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Let T be a bounded linear operator on a separable Hilbert space H. A well-known
result of Sz.-Nagy and Foias says that the following two assertions are equivalent:

(a) I − TT ∗ ≥ 0 (i.e. T is a contraction) and T ∗n → 0 in the strong operator
topology;

(b) T ∗ is unitarily equivalent to the restriction of a backward shift of infinite
multiplicity to an invariant subspace.

In this talk we describe a generalization of this result for commuting n-tuples T =
(T1, . . . , Tn) of operators on H.

Let Ω be a domain in Cn and H a Hilbert space of analytic functions on Ω which
satisfies the following properties:

(1) H is invariant under the operators Zj of multiplications by the coordinate
functions (j = 1, . . . , n).

(2) The evaluation functionals are continuous on H. Consequently, there exists
a reproducing kernel K(z, w) for H.

(3) H contains all polynomials and they are dense in it.
(4) The function 1/K(z, w) is a polynomial (in z and w).

It is well known that for any orthonormal basis {ψk} ofH, the reproducing kernel
is given by

K(z, w) =
∑

k

ψk(z)ψk(w).

In view of (3), by applying the Gramm-Schmidt orthogonalization process, we may
construct a basis such that all ψk are polynomials (and, conversely, any polynomial
is a linear combination of a finite number of the ψk). We fix such a basis from
now on. For each m, set

fm(z, w) =
∑

k≥m

ψk(z)ψk(w)
K(z, w)

.

Then f0(z, w) ≡ 1 on Ω × Ω. By virtue of (4) and our choice of the basis, the
difference f0 − fm is a polynomial in z, w, for each m; thus fm themselves are, in
fact, polynomials.
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For any polynomial p(z, w) of z, w ∈ Cn, define

p(T, T ∗) =
∑

α,β

pαβTαT ∗β if p(z, w) =
∑

α,β

zαwβ .

(Up to the order of T and T ∗, this coincides with the “hereditary calculus” of
Agler [A1].) Hence, in particular, fm(T, T ∗) are defined for any commuting operator
tuple T , and f0(T, T ∗) = I. Our main result is the following.

Theorem. Let H, ψk, fm be as above and let T be a commuting n-tuple of opera-
tors on a separable Hilbert space H. Denote by Mz the operator n-tuple Z ⊗ I on
the Hilbert space tensor product H⊗H. Then the following are equivalent:

(a) 1
K (T, T ∗) ≥ 0 and 〈fm(T, T ∗)h, h〉 → 0 ∀h ∈ H.

(b) T ∗ is unitarily equivalent to a restriction of M∗
z to an invariant subspace.

Example. Let n = 1, Ω = D, the unit disc, and H = H2, the Hardy space. Then
K(z, w) = 1/(1−zw), so 1

K (T, T ∗) = I−TT ∗, and using the standard orthonormal
basis ψk(z) = zk we get fm(T, T ∗) = TmT ∗m. Further, the operator Mz on the
tensor product H2⊗H is just the forward shift of infinite multiplicity (its wandering
subspace is 1 ⊗ H). Thus we recover the result of Nagy-Foias mentioned in the
beginning. ¤

Other results covered by the last Theorem include the regular dilations of com-
muting n-tuples of operators (for H = the Hardy space on the polydisc Dn), the
k-hypercontractions of Agler [A2] (for H the Bergman space on D with respect
to the weight (1 − |z|2)k−2), and the “spherical hypercontractions” of Müller and
Vasilescu [MV] (for H a certain weighted Bergman space on the unit ball of Cn).

Sketch of the proof. (a) =⇒ (b). Denote DT = 1
K (T, T ∗)1/2. Define an operator

V : H → H⊗H by

(*) V h =
∑

k

ψk(z)⊗DT ψk(T )∗h.

We claim that V is well-defined (i.e. the sum converges) and is, in fact, an isometry
satisfying V T ∗ = M∗

z V . This clearly establishes (b).
To see that V is well-defined and an isometry, observe that for any j < m and

h ∈ H

‖
∑

j≤k<m

ψk(z)⊗DT ψk(T )∗h‖2 =
∑

j≤k<m

‖DT ψk(T )∗h‖2

=
∑

j≤k<m

〈ψk(T )D2
T ψk(T )∗h, h〉

= 〈(fj − fm)(T, T ∗)h, h〉.

As 〈fm(T, T ∗)h, h〉 → 0 by hypothesis, it follows that the partial sums of the right-
hand side of (*) form a Cauchy sequence, and letting j = 0 and m →∞ shows that
‖V h‖2 = 〈f0(T, T ∗)h, h〉 = ‖h‖2, i.e. V is an isometry.
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To prove that V T ∗ = M∗
z V , observe that ∀h, h′ ∈ H and any k

〈V h, ψk ⊗ h′〉 = 〈DT ψk(T )∗h, h′〉 = 〈h, ψk(T )DT h′〉,

so, by virtue of our choice of the basis ψk,

(†) 〈V h, f ⊗ h′〉 = 〈h, f(T )DT h′〉

for any polynomial f . Thus

〈V T ∗j h, ψk ⊗ h′〉 = 〈T ∗j h, ψk(T )DT h′〉 = 〈h, Tjψk(T )DT h′〉 =

= 〈h, (zjψk)(T )DT h′〉 = 〈V h, zjψk ⊗ h′〉 = 〈M∗
zj

V h, ψk ⊗ h′〉,

and the assertion follows.
(b) =⇒ (a). Let U : H → H⊗H be an isometry such that UT ∗ = M∗

z U . Then
a simple calculation shows that for any polynomial p(z, w) in z and w,

p(T, T ∗) = U∗p(Mz,M
∗
z )U = U∗(p(Z, Z∗)⊗ I)U

(here, as before, Z stands for the operator tuple of multiplication by the coordinate
functions on H). Thus it suffices to show that 1

K (Z, Z∗) ≥ 0 and 〈fm(Z, Z∗)h, h〉 →
0 ∀h ∈ H.

To see the former, recall that for any w ∈ Ω

Z∗j Kw = wjKw

where Kw(z) := K(z, w). It follows that for any polynomial p(z, w) and x, y ∈ Ω,

〈p(Z, Z∗)Ky,Kx〉 = p(x, y)〈Ky,Kx〉 = p(x, y)K(x, y),

so, in particular, 〈 1
K (Z,Z∗)Ky,Kx〉 = 1 ∀x, y ∈ Ω. As also 〈Ky,1〉〈1,Kx〉 =

1(y)1(x) = 1 ∀x, y ∈ Ω, it follows that

(**)
1
K

(Z, Z∗) = 〈·,1〉1

which is a positive operator.
For the latter assertion, observe that

(f0 − fm)(Z, Z∗)h =
∑

0≤k<m

ψk(Z) 1
K (Z,Z∗)ψk(Z)∗h

=
∑

0≤k<m

ψk(Z)(〈·,1〉1)ψk(Z)∗h by (**)

=
∑

0≤k<m

〈ψk(Z)∗h,1〉ψk

=
∑

0≤k<m

〈h, ψk〉ψk,
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and as ψk is an orthonormal basis and f0 ≡ 1, it follows that

(f0 − fm)(Z, Z∗)h = h− fm(Z, Z∗)h → h as m →∞,

i.e. even fm(Z, Z∗)h → 0 ∀h ∈ H. This completes the proof. ¤
We remark that in view of the boundedness of V , the formula (†) defines a (non-

multiplicative) “functional calculus” g 7→ g(T ) for functions g on Ω of the form
g(z) = K(z, z)−1/2f(z), f ∈ H (defining g(T )h (=“f(T )DT h”) := V ∗(f ⊗ h) one
has ‖g(T )‖ ≤ ‖V ‖‖f‖).

An example of function spaces H satisfying the axioms (1) – (4) are, for instance,
various weighted Bergman and Hardy spaces on bounded symmetric domains in Cn

(matrix balls etc.).
Under the additional hypothesis that the Taylor spectrum σ(T ) ⊂ Ω, it turns

out that the condition 〈fm(T, T ∗)h, h〉 → 0 can be omitted, and the axioms (3) and
(4) for H replaced by the weaker requirement that K(z, w) 6= 0 on Ω×Ω. For this
and further details we refer to the joint work [AEM].
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