{-1} \]
\[\delta_{MR} = 0.5 \text{ h}^{-1} \]
\[\theta_A = 50 \text{ h}^{-1} \]
\[\theta_R = 100 \text{ h}^{-1} \]

[Vilar, Kueh, Barkai, Leibler, 2002]
Deterministic and stochastic modelling

\[A \xrightarrow{k} \emptyset \]

\(A(t) \) ... number of molecules in time \(t \), provided \(A(0) = n_0 \)

Law of mass action:

\[
\frac{dA(t)}{dt} = -kA(t)
\]

Gillespie stochastic simulation algorithm:

\(kA(t)dt \) ... probability that a reaction occurs in \([t, t + dt)\)

(a) \(r \sim U(0, 1) \)

(b) \(\alpha = kA(t), \quad \tau = \frac{1}{\alpha} \ln \frac{1}{r} \)

(c) \(A(t + \tau) = A(t) - 1 \)

(d) \(t := t + \tau, \) go to (a)
VKBL model – law of mass action

\[\begin{align*}
\frac{dD_A}{dt} &= \theta_A D'_A - \gamma_A D_A A \\
\frac{dD'_A}{dt} &= -\theta_A D'_A + \gamma_A D_A A \\
\frac{dD_R}{dt} &= \theta_R D'_R - \gamma_R D_R A \\
\frac{dD'_R}{dt} &= -\theta_R D'_R + \gamma_R D_R A \\
\frac{dM_A}{dt} &= \alpha'_A D'_A + \alpha_A D_A - \delta_{MA} M_A \\
\frac{dM_R}{dt} &= \alpha'_R D'_R + \alpha_R D_R - \delta_{MR} M_R \\
\frac{dA}{dt} &= \beta_A M_A + \theta_A D'_A + \theta_R D'_R \\
&\quad - A(\gamma_A D_A + \gamma_R D_R + \gamma_C R + \delta_A) \\
\frac{dR}{dt} &= \beta_R M_R - \gamma_C A R + \delta_A C - \delta_R R \\
\frac{dC}{dt} &= \gamma_C A R - \delta_A C
\end{align*}\]

Initial conditions:

\[\begin{align*}
D_A &= D_R = 1 \text{ mol} \\
D'_A &= D'_R = M_A = M_R = A = R = C = 0 \text{ mol}
\end{align*}\]
Full system – solution of ODE

\begin{align*}
\text{DA} & \quad \text{DR} \\
\text{MA} & \quad \text{MR} \\
\text{A} & \quad \text{R} \quad \text{C}
\end{align*}

\begin{align*}
time \ [\text{hours}] & \\
0 & \quad 25 \quad 50 \quad 75 \quad 100
\end{align*}
Full system – Gillespie SSA
Full system – comparison

- DA
- stoch DA
- DR
- stoch DR
- MA
- stoch MA
- MR
- stoch MR
- A
- stoch A
- R
- stoch R
Full system – $\delta_R = 0.05$ – solution of ODE
Full system – $\delta_R = 0.05$ – Gillespie SSA
Full system – $\delta_R = 0.05$ – comparison
Full system – phase diagram

\[
\delta R = 0.2
\]

\[
\delta R = 0.05
\]
Simplified system

Quasi-steady state assumptions:

\[
\frac{dR}{dt} = \beta_R \tilde{M}_R^s(R) - \gamma_C \tilde{A}^s(R)R + \delta_A C - \delta_R R \\
\frac{dC}{dt} = \gamma_C \tilde{A}^s(R)R - \delta_A C
\]

\[
\tilde{A}^s(R) = \frac{1}{2}(\alpha'_A \rho(R) - K_d) + \frac{1}{2} \sqrt{(\alpha'_A \rho(R) - K_d)^2 + 4 \alpha_A \rho(R) K_d} \\
\rho(R) = \frac{\beta_A}{\delta_M} \frac{1}{\gamma_C R + \delta_A}, \quad K_d = \frac{\theta_A}{\gamma_A}
\]

\[
\tilde{M}_R^s(R) = \frac{\alpha'_R}{\delta_M} + \frac{\theta_R (\alpha_R - \alpha'_R)}{\delta_M (\theta_R + \gamma_R \tilde{A}^s(R))}
\]

Simplified chemical system:

\[\emptyset \xrightleftharpoons[k_1]{\delta_R} R \xrightleftharpoons[k_2]{\delta_A} C, \quad k_1 = \beta_R \tilde{M}_R^s(R), \quad k_2 = \gamma_C \tilde{A}^s(R)\]
Simplified system – $\delta_R = 0.2$ – two ODE
Simplified system – $\delta_R = 0.2$ – Gillespie SSA
Simplified system – $\delta_R = 0.2$ – comparison

- DA
- stoch DA
- DR
- stoch DR
- MA
- stoch MA
- MR
- stoch MR
- A
- stoch A
- R
- stoch R

Time [hours]
Simplified system – $\delta_R = 0.05$ – two ODE
Simplified system – $\delta_R = 0.05$ – Gillespie SSA
Simplified system – phase diagram

\[\delta_R = 0.2 \]

\[\delta_R = 0.05 \]

- **Stochastic**
- **Deterministic**
- **R-nullcline**
- **C-nullcline**

(number of R–molecules vs. number of C–molecules)
Mean period vs. δ_R

![Graph showing the relationship between mean period and δ_R. The graph includes data points for ODE and Gillespie SSA methods, with a downward trend as δ_R increases.](image)
Mean period – $\delta_R = 0.05$

Stochastic simulations, $\delta=0.05$

Period of deterministic system is infinite.
Conclusion

- Qualitatively different behaviour appears close to a bifurcation point.
- Bifurcation point of stochastic system seems to be around $\delta_R = 0.001$.
- Low copy numbers of a chemical species \implies stochastic effects.
- High copy numbers \implies stochastic and deterministic models agree.
Acknowledgement

I am thankful to Radek Erban and Philip K. Maini for their support and fruitful discussions about this topic.

Marie Curie Fellowship, StochDetBioModel

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 328008.
Thank you for your attention

Tomáš Vejchodský
vejchod@math.cas.cz

Centre for Mathematical Biology
Mathematical Institute
University of Oxford

Institute of Mathematics
Academy of Sciences
Czech Republic

Equadiff 2013, Prague, 26–30 August