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Abstract. An analogue of the star product, familiar from deformation quan-
tization, is studied in the setting of real bounded symmetric domains. The ana-
logue turns out to be a certain invariant operator, which one might call star
restriction, from functions on the complexification of the domain into functions
on the domain itself. In particular, we establish the usual (i.e. semiclassical)
asymptotic expansion of this star restriction, and further obtain a real-variable
analogue of a theorem of Arazy and Ørsted concerning the analogous expansion
for the Berezin transform.

1. Covariant Calculi on Complex and Real Symmetric Domains

Let D = G/K be an irreducible bounded symmetric domain in Cd in the Harish-
Chandra realization, with G the identity connected component of the group of all
biholomorphic self-maps of D and K the stabilizer of the origin; K can also be
realized as the automorphism group Aut(Z) of the Hermitian Jordan triple Z ≈ Cd

associated with D. For ν > p − 1, p being the genus of D, let H2
ν (D) denote

the standard weighted Bergman space on D, i.e. the subspace of all holomorphic
functions in L2(D, dµν), with

(1) dµν(z) = cν K(z, z)1−ν/p dz,

where dz stands for the Lebesgue measure, K(z, w) is the ordinary (unweighted)
Bergman kernel of D, and cν is a normalizing constant to make dµν a probability
measure. The space H2

ν (D) carries the unitary representation U (ν) of G given by

(2) U (ν)
g f(z) = f(g−1(z)) · Jg−1(z)ν/p, g ∈ G, f ∈ H2

ν (D),

where Jg denotes the complex Jacobian of the mapping g. (In general, if ν/p is
not an integer, then U (ν) is only a projective representation due to the ambiguity
in the choice of the power Jg−1(z)ν/p.) This situation will henceforth be called the
complex bounded case.

In addition to bounded symmetric domains, we will also consider the complex flat
case of a Hermitian vector space D = Z ≈ Cd, with D = G/K for G the group of
all orientation-preserving rigid motions of Z, and K = U(Z) ≈ Ud(C) the stabilizer
of the origin in G; the spaces H2

ν (Z) will then be the Segal-Bargmann spaces of all
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entire functions which are square-integrable with respect to the Gaussian measure

(3) dµν(z) =
(ν

π

)d

e−ν‖z‖2 dz,

and U (ν) will be the usual Schrödinger representation. When treated simultane-
ously, both settings will be called the complex case.

By a covariant operator calculus, or covariant quantization, on D one under-
stands a mapping A : f 7→ Af from functions on D into operators on H2

ν (D) which
is G-covariant in the sense that

(4) Af◦g = U (ν)
g

∗Af U (ν)
g , ∀g ∈ G.

In most cases, such calculi can be built by the recipe

(5) Af =
∫

D

f(ζ) Aζ dµ0(ζ)

where dµ0 is a G-invariant measure on D, and Aζ is a family of operators in H2
ν (D)

labelled by ζ ∈ D such that

(6) Ag(ζ) = U (ν)
g AζU

(ν)
g

∗, ∀g ∈ G.

(One calls such a family a covariant operator field on D. One also usually normal-
izes the measure dµ0 so that A1 is the identity operator.) Note that in view of
the transitivity of the action of G on D, any covariant operator field is uniquely
determined by its value A0 at the origin ζ = 0.

The best known examples of such calculi are the Toeplitz calculus T and the
Weyl calculus W, corresponding to T0 = 〈·,1〉1 (the projection onto the constants)
andW0f(z) = f(−z) (the reflection operator), respectively [2]. For the complex flat
case, W is just the well-known Weyl calculus from the theory of pseudodifferential
operators, see e.g. [12].

Given a covariant operator calculus A, the associated star product ∗ on functions
on D is defined by

(7) Af∗g = AfAg.

While f ∗ g is a well-defined object for some calculi (e.g. for A = W, at least
on Cd and rank one symmetric domains, see [4]), in most cases (e.g. for A = T ,
the Toeplitz calculus), it makes sense only for very special functions f, g and (7)
is then usually understood as an equality of asymptotic expansions as the Wallach
parameter ν tends to infinity. For instance, for A = T , it was shown in [6] that for
any f, g ∈ C∞(D) with compact support,

(8) ‖TfTg − TPN
j=0 ν−jCj(f,g)‖ = O(ν−N−1)

as ν →∞, for some bilinear differential operators Cj (not depending on f, g and ν).
(The assumption of compact support can be relaxed, cf. [9].) We can thus define
f ∗ g as the formal power series

(9) f ∗ g :=
∞∑

j=0

ν−j Cj(f, g).

Interpreting ν as the reciprocal of the Planck constant, we recover the Berezin-
Toeplitz star product, which is of central importance in quantization on Kähler
manifolds [5].
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In this paper we study covariant functional calculi and asymptotic expansions
for the more general real bounded symmetric domains which yield, up to a few
exceptions, all Riemannian symmetric spaces of non-compact type. In order to
introduce real symmetric domains, suppose ZC is an irreducible Hermitian Jordan
triple endowed with a (conjugate-linear) involution

(10) z 7→ z#

which preserves the Jordan triple product and therefore the unit ball DC of ZC,
i.e. (DC)# = DC. Defining the real forms

(11)
Z := {z ∈ ZC : z# = z}
D := {z ∈ DC : z# = z} = Z ∩DC,

we obtain a commuting diagram

Z ⊂ ZC

∪ ∪
D ⊂ DC.

For the groups GC := Aut(DC), KC := Aut(ZC) the given involution (10) induces
conjugations

(12)
g#(z) := (g(z#))# (g ∈ GC, z ∈ DC)

k#z := (kz#)# (k ∈ KC, z ∈ ZC)

with fixed point groups

(13)
G := {g ∈ GC : g(z#) = g(z)#}
K := {k ∈ KC : kz# = (kz)#} = G ∩KC

acting on D and Z, respectively. Again, we obtain a commuting diagram

G ⊂ GC

∪ ∪
K ⊂ KC.

In this situation Z is an irreducible real Jordan triple, G is a reductive Lie group
(it may have a nontrivial center), and

(14) D = G/K

is an irreducible real bounded symmetric domain. This setting will be called the
real bounded case.

In this situation a covariant quantization on D is a map f 7→ Af from C∞(D)
into H2

ν (DC) such that

(15) Af◦g = U (ν)
g

∗Af

for all g ∈ G. The counterpart of the star product, associated to a covariant
quantization A on D and a covariant quantization AC on DC, is the star restriction

# : C∞(DC) → C∞(D)

defined by

(16) A#F = AC
F I,

where

(17) I(z) = K(ν)(z, z#)1/2
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is the unique G-invariant holomorphic function on DC satisfying I(0) = 1. In ad-
dition, we will again consider the above construction also in the case of the Segal-
Bargmann spaces for an involutive Hermitian vector space ZC ≈ Cd, with the
ordinary complex conjugation as the involution z 7→ z#; thus D = Z ≈ Rd. This
setting will be called the real flat case, and both situations together are referred to
as the real case.

In most cases, calculi satisfying (15) can again be constructed by the recipe

(18) Af =
∫

D

f(ζ)Aζ dµ0(ζ),

where dµ0 is the G-invariant measure in D, and Aζ is a family of holomorphic func-
tions (not necessarily belonging to H2

ν (DC)) labelled by ζ ∈ D which is covariant
in the sense that

(19) Ag(ζ) = U (ν)
g Aζ , ∀g ∈ G, ζ ∈ D.

As before, one usually normalizes dµ0 so thatA1 = I. The prime example is now the
real Toeplitz calculus A = T corresponding to A0 = 1 (the function constant one)
[7], [20]; there is also a notion of real Weyl calculus, but it is more complicated [3].

Our first main result in this paper is the existence of the star restriction —
i.e. an analogue of the asymptotic expansion (9) of the star product — for the real
Toeplitz calculus.

Theorem. There exist G-invariant differential operators Ln from C∞(DC) into
C∞(D) such that, in an appropriate sense (cf. Definition 2 below),

(20) #F =
∞∑

n=0

ν−n LnF,

where # is the star restriction operator associated to the real Toeplitz calculus T
on D and the usual Toeplitz calculus T C on DC.

We also show that the operators Ln have a rather special form, and give a recipe
for computing them via a kind of Harish-Chandra isomorphism; see Sections 3–4.
Here a crucial role is played by the fact that # enjoys the factorization property

#(hF ) = h (#F )

for any holomorphic function h on DC.
Before describing our second main result, we show that the complex case of

operator calculi on a complex bounded symmetric domain D from the beginning of
this section can be recovered within the more general real framework. Define the
underlying “real” domain

(21) DR := {(z, z) : z ∈ D} ⊂ ZR := {(z, z) : z ∈ Z},
where the bar indicates that we consider the “conjugate” complex structure for the
second component. The complexifications

(22)
DC

R = {(z, w) : z, w ∈ D} = D ×D,

ZC
R = {(z, w) : z, w ∈ Z} = Z × Z

are endowed with the flip involution

(23) (z, w)# := (w, z)
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having fixed points DR and ZR, respectively. This can be summarized in the
commuting diagram

Z ≈ ZR ⊂ ZC
R = Z × Z

∪ ∪ ∪
D ≈ DR ⊂ DC

R = D ×D,

where ≈ denotes the “diagonal embedding” z 7→ (z, z). Putting

(24)
g(z) := g(z) (g ∈ G, z ∈ D),

kz := kz (k ∈ K, z ∈ Z)

we obtain groups

(25)
GR := {(g, g) : g ∈ G},
KR := {(k, k) : k ∈ K}

acting “diagonally” on DR and ZR, respectively, thus “forgetting” the complex
structure. The flip involution on

(26)
GC

R := {(g1, g2) : g1, g2 ∈ G} = G×G,

KC
R := {(k1, k2) : k1, k2 ∈ K} = K ×K

has fixed points GR and KR, respectively. This can be summarized in the com-
muting diagram

G ≈ GR ⊂ GC
R = G×G

∪ ∪ ∪
K ≈ KR ⊂ KC

R = K ×K,

where ≈ denotes the “diagonal” embedding on the group level.
Since H2

ν (D) is a reproducing kernel space (with reproducing kernel K(ν)(x, y) =
[K(x, y)/cp]ν/p), any bounded linear operator on H2

ν (D) is automatically an integral
operator: namely,

(27) Tf(z) =
∫

D

f(w) T̃ (z, w) dµν(w),

with

(28) T̃ (z, w) = (T ∗K(ν)(·, z))(w) = 〈TK(ν)(·, w), K(ν)(·, z)〉.
This follows from the identity Tf(z) = 〈Tf, K(ν)(·, z)〉 = 〈f, T ∗K(ν)(·, z)〉. In this
way, we may identify operators on H2

ν (D) with (some) functions on D ×D, holo-
morphic in the first and anti-holomorphic in the second variable; that is, with
holomorphic functions on D × D. Upon this identification, the covariant quanti-
zation rule f 7→ Af becomes simply a (densely defined) operator f 7→ Ãf from
C∞(DR) into the Hilbert space

H2
ν (DC

R) ≈ H2
ν (D)⊗H2

ν (D)

corresponding to the Hilbert-Schmidt operators, and the covariance condition (4)
means that Ã is equivariant under GR ≈ G, i.e. intertwines the G-action on the
former with the diagonal G-action on the latter:

(29) Ãf◦g = (U (ν)
g

∗ ⊗ U
(ν)
g

∗) Ãf ,

in analogy to (15). Similarly, upon taking AC = A⊗A, and identifying pairs f, g

of functions on D with the function F (x, y) = f(x)g(y) on D × D, (16) reduces
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just to (7). Note, however, that in the complex case the complexification (22) is
not irreducible, but of “product type”. When interpreted within the real setting,
the complex case will often have a subscript R in the notation (cf. (21)).

It turns out that the asymptotic expansion (20) is closely related to another
important concept, namely the Berezin transform Bν (see Section 5 below for the
various definitions and notations). In the complex case, Arazy and Ørsted [1]
showed that there is an asymptotic expansion

(30) BR,ν =
∑
m

Km(∂, ∂)
(ν)m

,

where Km are certain K-invariant polynomials, and (ν)m are the multi-variable
Pochhammer symbols of ν, labelled by the signatures m from the Peter-Weyl de-
composition. Our second main result in this paper is an analogue of this formula
for the Berezin transform Bν on a general irreducible real bounded symmetric do-
main D.

Theorem. The real Berezin transform has an asymptotic expansion, as ν → +∞,

(31) Bν =
∑
m

Φm
C

{ν}m
where Φm

C are certain G-invariant linear differential operators on D and {ν}m are
certain “Pochhammer” symbols, with m running over all partitions of length r,
given by a completely explicit formula (with the exception of domains of type (A);
cf. Theorem 14).

The proof of (20) is given in Section 3, after reviewing the necessary background
material in Section 2. The proof of (31) appears in Section 5, after establishing
some facts about G-invariant operators from C∞(DC) into C∞(D) in Section 4.
The last Section 6 contains some concluding remarks and open problems.

Acknowledgement. Much of this work was done while the authors were visiting
the Erwin Schrödinger Institute for Mathematical Physics in Vienna; the support
of ESI is gratefully acknowledged.

2. Bounded symmetric domains of complex and real type

In order to describe the fine structure of real bounded symmetric domains,
we start with an irreducible Euclidean Jordan algebra X [11] which is uniquely
determined (up to isomorphism) by two numerical invariants: the rank r and the
characteristic multiplicity a, such that

(32) dX := dimR X = r +
r(r − 1)

2
a.

The associated Gindikin-Koecher gamma-function is given by

(33) Γ(λ) = (2π)r(r−1)a/4
r∏

j=1

Γ
(
λj − j − 1

2
a
)
.

Consider first the real case. Here Z is a real form of an irreducible involutive
Hermitian Jordan triple ZC. Let e = e# ∈ Z be a maximal tripotent and consider
the Peirce decomposition [11]

(34) Z = U ⊕ V, U = Z1(e), V = Z1/2(e).
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Then U is a semi-simple, not necessarily Euclidean, real Jordan algebra with unit
element e, which can be further decomposed into the ±-eigenspaces

(35) X = {x ∈ U : x∗ = x}, Y = {y ∈ U : y∗ = −y}
under the Jordan involution z∗ = {eze} on ZC. It follows that

(36) Z = X ⊕ Y ⊕ V.

One can show that X is an irreducible Euclidean Jordan algebra with unit element e.
Considered as a (maximal) tripotent in ZC, e induces also a “complex” Peirce
decomposition

(37) ZC = UC ⊕ V C

and we obtain another irreducible Euclidean Jordan algebra

(38) XC := {x ∈ UC : x∗ = x}
which contains X as a unital Jordan subalgebra and has the same complexification
UC as U = X ⊕ Y . This can be summarized in the commuting diagram

(39)

Z ⊂ ZC

∪ ∪
X ⊕ Y ⊂ XC

C

∪ ∪
X ⊂ XC.

For the classification, one can distinguish three types, which reflect the different
root systems for D = G/K. The domains of type (A) are realized as the unit ball
D of an irreducible Euclidean Jordan algebra X. In this case we have Z = X and
Y = V = {0}. Since X = XC, it follows that r = rC, a = aC. The following cases
arise

a = 1, 2, 4 : GLr(K)/Ur(K) ⊂ Kr×r
Herm

for K = R,C,H (this is really the unbounded model),

a = 8 : E
(−26)
6 × U1,1(R)/F4 ⊂ O3×3

Herm, r = 3

a = d− 2 : U1,d−1(R)/Ud−1(R) ⊂ Rd, r = 2

(the “algebra” real form of the complex spin factor).

For the remaining two types we have Z 6= X 6= XC. The type (D/B) is charac-
terized by the conditions rC = r, aC = 2a. Up to one exception (root type (D2),
which will not be considered here) it comprises the following cases

a = 1 : Ur,r+b(R)/Ur(R)× Ur+b(R) ⊂ Rr×(r+b)

a = 2 : O2r+ε(C)/U2r+ε(R) ⊂ R(2r+ε)×(2r+ε)
asym , ε = 0, 1

a = 3 : U2,2(H)/U2(H)× U2(H) ⊂ (H⊕H)1×2, r = 2

a = 4 : GL4(H)/U4(H) ⊂ (H⊕H)3×3
Herm, r = 3.

Here H⊕H denotes the split Cayley algebra.
Finally, the type (C/BC) is characterized by the conditions rC = 2r, aC = a/2.

(The latter equality makes sense only if r > 1; for r = 1 we actually take it as the
definition of a.) It comprises the following cases:

a = 2 : Sp2r(C)/Ur(H) ⊂ Hr×r
aHerm
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a = 4 : Ur,r+b(H)/Ur(H)× Ur+b(H) ⊂ Hr×(r+b)

a = 12 : F
(−20)
4 /SO(9) ⊂ O1×2, r = 1

a = 2d− 4 : U1,d(R)/Ud(R) ⊂ Rd, r = 1

(the “triple” real form of the complex spin factor).

Continuing with the real case let G = NAK be the Iwasawa decomposition;
for g ∈ G we denote by A(g) ∈ a the (unique) element of the Lie algebra a of A
for which g ∈ N exp A(g)K. Let further M stand for the centralizer of A in K.
The conical functions eλ,b on D, where λ ∈ a∗⊗C (the complexification of the dual
a∗ of a) and b ∈ K/M , are defined by

(40) eλ,b(g(0)) = e〈λ+ρ,A(b−1g)〉

where ρ denotes the half-sum of positive roots for D ≈ G/K, explicitly given by

(41) ρj =
a

4
(2j − r − 1) +

dY + dV /2
2r

(1 ≤ j ≤ r).

(Here dY and dV are the real dimensions of Y and V , respectively.) The conical
functions are joint eigenfunctions of all invariant differential operators. Namely,
if L is a linear differential operator on D invariant under G in the sense that

(42) L(f ◦ g) = (Lf) ◦ g ∀g ∈ G,

then

(43) Leλ,b = L̃(λ)eλ,b ∀λ, b,

for some L̃(λ) ∈ C (independent of b). The mapping L 7→ L̃ is an isomorphism
of the algebra of all invariant differential operators on D onto the algebra of all
polynomials on a invariant under the action of the Weyl group (the Harish-Chandra
isomorphism). This assertion remains in force also for more general operators than
the differential ones; in particular, if L is any G-invariant operator on some function
space containing all the eλ,b, then (43) still holds.

Important examples of such operators are the link transforms associated to co-
variant quantizations on D. For any covariant quantization A on D, its adjoint A∗
acting from H2

ν (DC) into functions on D is given by

A∗f(x) = 〈f,Ax〉ν ,

and the composition A∗A is a G-invariant operator on D. For the real Toeplitz
calculus A = T , this link transform is known as the (real) Berezin transform Bν ,
and its eigenvalues T̃ ∗T (λ) =: bν(λ) have been computed in [7], [20], [3], [26]:

(44) bν(λ) =
Γ(νR + λ + ρ− dY +dV /2

r )Γ(νR − λ + ρ− dY +dV /2
r )

Γ(νR)Γ(νR − dY +dV /2
r )

.

where

(45) νR :=
νrC
2r

.

In the flat case, the role of the conical functions is played by the ordinary expo-
nentials

(46) ea(x) := e〈a,x〉, x ∈ Z = Rd, a ∈ ZC = Cd;
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invariant differential operators are just polynomials in the Laplacian, and

(47) ∆ea = 〈a, a〉ea.

Finally, the Berezin transforms turn out to be just the familiar heat operators

(48) Bν = e∆/2ν ,

so that

(49) bν(a) = e〈a,a〉/2ν .

This concludes our description of the real case. For the complex case, the situation
is similar. We start with the (complex) Peirce decomposition

(50) Z = U ⊕ V

of an irreducible Hermitian Jordan triple Z under a maximal tripotent e ∈ Z. Then

(51) X := {x ∈ U : x∗ = x}
is an irreducible Euclidean Jordan algebra with unit element e and complexification
XC = U . Putting Y := iX, we have

(52) Z = XC ⊕ V = X ⊕ Y ⊕ V.

The doubling process yields a commuting diagram

(53)

Z ≈ ZR ⊂ ZC
R = Z × Z

∪ ∪ ∪
XC ≈ XC

R ⊂ XC
C = XC ×X

C
,

∪ ∪ ∪
X ≈ XR ⊂ XC := X ×X

where ≈ denotes diagonal embedding and

(54) XC := {(x, y) : x, y ∈ X} = X ×X

is a Euclidean Jordan algebra of product type, with unit element (e, e), which has
the same complexification as XC

R := {(x + iy, x + iy) : x, y ∈ X}. It follows that
rC = 2r, aC = a. For the classification the following cases arise:

a = 1 : Sp2r(R)/Ur(C) ⊂ Cr×r
sym

a = 2 : Ur,r+b(C)/Ur(C)× Ur+b(C) ⊂ Cr×(r+b)

a = 4 : O2r+ε(H)/U2r+ε(C) ⊂ C(2r+ε)×(2r+ε)
asym , ε = 0, 1

a = 6 : E
(−14)
6 /T× U10(R) ⊂ (OC)1×2, r = 2

a = 8 : E
(−25)
7 /T× E6 ⊂ (O3×3

Herm)C, r = 3

a = d− 2 : U2,d(R)/T× Ud(R) ⊂ Cd, r = 2

(complex spin factor).

The group O2r+ε(H) is usually denoted by SO∗(4r + 2ε).
Continuing with the complex case, let GR = NRARKR be the Iwasawa decom-

position of GR ≈ G. For g ∈ GR we denote by A(g) ∈ aR the (unique) element of
the Lie algebra aR of AR for which g ∈ NR exp A(g)KR. Let further MR stand for
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the centralizer of AR in KR. The conical functions eλ,b
R on DR, where λ ∈ aR

∗⊗C
(the complexification of the dual of aR) and b ∈ KR/MR, are defined by

(55) eλ,b
R (g(0)) = e〈λ+ρR,A(b−1g)〉

where ρR is the half-sum of positive roots for DR ≈ GR/KR, explicitly given by

(56) (ρR)j =
a

4
(2j − r − 1) +

d

4r
(1 ≤ j ≤ r).

The conical functions are joint eigenfunctions of all invariant differential operators.
Namely, if L is a linear differential operator on DR invariant under GR in the sense
that

(57) L(f ◦ g) = (Lf) ◦ g ∀g ∈ G,

then

(58) Leλ,b
R = L̃(λ)eλ,b

R ∀λ, b,

for some L̃(λ) ∈ C (independent of b). The mapping L 7→ L̃ is an isomorphism of
the algebra of all invariant differential operators on DR onto the algebra of all poly-
nomials on aR invariant under the action of the Weyl group (the Harish-Chandra
isomorphism). This assertion remains in force also for more general operators than
the differential ones; in particular, if L is any GR-invariant operator on some func-
tion space containing all the eλ,b

R , then (58) still holds.
Important examples of such operators are the link transforms associated to co-

variant quantizations on D. Namely, for any covariant quantization A : f 7→ Af

from functions on D into operators on H2
ν (D), we can consider its formal adjoint

A∗ with respect to the L2(DR, dµ0) product of functions and the Hilbert-Schmidt
inner product of operators. (See [10] for the discussion of the continuity etc. of A
and A∗.) A short computation [2] reveals that A∗ is given by

(59) A∗T (z) = tr(TA∗z),
and the GR-invariance of A translates into the property

(60) A∗(U (ν)
g

∗TU (ν)
g ) = (A∗T ) ◦ g.

(Here the A∗z in (59) denotes the ordinary Hilbert space adjoint of the operator
Az on H2

ν (D).) The composition A∗A is therefore a GR-invariant operator on
functions on DR, called the link transform corresponding to A:

(61) A∗Af◦g = (A∗Af ) ◦ g, ∀g ∈ GR.

By (58), we thus have

(62) A∗Aeλ,b
R

= Ã∗A(λ)eλ,b
R ,

for some Weyl-group-invariant function Ã∗A on aC
R.

For the particular case of A = T , the Toeplitz calculus, the link transform T ∗T
is known as the Berezin transform BR,ν , and the function T̃ ∗T =: bν

R has been
computed in [24]:

(63) bν
R(λ) =

Γ(ν + λ + ρR − d/r)Γ(ν − λ + ρR − d/r)
Γ(ν)Γ(ν − d/r)

.

This is analogous to (44), since νR = ν and dV = 1
2 dVR

.
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In the complex flat case, the role of the conical functions is played by the ordinary
exponentials

(64) ea,b
R (z) := e〈a,z〉+〈z,b〉, z, a, b ∈ Z = Cd,

invariant differential operators are just polynomials in the Laplacian, and

(65) ∆ea,b
R = 4〈a, b〉ea,b

R ,

Finally, the Berezin transforms turn out to be just the familiar heat operators

(66) BR,ν = e∆/4ν ,

so that

(67) bν
R(a, b) = e〈a,b〉/ν .

We conclude this section by reviewing some facts about Bergman kernels on the
complex domains. Let D = G/K be an irreducible complex bounded symmetric
domain in Z ∼= Cd, with rank r and genus p. Fixing a Jordan frame e1, . . . , er,
any element z ∈ Z has a polar decomposition

(68) z = k
∑

j

tjej , k ∈ K, t1 ≥ t2 ≥ · · · ≥ tr ≥ 0.

The numbers tj are uniquely determined by z, and z ∈ D if and only if t1 < 1.
The ordinary (unweighted) Bergman kernel K(x, y) of D has the form

(69) K(x, y) = cp h(x, y)−p, x, y ∈ D,

where h(x, y), the Jordan determinant, is an irreducible polynomial, holomorphic
in x and y, which is K-invariant in the sense that h(k(x), k(y)) = h(x, y) ∀k ∈ K,
and is uniquely determined by the property

(70) h(z, z) =
∏

j

(1− t2j )

for z of the form (68). The weighted Bergman kernels with respect to the measures
(1) are given by

(71) K(ν)(x, y) = h(x, y)−ν .

For a Hermitian vector space Z ≈ Cd the reproducing kernels of the spaces
H2

ν (Z) for the Gaussians (3) are

(72) K(ν)(x, y) = eν〈x,y〉, x, y ∈ Cd.

The Fock inner product on the space P(Z) of all holomorphic polynomials on a
Hermitian vector space Z is defined as

(73) 〈p, q〉F = π−d

∫

Z

p(z) q(z) e−‖z‖
2
dz = (∂qp)(0).

Here ∂q := q∗(∂), q∗(z) := q(z#), is the constant coefficient (holomorphic) dif-
ferential operator on Z induced by q ∈ P(Z) via the scalar product (this depends
conjugate-linearly on q). As a special case let Z be an irreducible Hermitian Jordan
triple of rank r, endowed with a normalized inner product which is invariant under
the Jordan triple automorphism group K = Aut(Z). Under the action p 7→ p ◦ k,
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k ∈ K, of the compact group K the space P(Z) has a Peter-Weyl decomposition
into irreducible orthogonal components

(74) P(Z) =
⊕
m

Pm(Z),

where the summation extends over all signatures or partitions, i.e. r-tuples m =
(m1, . . . ,mr) of integers satisfying m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. The polynomials in
Pm(Z) are homogeneous of degree |m| := m1 + · · · + mr. Each Pm(Z), being a
finite-dimensional space, has automatically bounded point evaluations at all points
z ∈ Z, and thus Pm(Z) has a reproducing kernel Km(z, w), z, w ∈ Z. The Faraut-
Korányi formula asserts that the reproducing kernels K(ν)(z, w) of H2

ν (D) can be
expressed in terms of these Km by

(75) h(z, w)−ν =
∑
m

(ν)mKm(z, w).

Here (ν)m are the generalized Pochhammer symbols

(76) (ν)m := Γ(ν + m)/Γ(ν) =
r∏

j=1

(
ν − j − 1

2
a
)

mj

,

where (ν)k = ν(ν + 1) . . . (ν + k − 1) stands for the ordinary Pochhammer symbol.
For the complex flat case Z ≈ Cd, the Peter-Weyl decomposition under the

unitary group K = U(Z) ≈ Ud(C) reduces to the homogeneous decomposition

Pm(Z) = {homogeneous polynomials of degree m},
the reproducing kernels are given by Km(z, w) = 〈z, w〉m/m!, and the Faraut-
Korányi formula (75) holds if we take (ν)m := νm. Thus the flat case resembles
the rank 1 situation.

3. Existence of the asymptotic expansion

Throughout the rest of this paper, we will be dealing only with the Toeplitz
calculus T C on a complex bounded symmetric domain DC, and the real Toeplitz
calculus T on the corresponding real domain D. Recall that these are given by

(77)
T C

F =
∫

DC

F (w) T C
w dµC

0 (w),

Tf =
∫

D

f(ζ) Tζ dµ0(ζ),

where T C
w and Tζ are operators on H2

ν (DC) and elements of H2
ν (DC), respectively,

determined uniquely by

(78)
T C

g(w) = U (ν)
g T C

w U (ν)
g

∗, ∀g ∈ GC,

Tg(ζ) = U (ν)
g Tζ , ∀g ∈ G,

and

(79)
T C

0 = 〈·,1〉1,

T0 = 1,
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respectively. Moreover

(80)
dµC

0 (w) = cCν h(w, w)−p dw,

dµ0(x) = cν h(x, x)−p/2 dx

denote the GC-invariant measure on DC and the G-invariant measure on D, re-
spectively, normalized so that T C

1 is the identity operator and T1 = I. (Thus dµC
0

and dµ0 also depend on ν, though this is not reflected in the notation.)
For the complex Berezin transform BC

ν = T C∗T C, the following proposition is
well-known; the proof for the real case is quite analogous, but we include both here
for the sake of completeness.

Proposition 1. Let F ∈ C∞(DC) and f ∈ C∞(D) be such that BC
ν F and Bνf ,

respectively, are defined for some ν = ν0. Then they exist also for all ν > ν0, and as
ν → +∞, they have asymptotic expansions1

(81)

BC
ν F (z) ≈

∞∑
n=0

ν−n QnF (z),

Bνf(x) ≈
∞∑

n=0

ν−n Rnf(x),

for some GC-invariant linear differential operators Qn on DC and G-invariant
linear differential operators Rn on D, respectively; further, Q0 and R0 are the
identity operators.

Proof. From (78) and (79) one computes that

(82)
T C

w = h(w, w)ν 〈·, h(·, w)−ν〉h(·, w)−ν ,

Tx = h(x, x)ν/2 h(·, x)−ν .

The Berezin transforms are thus given by

(83)

BC
ν F (z) =

∫

DC

F (w) tr(T C
w T C

z
∗) dµC

0 (w)

=
∫

DC

F (w)
h(w, w)νh(z, z)ν

|h(z, w)|2ν
dµC

0 (w)

= cCν

∫

DC

F (w)
h(z, z)ν

|h(z, w)|2ν
h(w, w)ν−p dw,

Bνf(x) =
∫

D

f(ζ) 〈Tζ , Tx〉ν dµ0(ζ)

=
∫

D

f(ζ)
h(x, x)ν/2h(ζ, ζ)ν/2

h(x, ζ)ν
dµ0(ζ)

= cν

∫

D

f(ζ)
h(x, x)ν/2

h(x, ζ)ν
h(ζ, ζ)(ν−p)/2 dζ.

We need to prove that these have asymptotic expansions (81) as ν → +∞. Since
everything is GC- respectively G-invariant, it is enough to prove this for z = 0

1Sometimes we will write simply “=” instead of “≈” in the sequel.
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and x = 0, respectively. Since h(·, 0) = 1, we thus need to find the behaviour as
ν → +∞ of the integrals

(84)
BC

ν F (0) = cCν

∫

DC

F (w) h(w,w)ν−p dw,

Bνf(0) = cν

∫

D

f(ζ) h(ζ, ζ)(ν−p)/2 dζ.

To this end, let us recall the familiar stationary phase method for the asymptotic
expansions as ν → +∞ of integrals of the form

J (ν) =
∫

Ω

f(x) eνS(x) dx

with smooth complex-valued functions f, S on a domain Ω ⊂ RN . Namely, assume
that the following hypotheses are fulfilled:

• f is compactly supported;
• ReS(x) ≤ 0, with equality if and only if x = x0;
• x0 is a critical point of S, i.e. S′(x0) = 0; and
• this critical point is nondegenerate, i.e. det S′′(x0) 6= 0.

Then as ν → +∞,

J (ν) ≈ ν−N/2
∞∑

n=0

ν−n Jnf(x0),

where Jn are some linear differential operators whose coefficients involve only S
and its derivatives; in particular,

J0f(x0) = (2π)N/2|det S′′(x0)|−1/2 f(x0).

See, for instance, [15], Section 7.7. Further, the hypothesis of compact support of f
can be replaced by the two requirements that

• the integral J (ν) exists for some ν = ν0; and
• ReS is bounded away from zero at the boundary (and, if Ω is unbounded,

at infinity), in the sense that

xn ∈ Ω, ReS(xn) → 0 =⇒ xn → x0.

Let us now apply this to the integrals (84). The phase function S is in both
cases given by

S(z) = log h(z, z).

(The S for the real case is just the restriction to D of the S from the complex case.)
Thus S is real-valued, and from (70) it is immediate that it has a strict global
maximum S(0) = 0 at the origin and tends to −∞ at the boundary. Thus all the
hypothesis of the stationary phase method are satisfied, and so

(85)

∫

DC

F (w) h(w, w)ν−p dw ≈ ν−d
∞∑

n=0

ν−n JC
n F (0),

∫

D

f(ζ) h(ζ, ζ)(ν−p)/2 dζ ≈ ν−d/2
∞∑

n=0

ν−n Jnf(0),

for some differential operators JC
n and Jn on ZC and Z, respectively, with JC

0 F (0) =
sC
0 F (0) and J0f(0) = s0f(0) for some nonzero numbers sC

0 and s0. Applying this,
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in particular, to F = 1 and f = 1, we get in view of the normalizations BC
ν 1 = 1

and Bν1 = 1

(86)

1/cCν ≈ ν−d
∞∑

n=0

ν−n JC
n 1(0),

1/cν ≈ ν−d/2
∞∑

n=0

ν−n Jn1(0),

with JC
0 1(0) = sC

0 and J01(0) = s0. Combining (85) and (86), the desired asymp-
totics for the integrals (84) follows, completing the proof of the proposition. ¤

Recall now that the “star restriction” operator corresponding to T C and T has
been (so far, formally) defined by

(87) T#F = T C
F I, F ∈ C∞(DC),

where I(z) = h(z, z#)−ν/2. Applying T ∗ to both sides yields

(88) Bν#F = T ∗T C
F I.

We have seen in the last proposition that Bν has the asymptotic expansion (81)
as ν → +∞. This prompts the following definition, giving a rigorous sense to the
equation (87).

Definition 2. By the star restriction #F of F ∈ C∞(DC) we mean the formal
power series

(89) #F (z) =
∞∑

n=0

ν−n LnF (z)

in 1
ν , such that T ∗T C

F I has the asymptotic expansion

T ∗T C
F I(x) ≈

( ∞∑
n=0

ν−n Rn

)( ∞∑
n=0

ν−n Ln

)
F (x)

≈
∞∑

n=0

ν−n
n∑

j=0

RjLn−jF (x)(90)

(obtained by multiplying the asymptotic expansion for Bν and the one from (89))
as ν → +∞, for each x ∈ D. ¤

The main result of this section is the following.

Theorem 3. The formal power series (89) exists and is unique; further, the Ln

are G-invariant differential operators from C∞(DC) into C∞(D).

Proof. It is enough to show that T ∗T C
F I has an asymptotic expansion

(91) T ∗T C
F (x) ≈

∞∑
n=0

ν−n MnF (x)

as ν → +∞, for some differential operators Mn. Indeed, since R0 = I, one can
then define the Ln recursively by

Ln = Mn −
n∑

i=1

RiLn−j .
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Further, since the left-hand side of (91) is G-invariant, so will be the operators Mn,
and, hence (since Rj are G-invariant) also Ln, and we will be done.

Owing to G-invariance, it suffices to establish (91) for x = 0. Using the formulas
(77) and (82), we have

T ∗T C
F I(0) = 〈T C

F I, T0〉ν = 〈T C
F I,1〉ν =

∫

DC

F (w) 〈T C
w I,1〉ν dµC

0 (w)

=
∫

DC

F (w) h(w, w)ν I(w)1(w) dµC
0 (w)

= cCν

∫

DC

F (w) h(w, w)ν−p h(w, w#)−ν/2 dw.(92)

The integral is again of the form susceptible to the stationary phase method, this
time with the complex-valued phase function

S(z) = log h(z, z)− 1
2

log h(z, z#).

We claim that the hypotheses of the stationary phase method are again satisfied,
namely, that z = 0 is a nondegenerate critical point of S, and that Re S → −∞ at
the boundary. Indeed, the Schwarz inequality

|K(z, w)| ≤ K(z, z)1/2K(w,w)1/2

for the Bergman kernel K(z, w) = h(z, w)−p implies that

|h(z, w)| ≥ h(z, z)1/2h(w,w)1/2.

Taking z = w#, we get |h(z, z#)| ≥ h(z, z) since h(z#, z#) = h(z, z). Consequently,

Re S(z) = log
h(z, z)

|h(z, z#)|1/2
≤ 1

2
log h(z, z),

implying, by (70), that Re S(z) ≤ 0 with equality only for z = 0, and that Re S →
−∞ at the boundary. It remains to show that z = 0 is a nondegenerate critical
point. To this end, let us look at the Taylor expansion of h(z, w) at z = w = 0:
by the Faraut-Korányi formula (75),

h(z, w) = 1− 〈z, w〉+ O(‖z‖2‖w‖2).
Hence

S(z) = −〈z, z〉+
1
2
〈z, z#〉+ O(‖z‖4).

It follows that S′(0) = 0, while

∂2S(0)
∂zj∂zk

= 0,
∂2S(0)
∂zj∂zk

= −δjk,

so that

det
[
∂∂S ∂∂S

∂∂S ∂∂S

]
= det

[
0 −I
−I ∗

]
= 1,

so S′′(0) is nondegenerate. By the stationary phase method, we thus get
∫

DC

F (w) h(w, w)ν−ph(w, w#)−ν/2 dw ≈ ν−d
∞∑

n=0

ν−n J̃nF (0),
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for some differential operators J̃n on ZC. Combining this with the asymptotic
expansion (86) for cCν and feeding these into (92), the expansion (91) at x = 0
follows, thus completing the proof of the theorem. ¤

Remark 4. It is not difficult to see that, in fact, J̃0F (0) = sC
0 F (0), so M0F (0) =

F (0) and L0F (0) = F (0); consequently, by G-invariance, the leading term L0 in
(89) is again the identity operator. ¤

The asymptotic expansion (89) sometimes converges, so that #F exists as an
honest function on D. In the next section we show that this is the case, for instance,
whenever F is anti-holomorphic; further, this fact can be used to extract additional
information about the operators Ln.

4. On some G-invariant operators

Let LR be a G-invariant linear differential operator on D. In view of the G-
invariance, LR is uniquely determined by the constant-coefficient linear differential
operator (LR)0 obtained upon freezing the coefficients of LR at the origin: indeed,
from

LRf(0) = (LR)0f(0) ∀f ∈ C∞(D)

we obtain, replacing f by f ◦ gx for some gx ∈ G sending 0 into x ∈ D,

LRf(x) = (LR)0(f ◦ gx)(0) ∀f.

Further, the operator (LR)0 must satisfy (LR)0f(0) = (LR)0(f ◦ k)(0) for any
k ∈ G fixing the origin, i.e. for any k ∈ K.

Being a constant coefficient linear differential operator, the operator (LR)0 is of
the form l(∇), for some polynomial l on Z. The K-invariance of (LR)0 means that
l is also K-invariant, i.e. l(x) = l(kx) ∀k ∈ K. We define the complexification LC

of LR to be the G-invariant operator from functions on DC into functions on D for
which

(93) LCF (0) := l(∂)F (0).

In other words, we replace in (LR)0 the real derivatives ∇ by the holomorphic
derivatives ∂. For x ∈ D, LCF (x) is given by

LCF (x) = l(∂)(F ◦ g)(0)

for any g ∈ G sending 0 into x; owing to the K-invariance of l, the right-hand side
does not depend on the choice of g (since any two such g differ by an element of K).

Proposition 5. Let L be a G-invariant differential operator from C∞(DC) into
C∞(D). Then the following are equivalent:

(a) L = LC is the complexification of some G-invariant differential operator
LR on D;

(b) L has the “factorization-property”

L(HF ) = H · LF

for any holomorphic function H on DC.

(More precisely, on the last line we should write L(HF ) = ρH ·LF , where ρ denotes
the restriction map from DC to D.)
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Proof. That (a) implies (b) is an immediate consequence of the definition (93), since
∂(HF ) = H∂F for holomorphic H. To prove the converse, it is enough to show
that LF (0) = (l(∂)F )(0) for some (necessarily K-invariant) polynomial l on Z,
since then L = LC for the (uniquely determined) G-invariant operator LR on D
satisfying (LR)0 = l(∇). Now since L is a differential operator,

LF (0) =
∑

α,β

aαβ ∂α∂βF (0),

where the summation extends over all multiindices α, β, and aαβ are some complex
numbers (only finitely many of which are nonzero). Thus if F (z) = zAzB and
H(z) = zC for some multiindices A, B and C, where |C| ≥ 1, then

(H · LF )(0) = H(0)LF (0) = 0,

while
L(HF )(0) =

∑

α,β

aαβ ∂α∂β(zAzB+C)(0) = A!(B + C)! aA,B+C .

It follows that aA,B = 0 whenever |B| ≥ 1. Consequently, setting l(x) =
∑

α aα0x
α,

we have
LF (0) =

∑
α

aα0 ∂αF (0) = l(∂)F (0)

¤

We now show that the star-restriction operator # and, hence, also the opera-
tors Lm from its asymptotic expansion (89), are of the type described in the last
proposition.

Proposition 6. For H holomorphic on DC and any F ,

#(HF ) = H ·#F.

Proof. We claim that for any f on D,

(94) T C
H
Tf = THf .

To see this, let Kz temporarily denote the function K(ν)(·, z) = h(·, z)−ν . Then for
any z ∈ DC, we have

(T C
H
Tf )(z) =

∫

DC

H(w) (T C
w Tf )(z) dµC

0 (w)

=
∫

DC

H(w) h(w,w)ν 〈Tf ,Kw〉ν Kw(z) dµC
0 (w)

=
∫

DC

H(w) Tf (w) K(ν)(z, w) dµC
ν (w)

=
∫

DC

∫

D

H(w) f(ζ) Tζ(w) K(ν)(z, w) dµ0(ζ) dµC
ν (w)

=
∫

DC

∫

D

H(w) f(ζ) h(ζ, ζ)ν/2 K(ν)(w, ζ) K(ν)(z, w) dµ0(ζ) dµC
ν (w)

=
∫

D

f(ζ)h(ζ, ζ)ν/2

∫

DC

H(w) K(ν)(w, ζ) K(ν)(z, w) dµC
ν (w) dµ0(ζ)

=
∫

D

f(ζ)h(ζ, ζ)ν/2〈Kζ ,HKz〉ν dµ0(ζ)
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=
∫

D

f(ζ) h(ζ, ζ)ν/2 H(ζ)Kz(ζ) dµ0(ζ)

=
∫

D

f(ζ) H(ζ) Tζ(z) dµ0(ζ) = THf (z),

using (77), (82), (80), (1), Fubini’s theorem, the reproducing property of Kζ , and
(82) and (77) again. Next, we claim that

(95) T C
HF

= T C
H
T C

F .

Indeed, for any G ∈ Hν ,

(T C
H
T C

F G)(z) =
∫

DC

∫

DC

H(y)F (w) (T C
t T C

w G)(z) dµC
0 (w) dµC

0 (y)

=
∫

DC

∫

DC

H(y)F (w) 〈G,Kw〉ν 〈Kw,Ky〉ν Ky(z) dµC
ν (w) dµC

ν (y)

=
∫

DC

F (w) 〈G, Kw〉ν
∫

DC

H(y)Kz(y)Kw(y) dµC
ν (y) dµC

ν (w)

=
∫

DC

F (w) 〈G, Kw〉H(w)Kz(w) dµC
ν (w)

=
∫

DC

(HF )(w) 〈G,Kw〉Kw(z) dµC
ν (w)

=
∫

DC

(HF )(w) (T C
w G)(z) dµC

0 (w) = (T C
HF

G)(z).

Now by (87), (95) and (94)

T#(HF ) = T C
HF

I = T C
H
T C

F I = T C
H
T#F = TH(#F ),

so #(HF ) = H(#F ). ¤

Corollary 7. We have

(96) #F =
∞∑

n=0

ν−n LC
n F,

where LC
n are the complexifications of some G-invariant differential operators LR

n

on D.

Proof. Combine the last two propositions with Theorem 3. ¤

Remark 8. A somewhat more expedient proof of (94) and (95) can be given by
observing first that

(97) T C
F φ = Pν(Fφ),

where Pν : L2(DC, dµC
ν ) → Hν(DC) is the orthogonal projection. (This is, in fact,

the usual definition of Toeplitz operators.) Indeed, for any φ, ψ ∈ Hν ,

〈T C
F φ, ψ〉ν =

∫

DC

F (z) 〈T C
z φ, ψ〉 dµC

0 (z)

=
∫

DC

F (z)h(z, z)ν 〈φ, Kz〉 〈Kz, ψ〉 dµ0(z) by (82)

=
∫

DC

F (z)φ(z) ψ(z) h(z, z)ν dµ0(z) = 〈Fφ, ψ〉ν ,
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and (97) follows. The formula (95) then follows from the straightforward fact that
T C

F T C
H = T C

FH (and, hence, T C
H
T C

F = T C
HF

) whenever H is holomorphic; similarly,
(94) is immediate from the well-known relation

T C
H

Kz = H(z)Kz

and the formula Tζ = Kζ/‖Kζ‖. ¤

In view of Proposition 6, the star-restriction operator # can be described by
using its action on holomorphic functions H on DC. In this case, we can describe
#H rather neatly.

Proposition 9. For H holomorphic on DC,

Bν#H = H.

That is,
#H = (Bν)−1 ρH,

where (Bν)−1 is the inverse of the formal power series (81):

(Bν)−1 = I − R1

ν
+

R2
1 −R2

ν2
+ . . . ,

and ρ stands, as before, for the restriction from DC to D.

Proof. By (88) and (97) we have

Bν#H(0) = (T ∗T C
H I)(0) = 〈T C

H I, T0〉 = 〈T C
H I,1〉

= 〈HI,1〉 = H(0)I(0) = H(0).

By G-invariance, it follows that Bν#H = H. ¤

By the Harish-Chandra isomorphism, the operators LR
n in (96) are uniquely

determined by their eigenvalues L̃R
n (λ) on the conical functions eλ,b of D:

LR
n eλ,b = L̃R

n (λ) eλ,b.

It can be shown that eλ,b are the restrictions to D of certain holomorphic functions
Eλ,b on DC; cf. Lemma 2.3 in [26]. On the other hand, by (93) we then have for
any holomorphic function H on DC

LC
n H(0) = ln(∂)H(0) = ln(∇)H(0) = LR

n (ρH)(0),

(where ρ again stands for the operator of restriction to D). By G-invariance,
it follows that

(98) ρLC
n H = LR

n (ρH).

In particular,
ρLC

n Eλ,b = LR
n eλ,b = L̃R

n (λ) eλ,b,

and, consequently, since eλ,b(0) = 1,

#Eλ,b(0) =
∞∑

n=0

ν−n L̃R
n (λ).

Applying Proposition 9 and recalling that Bνeλ,b = bν(λ)eλ,b, we thus get

(99)
1

bν(λ)
=

∞∑
n=0

ν−n L̃R
n (λ).
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Using the formula (44), it is in principle possible to extract from here the expressions
for L̃R

n (λ) and, hence, up to the Harish-Chandra isomorphism, the operators LR
n

and Ln = LC
n .

Remark 10. Heuristically, we can rewrite (99) as

# = ((Bν)−1)C,

i.e. the star restriction is the complexification — in the sense of (93) — of the
inverse of the real Berezin transform. ¤

Example 11. For D = Cd, i.e. the “product case” for the Euclidean d-space,
we have by (66)

# = ((Bν)−1)C = (e−∆/4ν)C,

that is,

#(f ⊗ g)(z) = e−∂x∂y/νf(x)g(y)
∣∣
x=y=z

,

so

Ln(f ⊗ g) = (−1)n
∑

|α|=n

1
α!

∂αf · ∂αg.

Similarly, for the real Euclidean d-space D = Rd, by (48) again

# = ((Bν)−1)C = (e−∆/2ν)C = e−∂2/2ν

so that

L2n−1 = 0, L2n =
(−1)n

2n

∑

|α|=n

1
α!

∂2α.

(In both cases, the summation extends over all multiindices α of total degree n.) ¤

For later use, we put down the following proposition.

Proposition 12. Let H be holomorphic on DC. Then

Bν(ρH)(0) = 〈H, I〉ν ,

where I is as in (17).

Proof. From (84) and (80),

Bν(ρH)(0) = cν

∫

D

H(ζ)h(ζ, ζ)(ν−p)/2 dζ

=
∫

D

H(ζ) I(ζ)−1 dµ0 = 〈H, I〉ν

by Proposition 3.4 in [3]. ¤
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5. Arazy-Ørsted formula for real symmetric domains

In this section we generalize the “spectral-theoretic” asymptotic expansion of the
(complex) Berezin transform due to Arazy-Ørsted [1] to the case of real symmetric
domains. The Arazy-Ørsted formula (30) (in the complex bounded case) expresses
the Berezin transform BR,ν in terms of differential operators constructed from
Km(z, w). The asymptotic expansion of the flat Berezin transform follows of course
from the explicit realization (66).

Now suppose that D ⊂ Z is an irreducible real bounded symmetric domain. Let
X ⊂ XC be the Euclidean Jordan algebras associated with D (cf.(39)), KX the
subgroup of all elements in K which map X into itself, L the subgroup of K
stabilizing the maximal tripotent e, and LX := L ∩KX . For each m = 0, 1, 2, . . . ,
the vector space Pm(X) of (complex) polynomials on X homogeneous of degree m
has the Peter-Weyl decomposition under KX

Pm(X) =
∑

|m|=m

Pm(X)

where m = (m1, . . . , mr) ranges over all integer partitions m1 ≥ · · ·mr ≥ 0 of
length r satisfying |m| := m1 + · · ·+mr = m. Thus we have also the decomposition

(100) P(X) =
∑
m

Pm(X)

of the whole (complex) polynomial algebra P(X) ≡ P(XC). It is known that [25]

(101) dm := dimC Pm(X) =
∏

1≤i<j≤r

mi −mj + j−i
2 a

j−i
2 a

( j−i+1
2 a)mi−mj

( j−i−1
2 a + 1)mi−mj

.

Furthermore, for each m, Pm(X) contains a unique LX -invariant (“spherical”)
polynomial φm normalized by φm(e) = 1. Similarly, we have the analogous decom-
position of P(XC) ≡ P(XC

C ) under KC, labelled by signatures of length rC.
Consider a G-invariant linear differential operator L on D. As we have seen in

the preceding section, it is uniquely determined by its “freezing at the origin” (L)0,
which is a K-invariant constant coefficient differential operator, hence of the form
p(∇) for some K-invariant polynomial p(x) on Z. By holomorphic continuation,
we may view p also as a holomorphic polynomial p(z) on ZC, and therefore decom-
pose it into its Peter-Weyl components with respect to KC. Since p is K-invariant,
only those signatures whose Peter-Weyl spaces contain a nonzero K-invariant poly-
nomial actually occur; we will call such signatures even.2

It turns out that (with the exception of type (A); see below) all even signatures
can be expressed by specifying a partition m = (m1, . . . , mr) of length r, and
for the associated KC-signature mC (of length rC) the corresponding K-invariant
polynomial φm

C on ZC is always unique if we require that φm
C (e) = 1, and is closely

related to the spherical polynomial φm ∈ Pm(X) discussed in the penultimate
paragraph.

The above decomposition is then a finite sum

(102) p(z) =
∑
m

cmφm
C (z), (L)0 =

∑
m

cmφm
C (∇),

with some constants cm.

2The term “spherical” was used in [27] and [28].
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Definition 13. The Peter-Weyl components LmC
of the operator L are the G-

invariant differential operators on D whose action at the origin is given by

(103) (LmC
)0 := cmφm

C (∇).

All this easily extends, in an appropriate sense, also to G-invariant operators
on D which are not necessarily differential, but have an asymptotic expansion of
some kind whose coefficients are differential operators of the above form. (The only
difference is that the sum (102) will then be infinite in general.) In particular, this
applies to the real Berezin transform Bν with the asymptotic expansion (81). Thus
we define

(104) (Bν)mC
:=

∞∑
n=0

ν−n (Rn)mC
,

where Rn are the operators from (81).
For the complex case DC

R = D × D, with D an irreducible complex bounded
symmetric domain, the signatures of KC

R are the ordered pairs (m,n) of signatures
of K, the even ones are those with m = n, and the polynomials φm

C are the Faraut-
Korányi kernels Km(z, w) divided by Km(e, e). In this setting, Arazy and Ørsted
[1] showed that

(105) (Bν)(m,m) =
Km(∂, ∂)

(ν)m
for the Pochhammer symbols (76). Our next result asserts that there is an analogue
of the Arazy-Ørsted formula also in the general case.

Theorem 14. For domains of type (A), the formal power series (104) is the as-
ymptotic expansion as ν → +∞ of

(106) (Bν)m =
dm

(d/r)m
bbνccm
(ν)m

Φm

where m is any partition such that |m| is even, Φm is the G-invariant operator on
C∞(D) whose action at the origin is given by

(107) Φm f(0) = φm(∇) f(0),

and bbνccm is defined by the formula (118) below.
For domains not of type (A), including the complex case, the formal power se-

ries (104) is the asymptotic expansion as ν → +∞ of

(108) (Bν)mC
=

dm

(2r/rC)2|m|
Φm

C

(dX

r )m(νR + dX−dY

2r )m
,

where Φm
C is the G-invariant operator on C∞(D) whose action at the origin is

given by
Φm

C f(0) := φm
C (∇)f(0),

and νR is as in (45).

Before proceeding to the proof, we first describe the “even” signatures mC,
associated with a partition m, and the corresponding normalized K-invariant poly-
nomial φm

C in more detail, using the fine structure of symmetric domains explained
in Section 2.

For the domains of type (A), we have mC = m and φm
C = φm, but in this case

the group G is not connected and semisimple, more precisely it is the semidirect
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product of the connected component (G)0 of the identity and the two-element group
generated by the reflection z 7→ −z; similarly the group K is the semidirect product
of the stabilizer L of e in KC and the same two-element subgroup. Accordingly, a
KC-signature m is even if and only if |m| := m1 + · · ·+ mr is even.

For all other types, note first of all that by holomorphy, any polynomial on ZC

is uniquely determined by its restriction to Z; and by Chevalley’s theorem (cf. [27],
Proposition 6.2) and the “polar decomposition” [11, Section VI.2]

Z = K ·
r∑

j=1

Rej

(where e1, . . . , er is any Jordan frame in Z with e1 + · · ·+ er = e), any polynomial
in some PmC(ZC) has its values on Z uniquely determined by its restriction to∑r

j=1 Rej ⊂ X. Therefore, to describe the polynomials φm
C ∈ PmC(ZC) it is

enough to give their restrictions on X.
For type (D/B) we are likewise considering invariance under the full, not neces-

sarily connected, group K. Hence the results of [27], [28] imply that a KC-signature
(of length rC = r) is even if and only if it has the form

(2m1, 2m2, . . . , 2mr) = 2m =: mC,

where m is any signature of length r, and moreover

φm
C (x) = φm(x2)

for all x ∈ X ⊂ XC. (More precisely: for a KC-signature n, Pn(ZC) contains an
L-invariant polynomial if and only if n = 2m + ε · (1, . . . , 1), where ε ∈ {0, 1}; and
containing even a K-invariant polynomial forces ε = 0.) Since XC is irreducible,
with rC = r and aC = 2a, we obtain [28, Proposition 3.5]

‖φm
C‖2F

‖φm
C‖2ν

=
ΓC(ν + 2m)

ΓC(ν)

=
r∏

j=1

Γ(ν + 2mj − aC

2 (j − 1))
Γ(ν − aC

2 (j − 1))
=

r∏

j=1

Γ(ν + 2mj − a(j − 1))
Γ(ν − a(j − 1))

=
r∏

j=1

22mj Γ(ν
2 + mj − a

2 (j − 1))Γ(ν+1
2 + mj − a

2 (j − 1))
Γ( ν

2 − a
2 (j − 1)) Γ( ν+1

2 − a
2 (j − 1))

= 22|m| Γ(ν
2 + m)Γ( ν+1

2 + m)
Γ( ν

2 )Γ( ν+1
2 )

= 22|m|
(ν

2

)
m

(
ν + 1

2

)

m

,

using the duplication formula for the ordinary Γ-function. For type (C/BC), the
even KC-signatures (of length rC = 2r) can be written in the form

(m1,m1,m2,m2, . . . , mr,mr) = (m,m) =: mC,

where m is any signature of length r, and

φm
C (x) = φm(x2)

for all x ∈ X ⊂ XC. Since XC is irreducible, with rC = 2r and aC = a
2 , we obtain

[28, Proposition 3.5]

‖φm
C‖2F

‖φm
C‖2ν

=
ΓC(ν + (m,m))

ΓC(ν)
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=
r∏

j=1

Γ(ν + mj − aC

2 (2j − 2))Γ(ν + mj − aC

2 (2j − 1))
Γ(ν − aC

2 (2j − 2))Γ(ν − aC

2 (2j − 1))

=
r∏

j=1

Γ(ν + mj − a
2 (j − 1))Γ(ν + mj − a

2 (j − 1)− a
4 )

Γ(ν − a
2 (j − 1))Γ(ν − a

2 (j − 1)− a
4 )

=
Γ(ν + m)

Γ(ν)
Γ(ν + m− a

4 )
Γ(ν − a

4 )
= (ν)m

(
ν − a

4

)
m

.

For the complex case, the even signatures for KC
R = K ×K are of the form

(m1,m2, . . . , mr;m1,m2, . . . ,mr) = (m,m) =: mC,

where m is any signature of length r and the bar denotes the “conjugate” second
variable, and

(109) φm
C (z, w) =

Km(z, w)
Km(e, e)

=
(dX/r)m

dm
Km(z, w).

In particular, for x ∈ X (identified with xR := (x, x) ∈ XR ≈ X) we have

φm
C (x) ≡ φm

C (x, x) =
Km(x, x)
Km(e, e)

=
(dX/r)m

dm
Km(x, x) = φm(x2).

Since XC = X ×X (with rC = 2r and aC = a) is also of product type, we obtain
[28, Lemma 3.1]

‖φm
C‖2F

‖φm
C‖2ν

=
ΓC(ν + (m,m))

ΓC(ν)
=

[
Γ(ν + m)

Γ(ν)

]2

= (ν)2m.

Summarizing the three non-type (A) cases we see that

(110) φm
C (x) = φm(x2)

and

(111)
‖φm

C‖2F
‖φm

C ‖2ν
=

(
2r

rC

)2|m|
(νR)m

(
νR +

dX − dY

2r

)

m

,

where νR is as in (45), i.e.

νR =
νrC
2r

.

In fact, for complex type we have νR = ν and dX = dY since Y = iX. For type
(D/B) we have νR = ν

2 and dX − dY = r. For type (C/BC) we have νR = ν

and dY −dX

2r = a
4 . This case is slightly subtle, since there exist two rank 1 domains

in this class, for which we define a := aC

2 (since rC = 2, aC is well-defined). One
easily shows that the above relation holds also for the rank 1 cases.

Proof of Theorem 14. Consider the expansion

(112) I(z) =
∑
m

cν
m φm

C (z)

of the K-invariant holomorphic function I on DC. Here m ranges over all par-
titions of length r, with |m| even for type (A) domains. Recalling the notation
f∗(z) := f(z#), note that 〈f∗, g∗〉F = 〈g, f〉F while, by the Hermitian symmetry
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of the Bergman kernels, I∗(z) = K(ν)(z#, z)1/2 = I(z). Thus for any holomorphic
polynomial H on ZC,

(113) 〈H, I〉ν = 〈I,H∗〉ν =
∑
m

cν
m 〈φm

C ,H∗〉ν =
∑
m

cν
m

‖φm
C‖2ν

‖φm
C‖2F

〈φm
C ,H∗〉F

since φm
C is pure of type mC. Putting

(114) ((Bν)m)0 = bν
m φm

C (∇),

Proposition 12 implies

〈H, I〉ν = Bν(ρH)(0) =
∑
m

bν
m φm

C (∇)(ρH)(0)

=
∑
m

bν
m (φm

C (∂)H)(0) =
∑
m

bν
m 〈φm

C ,H∗〉F .

It follows that

(115) bν
m = cν

m

‖φm
C ‖2ν

‖φm
C ‖2F

.

Now for any x ∈ D ∩XC,

I(x) = K(ν)(x, x)1/2 = h(x, x)−ν/2 = ∆C(e− x2)−ν/2,

where ∆C is the Jordan algebra determinant of XC ⊂ ZC. It is known that
∆C = ∆rC/r on X, where ∆ is the Jordan algebra determinant of X ⊂ Z. Thus

I(x) = ∆(e− x2)−νR =
∑
m

dm
(νR)m

(dX/r)m
φm(x2)

for all x ∈ D∩X, where we have applied the Faraut-Korányi binomial formula [11,
Proposition XII.1.3] to X. For domains not of type (A), (110) therefore implies

I(x) =
∑
m

dm
(νR)m

(dX/r)m
φm
C (x)

for all x ∈ D ∩X. It follows that

(116) cν
m = dm

(νR)m
(dX/r)m

for all partitions m. Combining (115), (116) and (111) implies the assertion, namely

(117) bν
m =

dm

(dX/r)m
(rC/2r)2m

(νR + dX−dY

2r )m
.

For domains of type (A), we start with the decomposition

(118) I(x) = ∆(e−x2)−ν/2 =
∑

|m| even
bbνccm Km(x, e) =

∑

|m| even
dm

bbνccm
(d/r)m

φm(x),

where the coefficients bbνccm have not yet been explicitly computed in the higher
rank case. It follows that

(119) cν
m = dm

bbνccm
(d/r)m
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for all partitions m with |m| even. By [11, Section XI.4], the respective norms
satisfy

(120)
‖φm‖2F
‖φm‖2ν

= (ν)m.

Combining (115), (119) and (120) implies the assertion, namely

(121) bν
m =

dm

(ν)m
bbνccm
(d/r)m

.

¤

In the complex case (116) and (109) yield the Peter-Weyl component
dm

(dX/r)m
1

(ν)m
φm
C (∇) =

1
(ν)m

Km(∂, ∂)

and we indeed recover the Arazy-Ørsted formula (105).
Note that in course of the proof we have obtained also the following “real ana-

logue” of the Faraut-Korányi formula — namely, the Peter-Weyl decomposition
(under KC) of the holomorphic function I(z) = h(z, z#)−ν/2.

Theorem 15. We have

I(z) =
∑
m

bbνccm dm

(dX/r)m
φm
C (z),

where bbνccm is given by
bbνccm = (νR)m

for domains not of type (A), including the complex case. Here m ranges over all
signatures of length r.

Remark 16. The relationship between the two “Pochhammer symbols”

{ν}mC
=

1
bν
m

, bbνccmC
=

(dX/r)m
dm

cν
m,

can be simply stated as
1

{ν}mC

=
dm

(dX/r)m
bbνccmC

(ν)mC

,

where (ν)mC
= ΓC(ν + mC)/ΓC(ν) is the ordinary multi-Pochhammer symbol

corresponding to the domain DC. ¤
Example 17. Consider D = (−1, +1) ⊂ R, the unit interval, for which DC = D,
the unit disc in C. Then

Bνf(0) = cν

∫ 1

−1

f(x) (1− x2)ν/2−1 dx.

The integral vanishes if f is an odd function, while
∫ 1

−1

x2k(1− x2)ν/2−1 dx = 2
∫ 1

0

tk(1− t)ν/2−1 dt

2
√

t
=

Γ(k + 1
2 )Γ( ν

2 )
Γ(k + ν

2 + 1
2 )

.

Taking in particular k = 0, it follows that 1/cν = Γ( 1
2 )Γ( ν

2 )/Γ( ν
2 + 1

2 ), so

(122) Bν(x2k)(0) =
( 1
2 )k

(ν+1
2 )k

.
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Finally, we know from the stationary phase method that if f(x) = O(|x|k), then
Bνf(0) = O(ν−k). Thus it is legitimate to simply sum up the contributions (122)
corresponding to the each term in the Taylor expansion f(x) =

∑∞
k=0

f(k)(0)
k! xk

of f to obtain

Bνf(0) =
∞∑

k=0

f (2k)(0)
(2k)!

( 1
2 )k

(ν+1
2 )k

.

Note that this time the signatures are just nonnegative integers n = (n), and
K = {±1}; thus even signatures are those for which n = 2m is an even integer, and
ψn

C(z) = z2m, with ‖ψn
C‖2F = (2m)!.

Combining the last formula with the doubling formula Γ(x)Γ(x+ 1
2 ) = 21−2xΓ( 1

2 )·
Γ(2x) for the Gamma function, it can also be rewritten as

(123) Bνf(0) =
∞∑

m=0

f (2m)(0)
m!4m(ν+1

2 )m

,

in complete agreement with the last theorem. (Note that now r = rC = 1, dY =
dV = 0, and we can view D as both type D1 and A1.) ¤

Remark 18. Symbolically, (123) can be written as Bν |0 = 0F1(ν+1
2 | 14∇2). Exploiting

G-invariance, this gives an expression for Bν in terms of the invariant Laplacian
((1− x2)∇)2 of D. ¤

6. Concluding remarks

6.1 Schwartz-space boundedness. It was shown in Theorem 2 in [8] that (phrased in
our current terminology) in the “product” case, any G-invariant linear differential
operator from functions on DC into functions on D is automatically continuous
from the Schwartz space S(DC) (as defined e.g. in [13]) into S(D). The same
argument also works in the general case, thus showing that the assertion is in fact
valid even for any real bounded symmetric domain D.

6.2 Convergence in various senses. In our Definition 2 and elsewhere, we have
always been interested in the pointwise convergence of the various asymptotic ex-
pansions such as (87) or (89). On the other hand, for the Toeplitz calculus in the
“product” case, (8) was established in [6] not only pointwise (in the sense of integral
kernels, i.e. 〈TfTgKx,Ky〉 ≈

∑∞
m=0 ν−m〈TCm(f,g)Kx,Ky〉), but in operator norm.

(The former, of course, follows from the latter upon a simple application of the
Schwarz inequality.)

Is there some analogous stronger sense in which (89) would be true?
The obvious candidate — namely, that (89) hold in the sense of the norms in Hν

— does not correspond to operator norms in (8) in the “product” case, but rather
to the Hilbert-Schmidt norms. It is unclear whether (8) holds true with operator
norms replaced by Hilbert-Schmidt norms, even for symbols f, g with compact
support (more likely it does not). Hence this is probably a blind alley.

The next thing that comes to mind is to replace the norm convergence by the
weak convergence, but then the problem is that the spaces in question vary with ν,
so it is unclear with what elements one should form the inner products. (The only
natural ones around seem to be the reproducing kernels K

(ν)
x , but that brings us

back to the pointwise convergence again.)



TOEPLITZ QUANTIZATION AND ASYMPTOTIC EXPANSIONS 29

6.3 General covariant calculi. Throughout the paper, we have been discussing the
star-restriction etc. associated to the Toeplitz calculus. Of course the next thing
to be done is to extend everything also to other covariant calculi. So far, the only
known results — and very partial ones at that — are available for the Weyl calculus;
see Unterberger and Unterberger [23] for the “product case” with D = D, the unit
disc, and Arazy and Upmeier [4] for the “flat” cases D = Cd and D = Rd.

One way of getting such results might be by using the fact that any two covariant
calculi on D differ by a G-invariant operator. In fact, for any covariant calculus
A : C∞(D) → Hν we have Af = TMAf , where MA := (T ∗T )−1(T ∗A) is G-
invariant, by (15) and (60). (The inverse (T ∗T )−1 = (Bν)−1 exists since (44) never
vanishes; we are of course a bit sloppy here about the boundedness and domains of
definition of the various operators.) Hence, if #A,B is the star-restriction operator
with respect to a covariant calculus A on DC and another covariant calculus B
on D, that is,

B#A,BF = AF I,

then
TMB#A,BF = B#A,BF = AF I = T C

MC
AF I = T#(MC

AF )

(where the last # is the one with respect to T C and T , which we have been working
with throughout this paper); that is,

#A,B = (MB)−1#MC
A

(provided MB is invertible). In this sense, all possible star-restrictions are conjugate
to the Toeplitz one via G- and GC-invariant operators (on the left and on the right,
respectively). This approach was, for instance, used in [4], Proposition 2.1 and 5.1,
for reducing the Weyl calculus (and other “one-parameter calculi” studied there)
to the Toeplitz one in the “flat” cases D = Cd,Rd, and in [8]. It is, however,
unclear (in addition to the matter of the invertibility of MB) whether this approach
will really be useful in the general case, since for instance the “factorization prop-
erty” from Proposition 5 will in general be destroyed by the conjugation with MB
and MC

A , and thus for our results from Section 4 completely different methods seem
to be needed.

6.4 The flat case. The results of Sections 3–5 easily extend also to the “flat” case
D = Rd. In fact, the integrals (83) become simply

BC
ν F (z) =

(ν

π

)d
∫

Cd

F (w) e−ν|z−w|2 dw;

Bνf(x) =
(ν

π

)d/2
∫

Rd

f(ζ) e−ν(x−ζ)2/2 dζ,

i.e. just the heat solution operators (66), (48), while (92) becomes

T ∗T C
F I(0) =

(ν

π

)d
∫

Cd

F (w) eνw2/2−ν|w|2 dw,

where w2 :=
∑d

j=1 w2
j . By easy manipulations, this can again be reduced to heat

solution operators. In Section 5, signatures m = (m) reduce just to a single integer
m ≥ 0, and the Peter-Weyl space Pm consists of all homogeneous polynomials of de-
gree m. The even signatures are the even numbers m, and φ

(2m)
C (x) = (

∑d
j=1 x2

j )
m.
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Finally, since

Bν = e∆/2ν =
∞∑

m=0

∆m

m!2mνm
=

∞∑
m=0

φ(2m)C(∇)
m!2mνm

,

we get

((Bν)(2m))0 =
φ

(2m)
C (∇)
{ν}(2m)

with
{ν}(2m) = m!2mνm.

Of course, this formula can likewise be derived along the lines of the proof of
Theorem 14.

We leave the complex case D = Cd to the reader.

6.5 Another Weyl calculus. For the “flat product case” D = Cd, it is known
that the Toeplitz calculus f 7→ Tf maps L2(dµ0) boundedly into the space of
Hilbert-Schmidt operators. One can therefore consider its polar decomposition
T = V(T ∗T )1/2 = V(Bν)1/2, where V is a partial isometry with initial space
Ran T ∗ = (Ker T )⊥ and final space Ran T = (Ker T ∗)⊥; that is, as both T and T ∗
are injective, V is a unitary operator from L2(Cd) onto the Hilbert-Schmidt opera-
tors on Hν(Cd). It turns out that V coincides with, surprisingly, our old friend W,
the Weyl calculus on D = Cd. This leads naturally to the interesting question of
determining the partial-isometric part of the polar decomposition of T also in the
general case of any real bounded symmetric domain D. Since T and T ∗ can easily
be shown to be still injective, this partial-isometric part V will again in fact be a
unitary operator from L2(dµ0) onto Hν(DC).

For D = Rd, the real “flat” case, it was shown in [21] that V is actually the
Bargmann transform from L2(Rd) onto Hν(Cd). For the “product case” DC =
D×D, with D a complex bounded symmetric domain, the operator V was studied
by Ørsted and Zhang [22], and later christened to the “generalized Segal-Bargmann
transform”; in any case it turned out to be different from the Weyl calculus on D
(except for D = Cd).

For real bounded symmetric domains other than the “flat” or “product” cases,
the operator V seems not to have been hitherto investigated.
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