
Tighter Hard Instances for PPSZ
Pavel Pudlák∗1, Dominik Scheder†2, and Navid Talebanfard‡3

1 The Czech Academy of Sciences
pudlak@math.cas.cz

2 Shanghai Jiaotong University
dominik@cs.sjtu.edu.cn

3 The Czech Academy of Sciences
talebanfard@math.cas.cz

Abstract
We construct uniquely satisfiable k-CNF formulas that are hard for the PPSZ algorithm, the
currently best known algorithm solving k-SAT. This algorithm tries to generate a satisfying
assignment by picking a random variable at a time and attempting to derive its value using
some inference heuristic and otherwise assigning a random value. The “weak PPSZ” checks
all subformulas of a given size to derive a value and the “strong PPSZ” runs resolution with
width bounded by some given function. Firstly, we construct graph-instances on which “weak
PPSZ” has savings of at most (2 + ε)/k; the saving of an algorithm on an input formula with n
variables is the largest γ such that the algorithm succeeds (i.e. finds a satisfying assignment) with
probability at least 2−(1−γ)n. Since PPSZ (both weak and strong) is known to have savings of at
least π2+o(1)

6k , this is optimal up to the constant factor. In particular, for k = 3, our upper bound
is 20.333...n, which is fairly close to the lower bound 20.386...n of Hertli [SIAM J. Comput.’14]. We
also construct instances based on linear systems over F2 for which strong PPSZ has savings of at
most O

(
log(k)
k

)
. This is only a log(k) factor away from the optimal bound. Our constructions

improve previous savings upper bound of O
(

log2(k)
k

)
due to Chen et al. [SODA’13].
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1 Introduction

The k-SAT problem is one of the most fundamental NP-complete problems: given a k-CNF
formula decide if there is an assignment to the variables that satisfies all the clauses. While
a simple exhaustive search algorithm solves the problem, attempting to beat this trivial
approach remains an active direction (see e.g. [11, 12, 4, 10]). Formalizing the true hardness
of k-SAT, Impagliazzo and Paturi [7] presented two hypotheses: Exponential Time Hypothesis
(ETH) which rules out any 2o(n) time algorithm for k-SAT where n is the number of variables
and Strong Exponential Time Hypothesis (Strong ETH) which says that for any ε > 0 there
exists k > 0 such that k-SAT cannot be solved in time 2(1−ε)n. Both ETH and Strong ETH

∗ The author is supported by the grant P202/12/G061 of GAČR.
† Dominik Scheder gratefully acknowledges support by the National Natural Science Foundation of China

under grant 61502300.
‡ Part of the work was done while Navid Talebanfard was with Tokyo Institute of Technology and visiting

Saint Petersburg State University during the special semester in complexity.

© Pavel Pudlák, Dominik Scheder and Navid Talebanfard;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Tighter Hard Instances for PPSZ

have successfully been used to explain the hardness of many other problems; under ETH
one can prove tight lower bounds for many fixed parameter tractable problems (see [8]), and
under Strong ETH several lower bounds for polynomial time solvable problems are proved
(see e.g. [1]). However the validity of both these hypotheses remains a matter of mystery and
in particular regarding Strong ETH no consensus seems to be within reach any time soon.

In this paper we focus on Strong ETH and the problem of constructing hard instances
for known classes of algorithms for k-SAT. Paturi, Pudlák, Saks and Zane [10] presented
the currently best known randomized algorithm for k-SAT. The algorithm roughly does the
following: pick uniformly at random a variable x from the input formula. Try to infer the
value of x using some sound heuristic. If this check fails, pick a random value for x. Set x to
be this value and repeat. A sound heuristic is an algorithm P that receives a formula F and
a variable x such that P (F, x) = 0 implies F |= (x = 0) and P (F, x) = 1 implies F |= (x = 1).
We will consider two heuristics, Pweak

w amd P strong
w , where Pweak

p checks if the value of x can
be derived from any set of w clauses of F , and P strong

w checks if the value of x can be derived
by a width-w resolution derivation from F . Note that if F is O(1)-CNF then both Pweak

w

and P strong
w run in subexponential time as long as w = o( n

logn ). The first result showing that
even simple sound heuristics can yield non-trivial savings over exhaustive search was proved
by Paturi, Pudlák and Zane.

I Theorem 1 ([11]). Let F be a k-CNF formula on n variable. Then

Pr[ppsz(F, Pweak
1 ) ∈ sat(F )] ≥ 2−(1− 1

k )n.

Naturally one can ask if stronger heuristics can improve the success probability. It was
indeed shown in the following theorem that using ω(1)-width resolution yields improvements.

I Theorem 2 ([10]). Let F be a k-CNF formula on n variables. Then

Pr[ppsz(F, P strong
ω(1) ) ∈ sat(F )] ≥ 2−(1−π2

6k−o(1))n.

Later Hertli [6] showed among other things that even Pweak
ω(1) yields the same improvement

over the trivial Pweak
1 .

I Theorem 3 ([6]). Let F be a k-CNF formula on n variables. Then

Pr[ppsz(F, Pweak
ω(1) ) ∈ sat(F )] ≥ 2−(1−π2

6k−o(1))n.

The first construction of hard instances for PPSZ was given by Chen, Scheder, Talebanfard
and Tang [3]. These instances are hard even for P strong

ω(1) .

I Theorem 4 ([3]). For any large enough k, n > 0 there are k-CNF formulas F such that

Pr[ppsz(F, P strong
n/k ) ∈ sat(F )] ≤ 2−(1−O(log2 k/k))n.

In this paper we improve this upper bound. For Pweak
ω(1) we give completely different

constructions for which we can show that the success probability of PPSZ is essentially tight.
For P strong

ω(1) we can improve the asymptotics of k from O(log2 k/k) to O(log k/k).

I Theorem 5. For every k ≥ 3 and every large enough n there exists a uniquely satisfiable
k-CNF formula F on n variables such that
1. Pr[ppsz(F, Pweak

w ) ∈ sat(F )] ≤ 2−(1− 2
k )n for some w = Θ(logn),

2. for any ε > 0, Pr[ppsz(F, Pweak
w ) ∈ sat(F )] ≤ 2−(1− 2(1+ε)

k )n for some w = nΘ(ε) .
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In particular, for k = 3, our upper bound is 20.333...n, which is fairly close to the lower
bound 20.386...n of [6].

I Theorem 6. For every k ≥ 3 and every large enough n, there exists a k-CNF formula F
on n variables with a unique satisfying assignment such that ppsz(F, P strong

n/k ) is successful

with probability at most 2(−1+ε)n, where ε = O
(

log(k)
k

)
.

Unfortunately we fail to obtain 2−(1−O(1/k))n upper bounds for strong PPSZ. Is this
possible at all or indeed strong PPSZ succeeds with probability at least 2−(1−ω(1/k))n?

The analysis of our hard instances is based on an encoding view of PPSZ. Given a formula
F on variables x1, . . . , xn and a satisfying assignment b, PPSZ produces an encoding of the
assignment with respect to a given permutation π of the variables in the following way.

encode(b, π, F, P )
c := empty string
for i = 1, . . . , n do

if P (F, xπ(i)) 6∈ {0, 1} then
append bπ(i) to c;

end
F := F |xπ(i)→bπ(i) ;

end

It is not hard to see that we can express the success probability of PPSZ in terms of
expected code lengths as follows.

I Lemma 7 ([10]). Let F be a k-CNF and let P be a sound heuristic. We have Pr[ppsz(F, P ) ∈
sat(F )] =

∑
b∈sat(F ) Eπ 2−|encode(b,π,F,P )|.

Thus our goal is to construct instances having a few satisfying assignments, all of which
admitting only long encodings. Defining the optimal encoding length a satisfying assignment
b to be codelength(F, P,b) := minπ |encode(b, π, F, P )| we get

Pr[ppsz(F, P ) ∈ sat(F )] ≤
∑

b∈sat(F )

2−codelength(b,F,P ) .

The formulas in Theorem 5 and Theorem 6 have the unique satisfying assignment 0.
Thus our goal will be to prove a lower bound on codelength(F, P,0).

2 Notation and Preliminaries

Let F be a CNF formula with variable set V . A restriction (or partial assignment) is a
partial function ρ : V → {0, 1}. For b ∈ {0, 1}n, the notation S 7→ b is the restriction that
maps x ∈ S to bx and is undefined on V \ S. By F |ρ we denote the formula arising from
fixing the variables according to ρ and then simplifying the resulting formula by removing
unsatisfied literals and satisfied clauses. For a matrix A ∈ Fm×n2 and U ⊆ [n] we denote by
AU the (m× |U |) submatrix formed by taking all columns indexed by some i ∈ U . By 0 we
denote the all-0-assignment as well as the null vector in Fn2 .

We will identify a vector a ∈ Fn2 with its support {i ∈ [n] | ai = 1}. Thus we will liberally
write things like a ∪ b, a \ b, |a|, and so on.

We list some key observations relating PPSZ and resolution. The (easy) proofs can be
found in the appendix.
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I Definition 8. Let F be a formula with a unique satisfying assignment, which without loss
of generality is 0, and let P be a proof heuristic. We say F collapses under P if there is
an ordering x1, . . . , xn of the variables in F such that F |(x1,...,xi−1 7→0) `P (xi = 0) for all
1 ≤ i ≤ n− 1.

I Proposition 9. If codelength(F, P,b) ≤ m then there is a set S of m variables such that
F |S 7→b collapses under P .

The next lemma states that if F collapses “sequentially” under bounded-width resolution,
then it collapses “simultaneously” as well.

I Proposition 10. Let F be a k-CNF formula with the unique satisfying assignment 0, and
let w ≥ k. If F collapses under P strong

w then F `strong
w (x = 0) for all variables x of F .

The next proposition connects logical implication and collapse under Pweak to linear
algebra.

I Proposition 11. Let A ∈ Fm×n2 and FA be its linear formula. If `weak
w (F, xi) ∈ {0, 1}

then there is a row vector r ∈ Fm2 of Hamming weight at most w such that r ·A = ei.

3 Hard Instances for Weak PPSZ: Proof of Theorem 5

The construction in this section is based on satisfiable Tseitin formulas. Unsatisfiable Tseitin
formulas are extensively studied in proof complexity (see e.g. [13, 14]). Given a graph
G = (V,E), the girth of G is defined as the size of the shortest cycle in G. We denote this
by g(G). For every pair e, e′ ∈ E(G) of edges we define the distance between e and e′ by
minu∈e,v∈e′{d(u, v)}. We will need graphs of bounded degree with large girth. According to
a well-known result of Erdős and Sachs [5], for every k ≥ 3 and every sufficiently large n,
there exists a k-regular graph with n vertices and girth > logk−1 n. Explicit constructions
for infinitely many values of k with a better constant are also known [9].

Given a degree-k graph G = (V,E), the Tseitin formula T (G) is defined as follows. For
each edge e ∈ E, there is a propositional variable xe. For each vertex v ∈ V we add the
constraint

∑
e3v xe = 0 (mod 2), which can be written as a conjunction of 2k−1 k-clauses.1In

our formulas we assume that the girth of the graph is at least logk−1 n, where n denotes
the number of vertices. Furthermore, we add a clause ¬xe ∨ ¬xe′ for each pair of edges e, e′
of distance at least g(G)

2 − 1 (which is ≥ 1
2 logk−1 n− 1). We call these clauses bridges and

we denote the conjunction of all of them by B. Define FG := T (G) ∧B. Note that FG has
N = kn/2 variables.

The following proposition follows readily.

I Proposition 12. FG has the unique satisfying assignment 0.

Proof. For an assignment α let Gα denote the spanning subgraph of G containing the edges
e with α(e) = 1. Note that α satisfies T (G) if and only if Gα is even, i.e., every vertex has
even degree. There are two cases: either Gα is the empty graph, in which case α = 0 and
satisfies FG, too. Or Gα contains a cycle C, which has length at least g(G) and therefore
contains a bridge. In this case, α violates B. J

1 The original Tseitin tautologies express the fact that the system
∑

e3v
xe = av (mod 2) is unsatisfiable

if
∑

v
av = 1 (mod 2).
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We will consider PPSZ with Pweak
w when w = O(logn)

I Lemma 13. In FG any encoding of the all-0 assignment has length at least (1 − 2
k )N

under w ≤ 1
2 logk−1 n− 1.

Proof. Suppose for contradiction that codelength(F, Pweak
w ) ≤

(
1− 2

k

)
N collapses. Then

there is a restriction ρ that sets some
(
1− 2

k

)
N variables to 0 such that FG|ρ collapses

under Pweak
w . Note that ρ leaves at least 2

kN = n variables (i.e., edge) unset. Obviously this
set of edges contains a cycle C. Let σ := (E \ C 7→ 0). Clearly FG|σ also collapses. This
contradicts the next lemma:

I Lemma 14. Let C ⊆ E be a cycle and σ := (E \ C 7→ 0). Then FG|σ does not collapse
under Pweak

w .

Proof. Suppose it does collapse. Then there exists an edge e ∈ C and a set F ′ ⊆ F |σ of at
most w clauses such that F ′ |= ¬xe. The clauses in F ′ are either coming from the Tseitin
part or from the bridges. Consider a path P = v1, . . . , vs of maximum length on which e
appears and the vertices of P are mentioned by Tseitin clauses in F ′. Note that P cannot
contain the whole cycle, since otherwise there would be too many clauses in F ′. Let v0 and
vs+1 be vertices on C \ P connected to v1 and vs, respectively. We extend P by v0 and vs+1.
Since w ≤ 1

2 logk−1 n− 1, there is no bridge between any pair of edges appearing on P . We
can now simply set all the variables in P to 1 and all other variables to 0. This would satisfy
F ′ and yet it sets xe to 1, contradicting that F ′ |= ¬xe. J

This concludes the proof of Lemma 13. J

Below we show that it is possible to obtain similar lower bounds even when w is some
function in nO(ε).

I Lemma 15. For every ε > 0 and every sufficiently large n, any encoding of the all-0
assignment with w < n

ε
8(k−1) has length at least (1− 2(1+ε)

k )N .

Proof. Let S be the set of edges appearing in any encoding of the all-0 assignment. We will
show that |E \ S| < (1 + ε)n. Assume for a contradiction that |E \ S| ≥ (1 + ε)n. We will
show that E \ S contains a large subgraph which is expanding in a certain sense.

I Definition 16. In a graph G we say that a path P = v1, . . . , vt is slender if for all 1 ≤ i ≤ t
we have d(vi) ≤ 2.

I Lemma 17. Let G = (V,E) be a graph on n vertices such that |E| ≥ (1 + ε)n for some
ε > 0. There exists an induced subgraph H ⊆ G on at least Ω(ε3/4n1/4) vertices with δ(G) ≥ 2
with no slender path of length ≥ 2/ε.

Proof. Let r = 2/ε. We first find a subgraph of minimum degree at least 2 on at least
Ω(
√
n/r) vertices with many edges. To do this we can remove vertices of degree at most 1

at a time. Having removed t vertices we are left with a graph on n− t vertices and at least
(1 + 2

r )n− t edges. It holds that (1 + 2
r )n− t ≥ (1 + 2

r )(n− t). As the remaining graph has
at most

(
n−t

2
)
edges we have (1 + 2/r)n ≤

(
n−t

2
)

+ t. This implies t ≤ n − Ω(
√
n/r). Let

n′ = n− t. We thus have n′ ≥ Ω(
√
n/r).

If the remaining graph has no slender path of length r we are done. Otherwise let
v1, . . . , vt1 be a maximal slender path, i.e., d(vi) = 2 for all 1 ≤ i ≤ t1 and v1 and vt1 have a
neighbor (possibly the same) outside P of degree at least 3. We remove v1, . . . , vt1 from the
graph. If there are any vertices of degree 1 we remove them one at a time until there are
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no more such vertices. Let the total number removed vertices be t′1. We repeat this for d
rounds until there are no more slender paths of length r and all vertices have degree at least
2. Let ti and t′i be defined similarly for the ith iteration. We have t′i ≥ r and thus d ≤ n′/r.
Note that the total number of removed edges is t′1 + . . .+ t′d + d and hence at most n′ + n′/r.
We are left with a graph with at least n′/r edges and hence at least Ω(

√
n′/r) = Ω(ε3/4n1/4)

vertices. J

Applying Lemma 17 on E \ S we obtain a subgraph H with minimum degree at least
2 which does not contain any slender path of length ≥ 2/ε. Setting all edges outside of H
to 0, we obtain that there exists a set of at most w clauses F ′ in the restricted formula
which implies xe = 0 for some e ∈ H. Let e = (u, v). We will construct a tree Tuv in H by
growing two disjoint rooted trees Tu and Tv, starting at u and v, respectively. The crucial
requirement is that in both Tu and Tv any path of length ≥ 2/ε that goes downwards in the
rooted tree there exists a vertex of degree ≥ 3. We call such a vertex a branching vertex.
Furthermore, in Tuv the distance between the first branching vertices in Tu and Tv is at most
2/ε. Using the fact that the minimum degree in H is at least 2 and it does not contain any
slender path of length 2/ε and that the girth is at least logk−1 n, we can easily construct Tuv
so that each root to leaf path in both Tu and Tv has ε

8 logk−1 n branching vertices. Since
the horizon w < n

ε
8(k−1) , there are vertices u′ and v′ in Tu and Tv, respectively, that are not

mentioned in F ′. Consider the unique path between u′ and v′ in Tuv. Note that this path
has length at most 1

2 logk−1 n. However, since we put bridges only between edges of distance
more that 1

2 logk−1 n, there is no bridge between any pair of edges on this path. Setting all
edges on the path including e to 1 and everything else to 0 satisfies F ′, contradicting to
F ′ |= ¬xe. J

Lemma 13 implies that codelength(FG, Pweak
w ) ≥ (1 − 2

k )N for w ≤ 1
2 logk−1 n − 1.

Similarly, Lemma 15 implies that codelength(FG, Pweak
w ) ≥ (1 − 2(1+ε)

k )N for w < n
ε

8(k−1) .
This completes the proof of Theorem 5.

4 Hard Linear Formulas for Strong PPSZ: Proof of Theorem 6

Suppose A ∈ Fm×n is a matrix in which every row has Hamming weight at most k. Then
the system A · x = 0 consists of m linear equations over n variables, each of which involves
at most k variables. One can encode it as a k-CNF formula with 2k−1 ·m clauses. Let us
denote this formula by FA. A CNF formula which in this way encodes a system of linear
equations will be called a linear CNF formula.

4.1 Robust Expanding Matrices

As often in the realm of resolution, our proof of hardness relies on a certain notion of
expansion. Loosely speaking, a matrix A is a robust expander if for every “sufficiently
large” submatrix AU and every “sufficiently diverse” set of row vectors u1, . . . ,u` at least
one of the vectors ui · AU has “large” Hamming weight. We will now define this notion
formally. Throughout this section, let k ∈ N be arbitrary but fixed (this is the k for which
we want to construct hard k-CNF formulas). A sequence u1, . . . ,u` ∈ Fn2 is well-increasing
if n/k ≤ |ui \ (u1 ∪ · · · ∪ ui−1)| ≤ 4n/k for every 1 ≤ i ≤ `. This is what we mean by
“sufficiently diverse”.
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I Definition 18 (Robust Expanders). A matrix A ∈ Fn×n2 is called a t-robust (`, w)-expander
if for every U ⊆ [n] of size t and well-increasing sequence u1 . . . ,u`, there is some 1 ≤ i ≤ `
such that |ui ·AU | > w.

I Theorem 19 (Robust Expanders Are Hard). Let t, w ∈ N, w ≥ 2n/k, and ` :=
⌊
k·t
4n
⌋
. If A

is a t-robust (`, w)-expander, then codelength(F, P strong
w ,0) ≥ n− t.

I Theorem 20 (Robust Expanders Exist). For every sufficiently large n, there is a matrix
A ∈ Fn×n2 such that (1) every row of A has Hamming weight at most k + 1; (2) the rank of
A is at least n− 2 log(n); (3) A is a t-robust (`, w)-expander for t = 60·log(k)

k · n, ` =
⌊
k·t
4n
⌋
,

and w = 2n/k.

With these theorems we can prove Theorem 6 for strong PPSZ. Write t = 60·log(k)
k ·

n and let A be a matrix as promised by Theorem 20. By Theorem 19 we know that
codelength(FA, P strong

2n/k ,0) ≥ n− t. The Steinitz exchange lemma from linear algebra gives us
2 log(n) unit row vectors that we can add to A to obtain a matrix A′ ∈ F (n+2 log(n))×n

2 of row
rank n. This means that FA′ has the unique satisfying assignment 0. Each added unit row
vector in A′ is a unit clause in FA′ . It can easily be verified that adding a unit clause reduces
codelength by at most 1. Therefore codelength(FA′ , Pweak

n/k ,0) ≥ codelength(FA, Pweak
n/k ,0)−

2 log(n) ≥ n− t− 2 log(n). This proves Theorem 6.

Proof of Theorem 19. Let P be the strong proof heuristic which performs resolution of
width up to w. We assume that codelength(FA, P,0) ≤ n− t and will derive a contradiction
to the assumption that A is a robust expander.

By Proposition 9 and 10, codelength(FA, P,0) ≤ n − t means that there is a partition
[n] = U ] S with |U | = t such that F ′ `P (xi = 0) for every i ∈ U , where F ′ := FA|S 7→0 is
the formula obtained from F by setting every variable in S to 0. For notational simplicity
assume U = {1, . . . , t}. By a connection between resolution and linear algebra which is
folklore by now (see e.g. [2]), the fact that F ′ `P (xi = 0) means the following:

I Proposition 21 (Connection Between Resolution and Linear Algebra). For every i ∈ U there
exists a binary tree Ti in which every node v is labeled with a row vector rv ∈ Fn2 such that:
1. for a leaf v, the label rv is a unit vector,
2. if v is an inner node and v0, v1 are its children then rv = rv0 + rv1 .
3. |rv ·AU | ≤ w for every node v of Ti,
4. rroot ·AU = ei.
We call Ti the resolution tree of xi.

For i ∈ {1, . . . , t} let ri be the root labels of the tree Ti. Since ri ·AU = ei we conclude that
the vectors r1, . . . , rt are linearly independent. In particular this means that |r1∪· · ·∪rt| ≥ t.
Equipped with these observations and the previous proposition, we can now construct a
well-increasing sequence u1, . . . ,u`∗ with `∗ :=

⌊
k·t
4n
⌋
and |ui · AU | ≤ w for all 1 ≤ i ≤ `∗.

This will be a contradiction to the assumption that A is a robust expander.
Start with the empty sequence and ` = 0. While ` < `∗, we try to extend the current well-

increasing sequence u1, . . . ,u` by considering two cases. For convenience let u = u1∪· · ·∪u`.
Note that `·n

k ≤ |u| ≤
4`·n
k .

Case 1. Suppose some vector ri among r1, . . . , rt satisfies |ri \ u| > 2n/k. Recall that ri
is the root label of the tree Ti. We walk from the root of Ti to a leaf by always choosing the
child v for which the “weight” |rv \ u| is largest. Note that this weight is more than 2n/k at
the root and at most 1 at a leaf. Also, in every step the weight decreases by at most a factor
of 2. Thus we find a node v on the path for which n/k ≤ |rv \ u| ≤ 2n/k. We set u`+1 := rv
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and see that the sequence u1, . . . ,u`+1 is well-increasing by the choice of u`+1. Also, since
u`+1 is the label of a node in a resolution tree, it holds that |u`+1 ·AU | ≤ w.

Case 2. Suppose |ri \ u| ≤ 2n/k for all 1 ≤ i ≤ t. Since |(r1 ∪ · · · ∪ rt) \ u| ≥ t− |u| ≥
t − 4`·n

k ≥ t − 4`∗·n
k + 4n

k ≥
4n
k , we can find a subset I ⊆ [t] with |I| ≤ 2n/k such that

2n/k ≤
∣∣⋃

i∈I ri \ u
∣∣ ≤ 4n/k. If we let v be a random linear combination of the ri, i ∈ I,

we see that E[|v \ u|] ≥ n/k. Thus, there is some vector v which is a linear combination
of the ri, i ∈ I and n/k ≤ |v \ u| ≤ 4n/k. Furthermore, since |ri · AU | = |ei| = 1 we get
|v · AU | ≤

∑
i∈I |ri · AU | = |I| ≤ 2n/k ≤ w. We can extend the sequence u1, . . . ,u` by

setting u`+1 = v.
To summarize, this iteratively constructs a well-increasing sequence u1, . . . ,u`∗ with

|ui · AU | ≤ w. We obtain a contradiction to the assumption that A is a robust expander,
which completes the proof. J J

4.2 Robust Kernel Expanders Exist—Proof of Theorem 20
Proof of Theorem 20. We will show that a matrix A sampled from a suitable probability
distribution is a t-robust (`, w) expander with high probability, for t = 60·log(k)

k ·n, ` = 5 log(k),
and w = 2n/k. Note that by definition, this will also be a t-robust (`′, w)-expander for every
`′ ≥ `, thus also for `′ =

⌊
k·t
4n
⌋

=
⌊ 60

4 · log(k)
⌋
≥ 5 log(k) = `.

Take a step k random walk in the Hamming cube {0, 1}n and let X be its endpoint. We
view X as a row vector in Fn2 . Repeating this experiment n times independently gives n row
vectors that form a matrix B ∈ Fn×n2 . Surely each row of B has Hamming weight at most
k, and B turns out to be a robust expander. Unfortunately its kernel will have dimension
Θ
(

log2(k)n
k

)
on expectation—too large for our purposes. We introduce a nice trick that

boosts the rank of B.

I Lemma 22. Let B ∈ Fn×n2 be a matrix and let P be a random permutation matrix. Then
E[| ker(B + P )|] ≤ n+ 1.

Proof. The kernel of a matrix A ∈ Fn×n2 is the set {x ∈ Fn2 | A · x = 0}. With linearity of
expectation we calculate:

E[| ker(B + P )|] =
∑
x∈F2

Pr[(B + P ) · x = 0]

=
∑
x∈F2

Pr[B · x = P · x]

Note that B · x is a fixed vector whereas P · x is a uniformly distributed over all vectors of
weight |x|. Thus, the probability that this happens to be B ·x is exactly

(
n
|x|
)−1 if |B ·x| = |x|

and 0 otherwise. Thus the above is at most
n∑

w=0

∑
x∈Fn2 :|x|=w

(
n

w

)−1
= n+ 1 .

J J

We set A := B + P . By Markov’s inequality, | ker(A)| ≤ n2 with high probability, and
therefore also rank(A) ≥ n−2 log(n) with high probability. Also, each row of A has Hamming
weight at most k + 1. It remains to show that A has the desired expansion properties. First
we fix a set U of size t and a well-increasing sequence u1, . . . ,u` and estimate the probability
that |ui ·AU | ≤ w for all i. For this we need the following fact about random walks in the
Hamming cube which we will prove later.
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I Lemma 23 (Hamming Cube Mixing Lemma). Let U ⊆ [n] and z ∈ {0, 1}U . Let x be
the endpoint of a length d random walk in {0, 1}n starting at 0. Then Pr[xU = z] ≤

2
(

1+(1−2/n)d
2

)|U |
.

In particular if d ≥ n and |U | = t is sufficiently large, then this probability is at most
2−2t/3. From this lemma it is easy to show the following:

I Lemma 24. Let u1, . . . ,u` be a well-increasing sequence. Then the probability that
|ui ·AU | ≤ w for all i is at most 2− 2·`·t

3 ·
(
t
≤w
)`.

Proof. Let Ej be the event that |ui · AU | ≤ 2n/k for all 1 ≤ i ≤ j. We want to bound
Pr[E`] =

∏`
j=1 Pr[|uj ·AU | ≤ 2n/k | Ej−1]. The lemma will follow directly from this claim:

4.2.0.1 Claim.

For each 1 ≤ j ≤ ` the probability Pr[|uj ·AU | ≤ 2n/k | Ej−1] is at most 2−2t/3 ·
(

t
≤2n/k

)
.

Proof of the claim. We divide ui into an “old part” vi and a “new part” wi. Formally, we
write vi = ui ∩ (u1 ∪ . . .ui−1) and wi = ui \ (u1 ∪ . . .ui−1). We know that |wi| ≥ n/k since
the sequence is well-increasing. Also, ui = vi + wi. Let y ∈ Ft2 be a fixed vector. Note that

Pr[uj ·AU = y | Ej−1] = Pr[wj ·AU = vj ·AU + y | Ej−1]

Now vj · AU and Ej−1 both only depend on the rows ah of A with h ∈ vj , and wj · AU is
independent these. Thus, it suffices to bound Pr[wj ·AU = z] for some unknown but fixed
vector z. Remember that A = B + P where P is a random n× n permutation matrix.

Pr[wj ·AU = z] = Pr[wj ·BU = z + PU ·wj ]

What is the distribution of wj ·BU? It is the sum of |wj | rows of BU and thus distributed like
the endpoint of a |wj | ·k ≥ n step random walk in {0, 1}n starting at 0 and then projected to
the coordinates in U . By the Hamming Cube Mixing Lemma (Lemma 23) with d = n we get

Pr[wj ·AU = z] ≤ 2
(

1 +
(
1− 2

n

)n
2

)t
≤ 2−2t/3 .

We conclude that Pr[uj ·AU = y | Ej−1] ≤ 2−2t/3 for every fixed y ∈ Ft2. Therefore

Pr[|uj ·AU | ≤ 2n/k | Ej−1] ≤ 2−2t/3 ·
(

t

≤ 2n/k

)
.

This proves the claim. Via the chain rule, the claim immediately implies the lemma. J J

To prove the theorem, it remains to do a union bound over the choices of U ⊆ [n] and the
well-increasing sequence. The number of ways to choose U ⊆ [n] of size t is

(
n
t

)
≤
(
en
t

)t ≤ kt.
Bounding the number of well-increasing sequences is more subtle.

I Lemma 25. The number of well-increasing sequences is at most k 4`n
k · 2 4`2

k ·n.

Proof. First, write u := u1 ∪ · · · ∪ u` and note that |u| ≤ 4`n
k . Thus, the number of possible

u is at most
(

n
≤ 4`n

k

)
≤ k 4`n

k Once we have chosen u, there are at most 2|u| choices for each

individual ui and at most 2`·|u| ≤ 2 4`2
k ·n well-increasing sequences. J J
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Let us now multiply (1) the number of choices for U , (2) the number of well-increasing
sequences, and (3) for a fixed U and well-increasing sequence u1, . . . ,u`, the probability that
|ui ·AU | ≤ w. We see that this is at most

kt · k 4`n
k · 2 4`2

k ·n · 2− 2·`·t
3 ·

(
t

≤ w

)`
= 2

log2(k)·n
k ·(60+4·5+4·52− 2

3 5·60+2·5) = o(1) .

Here we used
(
t
≤w
)
≤
(
et
w

)w ≤ k2n/k. We conclude that A has the desired expansion
properties with high probability. In addition, it has rank at least n− 2 log(n), and every row
has Hamming weight at most k + 1. This concludes the proof. J

5 Proof of Lemma 23

Let Q be the random walk matrix of the n-dimensional Hamming cube. That is, Qx,y = 1/n
if x and y have Hamming distance 1, and 0 otherwise. Note that Q is a (2n × 2n)-matrix,
i.e., it takes as input vectors of dimension 2n, or equivalently, functions from Fn2 to R. If
f : Fn2 → [0, 1] is a probability distribution over Fn2 , then Qdf is the distribution that we get
when sampling x ∼ f and performing a random walk of length d. Let f be the function that
is 1 at 0 and 0 elsewhere. For X being the endpoint of an d-step random walk starting at 0,
it holds that

Pr[X = y] = (Qtf)(y) .

Fortunately, we can understand Qtf , since we know the eigenvalues of Q: The Hamming
cube is the Cayley graph of the additive group of Fn2 with generating set {e1, . . . , en}. The
reader who could not make sense of this last sentence may read the next couple of paragraphs.
The reader who is familiar with Cayley graphs and the discrete Fourier transform can skip
them.

I Definition 26. For S ⊆ [n], define χS : Fn2 → R by

χS(x) := (−1)
∑

i∈S
xi .

One checks that the χS form an orthonormal basis of the space of functions Fn2 → R when
we choose the following inner product:

〈f, g〉 := E
x∈Fn2

[f(x)g(x)] .

Each χS is an eigenvector of Q:

(Q · χS)(x) =
∑

y
Qx,yχS(y) =

∑
y:dH(x,y)=1

1
n
χS(y)

=
n∑
i=1

1
n
χS(x + ei) =

n∑
i=1

1
n
χS(x)χS(ei)

= χS(x) 1
n

n∑
i=1

χS(ei)

So λS := 1
n

∑n
i=1 χS(ei) is the eigenvector of χS . Let us evaluate λS :

λS = 1
n

n∑
i=1

χS(ei) = 1
n

n∑
i=1

(−1)[i∈S] = 1
n

(n− 2|S|) = 1− 2|S|
n

.
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Let f : Fn2 → R be the function that is 1 on 0 and 0 otherwise. To understand Qtf , we
write f in the basis of the eigenvectors of Q. Since the χS are orthonormal under the scalar
product 〈·, ·〉, we can write

f =
∑
S⊆[n]

f̂SχS ,

where the coefficients f̂S are

f̂S := 〈f, χS〉 = E
x∈Fn2

[f(x)χS(x)] = 2−n,

since x = 0 is the only element that contributes to the expectation. Thus,

Qtf = Qt

(∑
S

f̂SχS

)
= Qt

(∑
S

2−nχS

)
= 2−n

∑
S

λtSχS .

For y ∈ Fn2 , let us bound the probability Pr[X = y]: With the above equation, we get

(Qtf)(y) = 2−n
∑
S

λtSχS(y) = 2−n
∑
S

(
1− 2|S|

n

)t
χS(y)

≤ 2−n
n∑
s=0

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t (since |χS(y)| = 1)

≤ 2−n
bn/2c∑
s=0

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t + 2−n
n∑

s=dn/2e

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t

= 2−n
bn/2c∑
s=0

(
n

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t + 2−n
bn/2c∑
r=0

(
n

n− r

) ∣∣∣∣1− 2(n− r)
n

∣∣∣∣t

= 2 · 2−n
bn/2c∑
s=0

(
n

s

)(
1− 2s

n

)t

≤ 2 · 2−n
bn/2c∑
s=0

(
n

s

)(
1− 2

n

)st
≤ 2 · 2−n

n∑
s=0

(
n

s

)(
1− 2

n

)st

= 2
(

1 +
(
1− 2

n

)t
2

)n
.

This proves the lemma for U = [n]. In general, however, we are interested in the
distribution of XU , i.e., X projected to the coordinates in U .
I Observation 27. Perform a “lazy” random walk on {0, 1}|U | as follows: Start at 0. At each
step, take each edge with probability 1/n. With the remaining probability 1− |U |/n, don’t
move in this step. Then the end point of this walk after t steps has distribution XU .

Let Q be transition matrix of the random walk on {0, 1}|U |. Then

Q̃ := |U |
n
Q+ n− |U |

n
I

is the transition matrix of the lazy random walk described above. For each S ⊆ U , χS is an
eigenvector of Q, and the corresponding eigenvalue is λS = 1− 2|S|

|U | . The matrix Q̃ has the
same eigenvectors as Q, and its eigenvalues are

λ̃S = |U |
n
λS + n− |U |

n
· 1 = 1− 2|S|

n
.
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Let f : {0, 1}|U | → R be the function that is 1 at 0 and 0 elsewhere. We write f =
∑
S⊆U f̂SχS .

Let u := |U |. By the same calculation as above, f̂S = 2−u. Thus, for y ∈ {0, 1}u we get

(Q̃tf)(y) = 2−u
∑
S

λtSχS(y) = 2−u
∑
S

(
1− 2|S|

n

)t
χS(y)

≤ 2−u
u∑
s=0

(
u

s

) ∣∣∣∣1− 2s
n

∣∣∣∣t (siuce |χS(y)| = 1)

If u ≤ n/2, we observe that all eigenvalues 1 − 2s/n are non-negative.2 In this case we
continue:

2−u
u∑
s=0

(
u

s

)(
1− 2s

n

)t
≤ 2−u

u∑
s=0

(
u

s

)(
1− 2

n

)st
=
(

1 +
(
1− 2

n

)t
2

)u
(1)

and we are done. If u > n/2, things get more tricky. We split the sum in two parts:

2−u
bn/2c∑
s=0

(
u

s

)(
1− 2s

n

)t
+ 2−u

u∑
s=bn/2c+1

(
u

s

)(
2s
n
− 1
)t

(2)

We can bound the first sum exactly similar as in (1):

2−u
bn/2c∑
s=0

(
u

s

)(
1− 2s

n

)t
≤ 2−u

bn/2c∑
s=0

(
u

s

)(
1− 2

n

)st
≤ 2−u

u∑
s=0

(
u

s

)(
1− 2

n

)st

=
(

1 +
(
1− 2

n

)t
2

)u
.

Let us bound the second sum in (2). For notational convenience, we let it run from dn/2e to
u, only making it larger. We change the parameter s to r := u− s. Thus

2−u
u∑

s=dn/2e

(
u

s

)(
2s
n
− 1
)t

= 2−u
u−dn/2e∑
r=0

(
u

u− r

)(
2(u− r)

n
− 1
)t

= 2−u
u−dn/2e∑
r=0

(
u

r

)(
2u− n
n

− 2r
n

)t

≤ 2−u
u−dn/2e∑
r=0

(
u

r

)(
1− 2r

n

)t
(since u ≤ n)

≤ 2−u
u−dn/2e∑
r=0

(
u

r

)(
1− 2

n

)rt

≤ 2−u
u∑
r=0

(
u

r

)(
1− 2

n

)rt
=
(

1 +
(
1− 2

n

)t
2

)u
.

Thus, both sums in (2) are bounded by (1) and the lemma follows.

2 The reader might observe that in our application indeed |U | � n/2.
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