Decentralized Control of Product (max+)-automata using Coinduction

Jan Komenda, Sébastien Lahaye, and Jean-Louis Boimond

Institute of Mathematics, Czech Academy of Sciences,
Brno, Czech Republic
and
LISA, ISTIA
Angers, France

2012 October 3,
WODES 2012
Guadalajara, Mexico
Outline

1. Introduction
2. Preliminaries from co/algebra and supervisory control
3. Centralized control using coalgebra
4. Decentralized control
5. CONCLUDING REMARKS
Outline

1. Introduction
2. Preliminaries from co/algebra and supervisory control
3. Centralized control using coalgebra
4. Decentralized control
5. CONCLUDING REMARKS
Control of \((\text{max,}+)\) automata inspired by supervisory control

- \((\text{Max,}+)\) automata: weighted automata with weights in
 \(\overline{\mathbb{R}}_{\text{max}} = (\mathbb{R} \cup \{-\infty\}, \max, +)\).
- class of **Timed Discrete Event (dynamical) Systems (TDES)** with synchronization and resource sharing
- synchronous composition of \((\text{max,}+)\)-automata: extended alphabet or non determinism
- Definitions by Coinduction of synchronous and supervised product
- Proofs by Coinduction of theorems modular synthesis equals global synthesis
Jan Komenda, Sébastien Lahaye, and Jean-Louis Boimond
Decentralized Control of Product (max+)-automata

Outline

1. Introduction
2. Preliminaries from co/algebra and supervisory control
3. Centralized control using coalgebra
4. Decentralized control
5. CONCLUDING REMARKS
(max,+)-automata generalize both logical automata and (max,+)-linear systems (e.g. timed event graphs).

(max,+)-automata are quadruples $G = (Q, A, q_0, t)$, where
- Q is the set of states,
- q_0 is the initial state,
- A is the set of discrete events,
- $t : Q \times A \times Q \rightarrow \mathbb{R}_{max}$ is the transition function.

Meaning: output value $t(q, a, q') \in \mathbb{R}_{max}$ corresponds to the a-transition from q to q' and $t(q, a, q') = \varepsilon$ if there is no transition from q to q' labeled by a.

Deterministic (max,+)-automata: t is deterministic, i.e. $t : Q \times A \rightarrow Q \times \mathbb{R}_{max}$.
Deterministic (max,+)-automata as coalgebras

- Deterministic (max,+)-automata are coalgebras
 \((S, t)\), where \(S\) is the set of states and the transition function is
 \(t : S \to (1 + (\mathbb{R}_{\max} \times S))^A\) with \(1 = \{\emptyset\}\).
- Their behaviors are stream functions \(f : A^\omega \to \mathbb{R}_{\max}^\omega\).
 \(f : A^\omega \to \mathbb{R}_{\max}^\omega\) is causal if \(\forall n \in \mathbb{N}, \sigma, \tau \in A^\infty : \forall i : i \leq n:\)
 \(\sigma(i) = \tau(i)\) then \(f(\sigma)(n) = f(\tau)(n)\).
- Stream derivatives: \(\omega = (\omega_0, \omega_1, \ldots) \in K^\omega \to \omega' = (\omega_1, \omega_2, \ldots)\).
- Stream functions form final coalgebra of (max,+)-automata with
 \(t(f) = \langle f[a], f_a \rangle \) if \(f[a] \neq \emptyset \in 1\),
 \(\emptyset\) otherwise,
 \(f[a] = f(a : \sigma)(0)\) and \(f_a(\sigma) = f(a : \sigma)'\)
- \(A^\infty = A^\omega \cup A^+\), where \(A^+ = A^* \setminus \{\lambda\}\)
- \(f\) is consistent if \(\sigma \in A^\omega : f(\sigma)(k) = \emptyset \Rightarrow f(\sigma)(n) = \emptyset \forall n > k\).

Theorem. (Rutten 2006)

\(\mathcal{F} = (\mathcal{F}, t_{\mathcal{F}})\) is the final coalgebra of (max,+)-automata:

\(\mathcal{F} = \{ f : A^\omega \to (1 + K)^\omega \mid f\ \text{is causal and consistent}\}\).

\(t_{\mathcal{F}}(f)(a) = \begin{cases}
\langle f[a], f_a \rangle & \text{if } f[a] \neq \emptyset \in 1, \\
\emptyset & \text{otherwise},
\end{cases}\)
Equivalent presentation of behaviors

- $S_0 \xrightarrow{\sigma(0)} S_1 \xrightarrow{\sigma(1)} S_2 \cdots \xrightarrow{\sigma(n)} S_{n+1}$.
 We define $l(S_0)(\sigma)(n) = k_n$.

- \mathcal{F} is isomorphic to functions between finite and infinite sequences!

 $\mathcal{F}_\infty = \{ f : A^\infty \rightarrow \overline{\mathbb{R}}_{\text{max}}^\infty \mid f \text{ preserve length, causal, } \& \text{dom}(f)\text{prefix-closed} \}$

- $f[a] = f(a)(0)$ whenever f is defined for $a \in A$.

- $f_a : A^\infty \rightarrow (1 + \overline{\mathbb{R}}_{\text{max}})^\infty$ given by $f_a(s) = f(a : s)$

 $t_{\mathcal{F}_\infty}(f)(a) = \begin{cases} \langle f[a], f_a \rangle & \text{if } f[a] \text{ is defined} \\ \text{undefined} & \text{otherwise,} \end{cases}$
Residuation theory

Residuation theory generalizes inversion
An isotone \(f : \mathcal{D} \rightarrow \mathcal{C} \), where \(\mathcal{D} \) and \(\mathcal{C} \) are dioids (naturally ordered \(a \preceq b \) iff \(a \oplus b = b \)), is said to be **residuated** if there exists an isotone map \(h : \mathcal{C} \rightarrow \mathcal{D} \) such that

\[
f \circ h \preceq \text{Id}_\mathcal{C} \quad \text{and} \quad h \circ f \succeq \text{Id}_\mathcal{D}.
\]

\(h \) is unique residual of \(f \), denoted by \(f^\# \).

If \(f \) is residuated then \(\forall y \in \mathcal{C}, \sup\{x \in \mathcal{D} | f(x) \preceq y\} \) exists and belongs to this subset and is equal to \(f^\#(y) \).

Example: left and right multiplications are always residuated in complete dioids!

Notation.

\[
a \searrow y = \max\{x | a \odot x \leq y\} \quad \text{and} \quad \quad y \nearrow a = \max\{x | x \odot a \leq y\}.
\]
Supervisory control

Control framework: Given two deterministic (max,+)-automata

\[G_c = (Q_c, q_c, 0, Q_m, t_c), \quad G = (Q_g, q_g, 0, Q_m, t_g). \]

we consider their behaviors \(y_c \in \mathcal{F} \) and \(y \in \mathcal{F} \). Closed-loop system will be defined via \textit{supervised product}, denoted \(y^c \otimes_{A_u} y \)

Distinguish \(A_c \subseteq A \) is the subset of \textit{controllable events}, \(A_u = A \setminus A_c \) is the subset of \textit{uncontrollable events}.

Spec. \(y^{ref} \in \mathcal{F} \) is \textit{admissible} wrt \(y \in \mathcal{F} \) if \(L(y^{ref}) \subseteq L(y) \) and for all \(w \in L(y^{ref}) \) there is \(y^{ref}(w) \geq y(w) \) (meant component-wise).

Controller \(y^c \in \mathcal{F} \) is \textit{admissible} wrt \(y \in \mathcal{F} \) if \(L(y^c) \subseteq L(y) \) and \(\forall w \in L(y^{ref}) \) there is \(y^c(w) \geq 0 \) (meant component-wise).
Supervisory control: coalgebraic framework

Notation. \(y^{\text{ref}} : A^\infty \to (R_{\text{max}})^\infty \) is (an admissible) control specification

Natural order: for sequential functions \(y, y' : A^\infty \to K^\infty \) we write \(y \preceq y' \) iff \(L(y) \subseteq L(y') \) and \(\forall w \in L(y) : y(w) \leq y(w') \)

Problem. Find a greatest admissible controller \(y^c \) such that \(y^c \otimes_{A_u} y \preceq y^{\text{ref}} \).

Admissible controller: it does not disable nor delay uncontrollable events.

\(L(y^{\text{ref}}) \) is **controllable** wrt \(L(y) \) and \(A_u \) if

\[
\overline{L(y^{\text{ref}})} A_u \cap L(y) \subseteq \overline{L(y^{\text{ref}})}.
\]
Introduction

Preliminaries from co/algebra and supervisory control

Centralized control using coalgebra

Decentralized control

CONCLUDING REMARKS

Outline

1. Introduction

2. Preliminaries from co/algebra and supervisory control

3. Centralized control using coalgebra

4. Decentralized control

5. CONCLUDING REMARKS
Supervised product by coinduction

Definition (Supervised product). Given System and Controller, resp. \(y, y^c \in \mathcal{F}, \forall a \in A \):

\[
(y^c \otimes_{A_u} y)_a = \begin{cases}
 y^c_a \otimes_{A_u} y_a & \text{if } y^c \xrightarrow{\bar{a}} \text{ and } y \xrightarrow{\bar{a}} \\
 0 \otimes_{A_u} y_a & \text{if } a \in A_{uc} \text{ and } y^c \not\xrightarrow{\bar{a}} \text{ and } y \xrightarrow{\bar{a}} \\
 \emptyset & \text{otherwise}
\end{cases}
\]

and

\[
(y^c \otimes_{A_u} y)[a] = \begin{cases}
 y^c[a] \otimes y[a] & \text{if } a \in A_c \\
 y[a] & \text{otherwise}
\end{cases}
\]
Example 1.

Then \(y(a(ub)^\omega) = (1(2, 1)^\omega) \).
Example 1.

Controller y^c delays the first uncontrollable u, delays the first b, and tries to forbid the second u.

\[
(y^c \otimes_{A_u} y)[a] = y^c[a] \otimes y[a] = 2 \otimes 1 = 3,
\]
\[
(y^c \otimes_{A_u} y)[u] = y_a[u] = 2,
\]
\[
(y^c \otimes_{A_u} y)[u] = y^c_a[b] \otimes y_{au}[b] = 2 \otimes 1 = 3,
\]
\[
(y^c \otimes_{A_u} y)[u] = y_{au}[u] = 2.
\]

Figure: Closed-loop system automaton

Note that $(y^c \otimes_{A_u} y)_{aub} \xrightarrow{u} u$, because $u \in A_u$ and $y_{au} \xrightarrow{u} (even though y^c_{aub} \not\xrightarrow{u})$.
Main result: least restrictive controller

Theorem 1. For any \(y, y^{ref} \in \mathcal{F} \) with \(y^{ref} \) admissible with respect to \(y \) we have:

\[
(y^{ref}/_{A_u} y)_a = \begin{cases}
(y^{ref})_a/_{A_u} y_a & \text{if } C \\
\emptyset & \text{otherwise}
\end{cases}
\]

and

\[
(y^{ref}/_{A_u} y)[a] = \begin{cases}
y^{ref}[a] \not\in y[a] & \text{if } a \in A_c \text{ and } C \\
y[a] & \text{if not } C \\
T & \text{if } a \in A_u \text{ and } C
\end{cases}
\]

where the auxiliary condition \(C \) is defined as

\(y^{ref} \xrightarrow{a} \) and \(y \xrightarrow{a} \) and \(\forall u \in A_u^* : y_a \xrightarrow{u} \Rightarrow y^{ref}_a \xrightarrow{u} \).
Example 1 continued.

Let $y(a(ub)^\omega) = (1(2, 1)^\omega)$.

![Specification automaton](image1)

Figure: Specification automaton

![Controller](image2)

Figure: Controller $(y_{\text{ref}}^{\text{ref}} / A_u y)$

![Closed-loop system](image3)

Figure: Closed-loop system $(y_{\text{ref}}^{\text{ref}} / A_u y) \otimes A_u y$
Extended alphabet \(\mathcal{A} = (A_1 \cap A_2) \cup (A_1 \setminus A_2)^* \times (A_2 \setminus A_1)^* \)

For \(l_i \in \mathcal{F} \) over \(A_i \) and \(v_i = a_1 \ldots a_k \in A_i^{+} \) we define for \(i = 1, 2 \):

\[
 l_i[v_i] = (l_i)[a_1] \otimes (l_i)_{a_1}[a_2] \otimes \cdots \otimes (l_i)_{a_1 \ldots a_{k-1}}[a_k].
\]

Definition. for \(l_1, l_2 \in \mathcal{F} \) and \(\forall v \in \mathcal{A} \):

\[
 (l_1 \parallel l_2)_v = (l_1)_{P_1(v)} \parallel (l_2)_{P_2(v)} \quad \text{and} \quad (l_1 \parallel l_2)[v] = l_1[P_1(v)] \otimes B[l_2[P_2(v)]] \oplus B[l_1[P_1(v)]] \otimes l_2[P_2(v)].
\]
Synchronous product continued

\[(l_1 \| l_2)[v] = \begin{cases}
\max(l_1[P_1(v)], l_2[P_2(v)]) & \text{if } l_i[P_i(v)] \neq \varepsilon \text{ for } i = 1, 2 \\
\varepsilon & \text{else, i.e. } \exists i = 1, 2 : l_i[P_i(v)] = \varepsilon
\end{cases}\]

Hint for understanding:
for partial languages \(L_1 = (L_1^1, L_1^2)\), \(L_2 = (L_2^1, L_2^2)\), and \(w \in A^*\)
we have in fact
\[(L_1 \| L_2)_w = (L_1)_{P_1(w)} \| (L_2)_{P_2(w)}.
\]
Outline

1. Introduction
2. Preliminaries from co/algebra and supervisory control
3. Centralized control using coalgebra
4. Decentralized control
5. CONCLUDING REMARKS
Definition. \((P_1(\nu), P_2(\nu))\) is controllable iff there exists a controllable event in either \(P_1(\nu)\) or in \(P_2(\nu)\).

Equiv.: \((P_1(\nu), P_2(\nu)) \in \mathcal{A}_u\) is uncontrollable iff both local strings \(P_1(\nu) \in \mathcal{A}_{u,1}^*\) and \(P_2(\nu) \in \mathcal{A}_{u,2}^*\).

Problem. When does global control synthesis equal decentralized one?

The global control synthesis amounts to computing

\[(y_1^{\text{ref}} \parallel y_2^{\text{ref}}) / \# \mathcal{A}_u (y_1 \parallel y_2) \otimes_{\mathcal{A}_u} (y_1 \parallel y_2),\]

while the local control synthesis amounts to computing

\[[y_1^{\text{ref}} / \mathcal{A}_u y_1 \otimes_{\mathcal{A}_u} y_1] \parallel [y_2^{\text{ref}} / \mathcal{A}_u y_2 \otimes_{\mathcal{A}_u} y_2].\]
Main result: decentralized vs. global control

We say that:

- local subsystems agree on the controllability status of shared events if $A_{u,1} \cap A_2 = A_{u,2} \cap A_1$.
- Local languages L_i, $i = 1, 2$ are mutually controllable if L_1 is controllable with respect to $P_1P_2^{-1}(L_2)$ and $A_{u,1} \cap A_2$ and L_2 is controllable with respect to $P_2P_1^{-1}(L_1)$ and $A_1 \cap A_{u,2}$.
- local specifications do not require to delay locally uncontrollable events if for all $u_i \in A_{u,i}$ we have $y_i[u_i] = y_i^{ref}[u_i]$.

Theorem. Let $y = y_1 \parallel y_2 : A^\infty \rightarrow (\mathbb{R}_{\max})^\infty$ be the global behavior and $y^{ref} = y_1^{ref} \parallel y_2^{ref}$ the global specification. If the local languages $L(y_1)$ and $L(y_2)$ are mutually controllable, if the local subsystems agree on the controllability status of shared events and if local specifications do not require to delay locally uncontrollable events then

$$(y^{ref}/_{A_u} y) \otimes_{A_u} y = ([y_1^{ref}/_{A_{u,1}} y_1] \otimes_{A_u} y_1) \parallel ([y_2^{ref}/_{A_{u,2}} y_2] \otimes_{A_u} y_2).$$
Remark.

- Problematic case: a concurrent event composed of a controllable component event in the first component and an uncontrollable component event in the second component \((b, c) \in \mathcal{A})\).

- From a timing viewpoint decentralized control yields the first output equal to \(y_1^{\text{ref}}[b] \oplus y_2[c]\), while global control yields the first output equal to \(y_1^{\text{ref}}[b] \oplus y_2^{\text{ref}}[c]\).

- Note that due to admissibility of the (local) specifications we always have \(y_2[c] \leq y_2^{\text{ref}}[c]\) (the same as in the purely logical setting.).

- Conclusion: the same inequality holds in general as in the purely logical setting!
Outline

1. Introduction
2. Preliminaries from co/algebra and supervisory control
3. Centralized control using coalgebra
4. Decentralized control
5. CONCLUDING REMARKS
Conclusion

- synchronous and supervised composition of deterministic (max,+)-automata by coinduction
- Supervisory control: residuation theory
- Centralized supervision: coinductive formula for
- Application to decentralized supervisory control of (max,+)-automata: sufficient conditions for local control synthesis equals global control synthesis
- Controllability and Supremal controllable (max,+) series
- More work on control of (max,+)-automata is needed: control with partial observations, coordination control.