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Abstract. We construct nonconstant lower and upper functions for the periodic boundary value
problem u” = f(t,u), u(0) = u(27), ' (0) = v'(27) and find their estimates. By means of these
results we prove existence criteria for the problems u” £ g(u) = e(t), u(0) = u(27), u'(0) = u'(27),
where limsup, o, g(z) = oo is allowed and e € L[0, 27] need not be essentially bounded.
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1 . Introduction

In this paper we construct lower and upper functions to the periodic boundary value
problem

(1.1) u" = f(t,u), u(0)=u(2r), «'(0)=u'(27).
By means of these results we prove existence criteria for the problems
u" +g(u) =e(t), u(0)=u(2r), «(0)=1u'(2n),

where limsup,_,o, g(z) = oo is allowed and e € L[0,27] need not be essentially
bounded. We assume that f : [0, 27] xR — R fulfils the Carathéodory conditions on
[0, 27] xR, i.e. f has the following properties: (i) for each x € R the function f(.,z) is
measurable on [0, 27]; (ii) for almost every ¢ € [0, 27] the function f(¢,.) is continuous
on R; (iii) for each compact set KC R the function mg(t) = sup ek |f(¢,z)| is
Lebesgue integrable on [0, 27].
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For a given subinterval J of R (possibly unbounded), C(.J) denotes the set of
functions continuous on J. Furthermore, L[0,27] stands for the set of functions
Lebesgue integrable on [0,27], Ly[0,27] is the set of functions square Lebesgue
integrable on [0, 27| and AC|0, 27| denotes the set of functions absolutely continuous
on [0, 27]. For  bounded on [0, 27|, y € L[0, 27| and 2z € Ly[0, 27] we denote

1 2w

lzlle = sup |z(@)l, ¥= - y(s) ds,
te[0,2n] ™ Jo

2T 27 %
lolli= [ lo®ldt and Jalle = ([ @) a)”
0 0

By a solution of (1.1) we mean a function u : [0,27] +— R such that u' €
AC|0, 27], u(0) = u(27), ' (0) = /(27) and

u"(t) = f(t,u(t)) fora.e. te|0,2n].

1.1. Definition. A function o, is said to be a lower function of the problem (1.1)
if o] € ACI0, 27],
al(t) > f(t,o1(t)) fora.e. tel0,27],
01(0) = 01(27), 07(0) > o' (27).
Similarly, a function oy is said to be an upper function of the problem (1.1) if
ay € ACJ0, 27],
ay(t) < f(t,o9(t)) fora.e. tel0,27],
02(0) = 09(27), 05(0) < oy(2).

The lower and upper functions approach we will use here is based on the following
theorem which is contained in [8, Theorems 4.1 and 4.2].

1.2. Theorem. Let oy and oy be respectively a lower and an upper function of the
problem (1.1).

t) on [0,27]. Then there is a solution u of the problem

(I)  Suppose o1(t) < oo
) < u(t) < oy(t) on [0, 27].

(1.1) such that oy (t
(IT)  Suppose o1(t) > ) on [0,27] and there is m € L0, 27| such that

oyt
f(t,z) > m(t) forae t€]0,2n] and all x € R
(or f(t,z) <m(t) fora.e. t€0,2n] and all x € R.)

Then there is a solution u of the problem (1.1) such that ||u'l|c < ||m||; and

oo(ty) < ulty) < oi(ty) for some t, € [0,2r].



2 . Construction of lower and upper functions

2.1. Proposition. Assume that there are A € R and b € L|0, 27| such that

(2.1) b=0,

(2.2) f(t,z) < b(t) for a.e. t€[0,2n] and all z € [A, B,
where

(2.3) B:A+gMM

Then there exists a lower function o of the problem (1.1) such that
(2.4) A<o(t) < B on [0,2n].

Proof. Define

2
oo(t) = ¢y +/ g(t, s)b(s) ds for t € [0, 2],
0

where

t _

Hs — 2m) it 0<t<s<or
2T

g(t,s) =

(t —2m)s .

——— if 0<s<t<27m
2T

is the Green function of the problem v” = 0, v(0) = v(27) = 0 and

co = —% i ' (/0 7rg(t, 5)b(s) ds) dt.
Then
(2.5) oy (t) =b(t) a.e. on [0,27]
and
(2.6) 00(0) = 0¢(27).

Furthermore, in virtue of (2.1) we have also
(2.7) 04(0) = o (2m).

Multiplying the relation (2.5) by oy, integrating it over [0, 27] and using the Holder
inequality we get

log 15 < N1bll1llovo]lc
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Further, as a5 = 0, the Sobolev inequality (see [5, Proposition 1.3]) yields

oyl < \f 1bll 931
v
Jobl < /% Il

wherefrom using again the Sobolev inequality we get

and so

7r
lovlle < & [1b]:-

Thus, the function o given by

(2.8) o(t) = % 16| + A + oo (t) for ¢ € [0, 27]

satisfies (2.4). Furthermore, according to (2.1),(2.2) and (2.6)-(2.8) we have

(2.9) o (t) = oy (t) =b(t) > f(t,o(t)) for a.e. ¢ € [0,27]

and

(2.10) o(0) =o(2m), o'(0) =o'(2m),

i.e. o is a lower function of (1.1). O

The following assertion is dual to Proposition 2.1 and its proof will be omitted.

2.2. Proposition. Assume that there are A € R and b € L|0, 27| such that
b=0

and
f(t,x) > b(t) for a.e. t€[0,2n] and all = € [A, B]

where B is given by (2.3). Then there exists an upper function o of the problem
(1.1) with the property (2.4). ]

3 . Applications to Lazer-Solimini singular prob-
lems

In this section we will consider possibly singular problems of the attractive type

(3.1) u" +g(u) =e(t), u(0)=u2m), «'(0)=u'(27)
and of the repulsive type



(3.2) u" —g(u) =e(t), u(0)=u(2r), «(0)=1d'(27),
where
(3.3) g € C(0,00) and e € L[0, 27]

and it is allowed that limsup,_,y, g(z) = oo.

The problem (3.1) has been studied by Lazer and Solimini in [6] for e € C[0, 27]
and ¢ positive. In [9, Corollary 3.3], their existence result has been extended to
e € L[0,2n] essentially bounded from above. Here, we bring conditions for the
existence of solutions to (3.1) without assuming boundedness of e.

3.1. Theorem. Assume (3.3) and let there exist Ay, Ay € (0,00) such that

(3.4) g(xz) > € for all z € [Ay, By],
(3.5) g(z) <€ for all x € [As, By,
where

m
(3.6) BI_AIZBQ_A2:§H€_EH1
and A2 Z Bl-

Then the problem (3.1) has a solution u such that Ay < u(t) < By on [0, 27].

Proof. Define, for a.e. t € [0, 27],

=0 - {40 G

Then f satisfies the Carathéodory conditions on [0, 27] x R. Furthermore, by (3.4)
and (3.6), f satisfies (2.1)-(2.3) with b(t) = e(t) — € a.e. on [0,27] and [A, B] =
[A1, B1]. Hence, by Proposition 2.1 there exists a lower function oy of (1.1) such that
o1(t) € [Ay, By for all t € [0, 27]. Similarly, (3.5), (3.6) and Proposition 2.2 yield the
existence of an upper function oy of (1.1) such that oy(t) € [As, B] on [0, 27]. Now,
since Ay > By, we have o01(t) < o9(t) on [0,27] and the assertion (I) of Theorem
1.2 gives the existence of the desired solution u to (1.1) which is also a solution to
(3.1), of course. O

Classical Lazer and Solimini’s considerations [6] of the repulsive problem (3.2)
have been extended by several authors (see e.g. [1], [2], [3], [4], [7] and [10]). Here
we present a related result, where e need not be essentially bounded.

3.2. Theorem. Assume (3.3),

1

(3.7) lim [ g(€)de = oo,

z—0+ z

and



(3.8) g.:= inf g(x) > —o0.
x€(0,00)

Furthermore, let there exist Ay, Ay € (0,00) such that

(3.9) g(x) < —€ for all x € [A1, By],
(3.10) g(x) > —€ for all x € [As, By,

where (3.6) is true and A; > Bs.
Then the problem (3.2) has a positive solution.

Proof. Denote

B
K = |le|ly + 27 |g9«|, B=DB;+2rK and K* :K||e||1+/ lg(z)| da.

Az
It follows from (3.7) that limsup,_ ,,, g(x) = oo and there exists ¢ € (0, A3) such
that

(3.11) /A2 g(x)dz > K* and g¢(g) > 0.

Define

N (x) if x>e,
g(x)—{‘(;(g) if x<e,

and
f(t,x) =e(t) + g(z) for a.e. t€[0,2n] and all z € R.

Now, we can argue as in the proof of Theorem 3.1 obtaining a lower function o, and
an upper function oy of (1.1) such that oy (¢) > o9(t) on [0, 27]. The assertion (II) of
Theorem 1.2 (with m(t) = g. +e(t) a.e. on [0,27]) implies that (1.1) has a solution
u such that u(t,) € [Ay, By] for some ¢, € [0,27] and ||v/||c < K. It remains to
show that u(t) > ¢ holds on [0, 27].

Let ty and t; € [0, 27] be such that

ty) = i t d t1) = t).
u(to) ter%}gﬂ}U( ) and u(ty) t?&f‘iﬁ}“( )
Clearly, A < u(t;) < B. With respect to the periodic boundary conditions we have
u'(ty) = u'(t1) = 0. Now, multiplying the differential relation u”(t) = e(t) + g(u(t))
by u/'(t) and integrating over [ty,t;] we get

Oz/lu"(t) o (t) dt:/le(t) o (t) dt+/l'§(u(t))u’(t) dr,

to to to
i.e.



u(t1) t1
/ i(z) dz = —/ e(t) (1) dt < K ||e]],.

(to) to

Further,

As B
[ i ds<Kleli+ [l =&
’u.(to) Ao

which, with respect to (3.11), is possible only if u(tg) > e. Thus, wu is a solution to
(3.2). O

3.3. Example. Let g(z) = - on (0,00). If 7 > 0, then Theorem 3.1 ensures the

=
existence of a positive solution to (3.1) for any e € L[0, 27| such that

(3.12) ¢> 0 and ga% lle —e||r, < 1.

The function e(t) = ¢+ ﬁ — L with ¢ € R is not essentially bounded from above
on [0, 27]. However, it satisfies (3.12) if

0<c< (%)7

We should mention that provided e € C[0,27] or e is essentially bounded from
above, the condition € > 0 is sufficient for the existence of a solution to (3.1) (cf.
[6] or [9], respectively).

3.4. Example. Let e € L0, 27] be essentially unbounded from below and let

_ 1+sin(])

—arctan(x), z € (0,00).
T

g9(z)

Then g verifies the assumptions (3.3), (3.7) and (3.8) of Theorem 3.2. Let us sup-
pose that @ = —5. Then the equation g(z) = 5 has exactly 5 roots in the interval
[0.125, 00). In particular, we have (see Figures 1 and 2)

71~ 0.126804, 75 = 0.141071, 23 ~ 0.167853, 24 ~ 0.200541, x5 ~ 0.244461,
g(x) > b on (ry,x3) U (z4,25) and g(x) <bon (x1,x2) U (z3,24) U (25,00).

Therefore, by Theorem 3.2, if
3
||6 — EH]L S — (275 — £U4) ~ 00419392,
7

the problem

0 _ 1+ sin(%)

(3.13) u ”

—arctan(u) +e(t), u(0) =u(27), «'(0)=1u'(27)
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has a solution u; such that u,(t*) € [x4, x5 + di] for some t* € [0, 27], where d; =
x5 — x4 (see Figure 3).
Similarly, by Theorems 3.1 and 3.2, if

3
le —ellL < Dy (x5 — x4) &~ 0.0209699,
m

the problem (3.13) has at least 2 different solutions u; and wuy, where u(t*) €
(x5 — da, x5 + dy) for some t* € [0, 27] and uy(t) € (x4 — do, x4+ dy) for all ¢t € [0, 27],
where dy = £ (x5 — x4) (see Figure 4).

Finally, if

3
le — €|l < . (xe — 1) =~ 0.0136238,

the problem (3.13) has at least 3 different solutions uy, us and us, where u;(t*) €
[x5 — d3, x5 + d3] for some t* € [0, 27|, ua(t) € [x4 — ds, x4 + ds] for all ¢t € [0, 27] and
u3(t) € [x1,x9] for all ¢ € [0, 27], where d3 = 22 — x1 (see Figure 5).
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