
SOME RELATIONS BETWEEN

SUBSYSTEMS OF ARITHMETIC

AND COMPLEXITY OF COMPUTATIONS

PAVEL PUDLAK

ABSTRACT. We shall introduce a special mode of interactive computations
of optimal solutions to optimization problems. A restricted version of
such computations was used in [KPT] to show that T~ = S~+1 implies
Ef+2 = IIf+2· Here we shall reduce the question whether T~ = S~ to a
question about interactive computations (in a more general sense) of some
optimization problems.

1. INTRODUCTION

We shall consider fragments of bounded arithmetic 8 2 . This is a first

order theory of arithmetic, where the induction schema is restricted to
bounded formulae. Our main reason for studying such systems is their close

relation to low level computational complexity. We hope that eventually
this research will bring new insight into the problems in complexity theory.

Ideally, we would like to show some independence results for such theories
and sentences stating some unknown relations between complexity classes.
In order to be able to prove such results, we have to understand better the

mutual relation between the complexity theory and such logical theories.
This paper attempts to make another step in this direction.

The first system for bounded arithmetic was proposed and studied by

Parikh [Pal. Nowadays his system is known as 16.0 ; it is Peano Arith

metic with induction restricted to bounded arithmetical formulae. This

and related systems have been extensively studied by Paris and Wilkie (see
[PW] for a survey paper). The system 8 2 and an equivalent system T2

were introduced by Buss [Bl]. These systems are conservative extensions
of It10 + n1 , where n1 is Vx3y(y = 2f\og2(x+1)l). The richer language of

8 2 and T2 enables one to define natural fragments 8~ and T~, i = 1,2,
The definition of 8~ and T~ is motivated by Stockmeyer's Polynomial Hier
archy. This hierarchy is a natural extension of the classes P, NP, co NP in

499

Y. N. Moschovakis (ed.), Logic from Computer Science
© Springer-Verlag New York, Inc. 1992

500 PAVEL PUDLAK

a much similar way as the arithmetical hierarchy is an extension of classes

recursive sets, recursively enumerable sets, complements of recursively enu

merable sets, etc. It is an open problem whether 52 is finitely axiomatizable.

This problem is equivalent to the statement that 52 collapses to some frag

ment 5~. Similarly it is an open problem whether Polynomial Hierarchy

collapses to some level.

In [KPT] we showed that if 52 is finitely axiomatizable, then Polynomial

Hierarchy collapses. This was done by proving

(where ~f+l and IIf+2 are levels in the Polynomial Hierarchy), and using

the fact that we have the following inclusions

T~ <;;; 5~ <;;; Ti <;;; 5~ <;;; Ti <;;; ...

Hence assuming a plausible conjecture that Polynomial Hierarchy does not

collapse, the odd inclusions are strict. Here we try to do a similar thing with

the even inclusions. We shall present a conjecture on certain computations

which implies that also the odd levels are strict. This is a conjecture about a

new concept and, unfortunately, we are not able to reduce it to any problem

in complexity theory which has been considered before.

It should be stressed that the motivation for showing S2 -I T2 is not

only to clear up the remaining problems. A strong conservation result

has been proved for pairs T2 and S~+l in [B2]. If there were some partial

conservativity also between pairs S~ and T~, we would have some partial

conservativity of the whole system 52 over its fragments S~. This seems

rather unlikely. The separation of S~ from T2 could be the first step toward

showing that there is no such conservativity. For related results see also

Krajicek's paper [Kr] in these proceedings.

2. FRAGMENTS OF BOUNDED ARITHMETIC

We shall use fragments of systems of bounded arithmetic 52 and T2 of

Buss [BI]. Each system has a finite set of basic open axioms and an axiom

schema of induction. We consider two schemata. Ordinary induction IND:

'P(O) & \ix('P(x) -4 'P(x + 1)) -4 \ix'P(x);

and polynomial induction PIND:

'P(O) & \ix('P(lx/2J) -4 'P(x)) -4 \ix'P(x).

SOME RELATIONS BETWEEN SUBSYSTEMS 501

8 2 is the system with the basic axioms and the schema PIND for all bounded

formulae; T2 is the system with the basic axioms and the usual schema of
induction IND for all bounded formulae.

The particular choice of primitive notions and basic axioms describing

the primitive notions is not very important, hence we shall not give a precise
definition, instead we shall describe the most important properties that we
need:

(1) the language contains a finite number of polynomial time com
putable functions and predicates;

(2) there are natural classes of formulae defining the sets in the Poly
nomial Hierarchy.

The reason for extending the usual language of arithmetic is that we

want to have naturally defined fragments of these theories. If we did not
extend the language, the bottom fragments would not have nice proper

ties. Furthermore, the schemata of induction for bounded formulae are not
strong enough to pove the existence of functions that grow faster than the
terms of the language. Thus it is more convenient to add functions with

higher growth rate than extend the axiomatization, which is rr~, by a rrg
axiom. The higher growth rate is needed in order to be able to formalize
polynomial time computations. If a sequence s of length k is encoded by

a binary expansion of a number n, then n is about 2k. If we need another
sequence of length k 2 , then we need a number of size 2k2, which is about
2(flog2(n+2)1)2. That is why we need such a function. Note that there is an

alternative approach which is based on the sequence as the basic primitive

concept instead of the concept of the number. This has been considered by
Cook [C], (however his theories PV and PV1 are quantifier free).

The classes of bounded formulae ~~ and rr~ are defined as follows. First

choose a suitable class ~g(= rrg) whose formulae define sets in P. Then we

define ~~ and respectively rr~ as the classes of formulae with the correspond
ing prefix of bounded quantifiers follows by a ~g formula. The formulae in

~g are defined using sharply bounded quantifiers. These are bounded quan

tifiers where the bound is always the logarithm of a term. Thus we shall

use also the function flog2(x + 1)1, which is denoted by Ixl. For i > 0, the
formulae in ~~ (respectively in rrn define just the sets in ~f (respectively
in rrn. Using this relation we shall sometimes identify ~f sets with their

~~ definitions. ~g formulae, as they are usually defined, do not define all
sets in P. This is rather inconvenient and complicates the statements of

502 PAVEL PUDLAK

the theorems. Therefore in this paper we shall assume that I:g is a suit

able class of formulae that define just the sets in P. Such a class can be
constructed by formalizing polynomial time Turing machine computations.

This change influences only the weakest fragment that we consider T~: now

in ~ we can define all polynomial time computable functions. To get the
full symmetry, we shall use another convention which is not quite standard:

we shall sometimes denote P by ~b and IIb·
Now we can define fragments of bounded arithmetic: 8~ is 8 2 with PIND

restricted to ~~ formulae, T~ is T2 with induction restricted to ~~ formulae,

i ::::: o. Thus, for instance, we can think of T~ as "induction for P", and of

8~ as "polynomial induction for NP" .
Often it will be more convenient to use the following schema LIND (a

form of the least number principle) instead of PIND:

-'<p(x,O) V 3t < Ixl(<p(x, t) & -'<p(x, t + 1)) V <p(x, Ixl).

Fragments 8~ can be axiomatized by this schema for ~~ formulae. It has

been proven in [B1] that

hence

Many facts about the subsystems I~? of Peano Arithmetic transfer to

fragments 8~ and T~ (e.g. PIND ~~ == PIND II~), but not all. In partic
ular the proof that Peano Arithmetic is not finitely axiomatizable breaks
down in the new context. To prove that Peano Arithmetic is not finitely

axiomatizable one shows that

(where Con denotes the consistency), and uses G6del's Theorem to show

that

does not hold. While G6del's Theorem holds for fragments of bounded
arithmetic (see [B1]), 8 2 does not prove even the consistency of basic ax

ioms; (there are stronger results in this direction in [B1], [PW], [Pu], [T]).

SOME RELATIONS BETWEEN SUBSYSTEMS 503

3. OPTIMIZATION PROBLEMS

The aim of this paper is to show that there is a close connection between

fragments S~ and T~ on the one hand and certain interactive computations
of solutions to optimization problems on the other hand. Here we introduce

some basic terminology on optimization problems.

Let C(x, y) be a binary relation, let p be a function; both are defined on

natural numbers. We shall think of x as an input. For an input x, any y such
that C(x, y) holds will be called a feasible solution to x, (put otherwise, Cis

the condition that determines what is feasible for x). Function p measures

how good a solution is: if y and y' are feasible solutions, then y' is better

than y if p(y) < p(y'). If there is no better solution to x than y, then y

is called an optimal solution. For a pair C, p to determine an optimization
problem we shall assume two purely technical conditions, which will greatly
simplify the exposition:

(1) 0 is a feasible solution to any x;

(2) if Y is a feasible solution to x, then y ::; x.

We shall, of course, assume that all finite objects are encoded as numbers.

From the practical point of view only problems where C is in P and p

is polynomial time computable are interesting. Most of the NP-problems

come from optimization. Let us consider two examples.

(1) CLIQUE
C(x, y) == "y is a clique in graph x",
p(y) = "the size of y" ,
(0 is assumed to be the code of the empty clique).

(2) TRAVELLING SALESPERSON
C(x, y) == "y is a tour in graph x whose edges are labelled by

numbers (or y = 0)",

p(y) = "sum of all the labels of the graph minus the length (i.e.

the sum of the labels) of the tour" (and p(O) = 0).

It seems that there is some inherent difference between the two problems.
In the first case the range of p on feasible solutions to x is bounded by

a polynomial in the size of x, (in fact it is less than the size of x). In
the second case the range may be exponentially large in the size of x,
since numbers up to 2n - 1 have length less than or equal to n in binary
notation. For usual deterministic polynomial time computations this makes
little difference, since we know that both problems are NP-hard, but if we

504 PAVEL PUDLAK

have some extra information available the first type of a problem is more
likely to be solvable.

It is possible to define a hierarchy of optimization problems according to
the size of the range of p. However, for this paper we need only the distinc

tion between the polynomial size range and the exponential size range. We
shall call them type 1 and type 2 optimization problems respectively. Thus

type 2 are in fact all optimization problems and we use this term only to
stress the difference. For reasons of symmetry which will be apparent later,

we define also type 0: the problems in which the range of p is uniformly

bounded by a constant.

Optimization problems with C in P will be related to fragments T~, Sf,
Ti- For higher fragments we shall need C in I1Ll' while p will always be
polynomial time computable.

4. COMPUTATIONS WITH COUNTEREXAMPLES

Let an optimization problem C(x, y), p be given. Suppose a person called
STUDENT is to determine an optimal solution to x and suppose he can

use the help of another person called TEACHER. STUDENT has limited

ability, (in the simplest case he can perform deterministic polynomial time
computations), while TEACHER knows everything about the given prob

lem. STUDENT can ask questions of the form:

Is y an optimal solution to x?

TEACHER must answer correctly and, moreover, if her answer is negative,

she must produce a counterexample which is some better feasible solution

to x. The aim of TEACHER is to test STUDENT, so she can choose coun
terexamples which convey as little information as possible to STUDENT.

Formally we would model STUDENT as a mutlitape Turing machine

where the queries of STUDENT and answers of TEACHER will appear on

a special tape of the machine. The queries are computed by the machine,
while the answers come from outside following an arbitrary strategy. We

define that STUDENT (i.e. a given Turing machine) solves the optimiza
tion problem, if for every x and every strategy of TEACHER, STUDENT
computes some optimal solution to x. Thus TEACHER does not act as an

oracle in the ordinary sense, she is rather a person in a two player game.
Further we shall modify this model by allowing STUDENT to use an or

dinary racle from some class Ef and by restricting the number of queries

SOME RELATIONS BETWEEN SUBSYSTEMS 505

posed to TEA CHER. However we shall always assume that the number of

steps in the computation is bounded by a polynomial.

There is a trivial strategy for STUDENT (which is often used by stupid

students) according to which his first conjecture is 0 and then STUDENT
just repeats the answers of TEACHER. Clearly, for optimization problems

of type I, this strategy produces always a solution. We conjecture that

there is no strategy for STUDENT in general (i.e. for type 2). In fact, if

we measure the complexity by the number of queries that STUDENT must

ask, then it is plausible that there is no better strategy for hard problems

than the trivial one.

We define two types of computations with counterexamples:

type 0: the number of queries is bounded by a constant;

type 1: the number of queries is unbounded, (implicitly it is always bounded

by a polynomial, since all computations are bounded by a polyno

mial).

We have already noticed that type 1 computations solve type 1 problems;

the same is true for types O.

Let us consider for a moment computations with counterexamples with

out an additional I;f oracle, and suppose we want to find an optimal solution

for a predicate C(x, y) which is in P. If we want to use the usual oracle

computation instead of the counterexample computation, we can replace

TEACHER by a I;f oracle as follows. The query

Is y optimal?

is ITf, and if the answer is not, we can ask a I;f oracle about the bits of a

better feasible solution. Hence if optimal solutions can be computed with

counterexamples, then they can be computed by computations with a I;f
oracle. However, the computations with I;f oracles are too strong: it is an

easy exercise to show that any (i.e. type 2) problems can be solved using

such computations. So it is important that STUDENT is allowed to ask

only about feasible solutions to x when he is computing an optimal solution

to x.

We shall also use computations with counterexamples in a more general

situation. Let B(x, y, z) be a ternary predicate, let x be given. Now the

aim of STUDENT is to find some y such that \jz :::; xB(x,y,z). Again

STUDENT can produce a conjecture y and ask TEACHER whether \jz :::;
xB(x,y,z) is true. If it is not true, TEACHER must give to STUDENT

506 PAVEL PUDLAK

some z such that z S x & ,B(x, y, z). Such a z will be called a counterex

ample. If C(x, y), p(y) is an optimization problem, then we define B(x, y, z)
by

B(x, y, z) == C(x, y) & (p(y) < p(z) ---+ ,C(x, z»j

thus Vz S xB(x, y, z) expresses that y is an optimal solution to x. Note that

if C is in ~~ U II~, then B is in ~~+ 1 n II~+ 1 . Now this more general definition
of computatios allows STUDENT to ask also about elements which are not

feasible solutions to C. But this is no real advantage for STUDENT, since
STUDENT can always test himself whether y is a feasible solution, and if

it is not, then clearly z = 0 is a counterexample and he can use it as a

possible answer to TEACHER.

5. THE EXISTENCE OF OPTIMAL SOLUTIONS

IN FRAGMENTS OF BOUNDED ARITHMETIC

We consider optimization problems of the form C(x, y), p(y) where

C(x, y) is IIf and p is polynomial time computable. We shall suppose
that C(x, y) is defined by a II~ formula, p(y) is defined by a ~g formula,

and formulae C(x, 0) and C(x, y) -t Y S x are provable in the fragment in
question. If C(x, y), p(y) is a type 1 optimization problem, we shall require
that

C(x, y) -t p(y) < Ixl
is also provable.

Proposition 1. The following holds modulo the basic axioms for i ~ o.
(1) PIND ~~+l is equivalent with the schema saying that every IIf

optimization problem of type 1 has an optimal solution;

(2) IND ~~+l is equivalent with the schema saying that every IIf opti
mization problem of type 2 has an optimal solution.

Proof. We shall prove only (1), since (2) is similar. We shall use the equiv

alent schema LIND ~~+l. Let C (x, y), p(y) be given, let C (x, y) be in IIf.
Assume that C(x, y) -t p(y) < Ixl is provable in the base theory. Take
cp(x, t) defined by

cp(x, t) == 3y S x(C(x, y) & t S p(y».

From LIND ~~+l we get

,cp(x,O) V 3t < Ixl(cp(x, t) & ,cp(x, t + 1» V cp(x, Ix!),

SOME RELATIONS BETWEEN SUBSYSTEMS 507

which just expresses the existence of an optimal solution.

Proving the other direction assume that we are given some ~r+l formula
W(x, u). We want to derive an instance of PIND for w(x, u), where u is

the induction variable and x is a parameter. It is easily seen that we can
consider only formulae of the form

W(x,u) == 3v((u,v) ~ x & 'I/J(x,u, v)),

where (-, -) is the pairing function and 'I/J is nr, since PIND for such

formulae proves the full schema PIND ~r+l. Let C(x, y) and p(y) be defined
by

C(x, y) == (y ~ x & 'IjJ(x, (y)o, (y)t) & (y)o :::; Ixl) V y = 0,

p(O) = 0,

p(y) = (Y)o for y > 0,

where (y)o and (y h are the decoding functions for the pairing function.
Suppose we have

W(x,O) and Vu < Ixl(w(x, u) - W(x, u + 1)).

If the problem C, p has an optimal solution y for a given x, then it must be

such that (y)o = lxi, hence we have W(x, Ixl). Thus we have shown PIND
for W. 0

Note that to prove that a type 0 optimization problem has an optimal

solution, we do not need any induction.

6. SEPARATION OF FRAGMENTS

It has been noted quite early in the history of proof theory, that if we

prove a sentence Vx3y<p(x, y) in some theory, then we have some informa
tion about how difficult is to find some y for a given x such that <p(x, y).

In his fundamental paper [Pal Parikh showed that if Vx3y<p(x, y), with <p
bounded, is provable in lilo, then y can be bounded by a polynomial in
x, consequently it can be computed in linear space. Buss [B1] proved a
theorem about 8 2 which gives essentially more information. He proved the

following theorem.

508 PAVEL PUDLAK

Theorem 1. Let i 2: 0, let cp(x, y) be E~+l> and suppose

S~+l I- '</x3ycp(x, y).

Then there exists a function f computable in polynomial time with a Ef
oracle such that

N F '</xcp(x, f(x)).

(Actually he proved more: under the same assumption S~+l I- '</xcp(x,

f(x)).)
We are not able to use this theorem to show that fragments S~ are

different assuming e.g. that Polynomial Hierarchy does not collapse. (This
is however possible for the intuitionistic version of these fragments using the

intuitionistic version of Theorem 1 which was proved in [B3].) Therefore

we shall use more complex formulae than E~, but then also we have to use
a stronger mode of computation-this will be just the computations with

counterexamples. The concept of counterexamples is also not new in proof
theory, it goes back to Kreisel [K]. Recently Jan Krajicek [Kr] noted a close
connection between the present concept and the former one, which can be

used to give an alternative proof of the following theorems.

Theorem 2 [KPT]. Suppose that for i > 0, and cp in Er+1

T~ I- '</x3y'</z::; xcp(x,y,z).

Then, for a given x, one can compute y such that '</Z ::; xcp(x, y, z) in
polynomial time using a Ef oracle by a type ° counterexample computation
(i.e. using a constant number of counterexamples).

The following is a new result.

Theorem 3. Suppose that for i > 0, and cp in E~+l

S~+ll- '</x3y'</z::; xcp(x,y,z).

Then, for a gien x, one can compute y such that '</ z ::; xcp(x, y, z) in polyno
mial time using a Ef oracle by a type 1 counterexample computation (i.e.
using ;;t.n unbounded number of counterexamples).

Let C, p be an optimization problem with C in IIf and p polynomial

time computable. We have constructed a E~+l formula B(x, y, z) such that
'</Z ::; yB(x, y, z) expresses that y is an optimal solution to x. Thus we can
apply Theorems 2 and 3.

SOME RELATIONS BETWEEN SUBSYSTEMS 509

Corollary 1. For i ~ 0 and C in Ilf, if T~ proves that C (x, y), p(y) has
an optimal solution for every x, then optimal solutions can be computed
using a type 0 computation with a ~f oracle.

Corollary 2. For i ~ 0 and C in Ilf, if S~+l proves that C(x, y), p(y) has
an optimal solution for every x, then optimal solutions can be computed
using a type 1 computation with a ~f oracle.

By Proposition 1 we know that the existence of optimal solutions (for

certain type of problems) is equivalent to (certain type of) induction. Thus

we get:

Corollary 3 [KPT]. For i ~ 0, ifT~ = S~+1, then every type 1 optimiza
tion problem C, p with C in Ilf can be computed by a type 0 computation

with a ~f oracle.

Corollary 4. For i ~ 0, if S~+l = Td+ 1 , then every optimization problem
C, p with C in Ilf can be computed by a type 1 computation with a ~f

oracle.

Conclusions in both corollaries seem unlikely which strongly suggests

that T~ #- S~+l and S~+l #- Td+ 1 • In [KPT] it has been shown that the

conclusion of Corollary 3 implies that ~f+2 = Ilf+2 which is usually conjec
tured to be false. For the conclusion of Corollary 4 it is an open problem,

whether it implies anything like that.

7. PROOF OF THEOREM 3

Here we shall sketch the idea of a proof of Theorem 3. The proof is a

modification of Buss' proof of Theorem 1. Theorem 2 was proved using
different means. We shall observe that it can be obtained by modifying

the proof given below. Hence there is a uniform way to prove all three

theorems.

We consider the sequent calculus of Schwichtenberg [Sch]. The sequents

are sets of formulae; logical connectives are &, V,..." where negation is al

lowed only at atomic formulae (if 'P is not atomic, ""'P is an abbreviation

for the equivalent formula obtained by applying De Morgan's laws). The

system has initial sequents of the form r, 'P, ""'P, (which is r u {'P,""'P}), a
rule for &, two rules for V, one rule for each quantifier and a cut rule. The
rules which are important for the proof will be explained in the course of

the proof. We formalize S~+l in this system by allowing initial sequents of

510 PAVEL PUDLAK

the form r, rp (which is r u {rp}) for rp a basic axiom and by adding the

following rule for each 'Ij; (x) in ~~+ I:

8,--.,'Ij;(lbj2J),'Ij;(b)
8, -,'Ij;(O) , 'Ij;(t)

where b is not free in 8 and t is a term.

Let rp(a, y, z) in ~~+l be fixed, let A(a) be defined by

A(a) == 3,yVzrp(a, y, z).

In order to simplify notation we shall assume that the bound z ::; a is im

plicit in rp(a, y, z). Suppose a proof of A(a) is given. By cut elimination we

can assume that it is free-cut-free, i.e. the cut formulae are only substitution

instances of basic axioms or induction formulae. Thus this proof contains

only ~~+l and II~+1 formulae and substitution instances of subformulae of

A(a), which are either A(a) itself, or Vzrp(a, t, z), for some term t, or a ~~+1

formulae. Thus the general form of a sequent r in the proof is

where

II,~,~, <1>, A(a),

II are II~+1 formulae which are not in II~ U ~~;

~ are ~~+l formulae which are not in II~ u ~~;
~ are II~ u ~~ formulae;

<I> is a set of formulae of the form Vxr.p(a, t, z);

and we can assume that A(a) is present in each sequent.

N ow we are going to define the concept of witnessing functions for such

a r. Recall that we have defined ~~+l (II~+l resp.) formulae so that they

consist of a prefix of existential (universal resp.) bounded quantifiers fol

lowed by a II~ (~~ resp.) formula. We shall call these quantifiers essential.

Let a, bl , ... ,bk be the string of free variables of r. We shall denote strings

of variables and functions by boldface letters (e.g. b denotes bl , ... , bk).

We choose distinct variables Xl, ... ,Xl for all (distinct) occurrences of vari

ables at essential quantifiers in II and, similarly, YI, ... ,Ym for variables at

essential quantifiers in ~. A string of functions

h(a, b,x), ... ,fm(a, b,x),g(a, b,x),

SOME RELATIONS BETWEEN SUBSYSTEMS 511

will be called witnessing functions for r if the following formula is true for

all assignments of natural numbers to a, b, x:

(*) 1\ -,II(x) -t V E(f(a, b,x)) V V ~ V A(a) V Vz<p(a,g(a, b,x), z).

Here II(x) denotes II with essential bounded quanfiers omitted an their vari

ables replaced by Xl, ... ,Xl; similarly in E(f(a, b,x)) essential quantifiers

are omitted and their variables are replaced by !lea, b,x), ... , fm(a, b, x).
Note that no witnessing functions occur in CP, though the formulae in cP are

not in II~+ 1 .

Using induction on the depth of a sequent in the proof, we shall show that
every sequent has witnessing functions computable in the following way.

THere is a Turing machine with a Er oracle which on an input a, b, x pro

duces the values !lea, b,x), ... , fm(a, b,x),g(a, b,x) in polynomially many
steps. During the computation it may ask queries of the form Vz<p(a, u, z)?
where u is some value produced during the computation. If the answer is

negative, it gets a counterexample, i.e. some Zo such that -'<p(a, u, zo). If the
answer is positive, it puts g(a, b, x) = u and some default values for fi'S and

stops. In aprticular, we get the type of computation required in the theo
rem for the end sequent, since it consists of A(a) only. As defined above,

we have to consider all possible strategies for the person (TEACHER) who
answers the queries. Thus it would be more appropriate to talk about

functionals fl, ... , fm' rather than functions. Or we can say: for any strat

egy of TEACHER the computed functions are witnessing functions for the
sequent.

The induction steps are similar to those in Buss' proof, except for those

rules where the principalformula is a subformula of A(a).
(1) Consider the following instance of the V-rule:

e, <pea, t, bh)

e, Vz<p(a, t, z)·

Suppose we have witnessing functions f(a, b, x), g(a, b, x) for the upper se

quent. The lower sequent has free variables a, b /, where b ' = (b l , ... , bh - l ,

bh+I. ... , bk). To get the witnessing functios for the lower sequent, we omit

the witnessing functions for <pea, t, z) and change the remaining ones as
follows. First we compute the value of the term t, then we ask the query
"Vz<p(a, t, z)?". If the answer is positive, then the lower sequent is witnessed

no matter how we define the functions. If the answer is negative and the

512 PAVEL PUDLAK

counterexample is u, then we define the witnessing functions for the lower

sequent by substituting u for bi . Thus the functions depend only on a, b',x.
(2) Suppose 3-rule is applied to Vxcp(a, t, z) to obtain 3yVzcp(a, y, z).

Since this is just A(a), which is present in every sequent, the instance looks
like this:

e, Vzcp(a, t, z)
e

Suppose we have f, 9 for the upper sequent. The computation of f', g' for

the lower sequent will be the following. First compute the value of t, then

ask "Iorallzcp(a, t, z)?". If the answer is positive, set g'(a, b, x) = t and the
value of f' is irrelevant; otherwise compute f', g' as for the upper sequent.

(3) Consider an instance of the PIND ~~+1 rule:

e, VX1-''IjJ(L bt/2 J, xd, 3Y1'IjJ(b1, yd
e, VX1 -,'IjJ(O, Xl), 3Y1'IjJ(t, Y1)

where 'IjJ is II~. In order to simplify notation we assume that there is only
one essential bounded quantifier and we omit the bound; also we have

chosen the indices to be equal to 1. Suppose we have witnessing functions

f(a, b,x),g(a, b,x) for the upper sequent. We shall assume that 3Y1 is
witnessed by It. Now we define witnessing functions f' (a, b' , x), g' (a, b', x)
for the lower sequent, where b' = (b2 , •.. , bk). First we compute 0 =
vo, ... ,Vr = t such that LVj+t/2J = Vj, for j = O, ... ,r -1. Then we
compute f(s), g(s) as follows. Set

and for s ~ 0 let

I (S+l) I (b' I(s)) j = j a, Vs, , 1 , X2,· .. , Xl ,

(s+1) - (b' I(s)) 9 - 9 a, Vs, , 1 , X2, ... , Xl ,

(fjO) is not defined for j > 1, lis) are iterations of It). In each step of

the iteration s = 0,1, ... we also check whether 'IjJ(Vs , lis») is true and
whether e is witnessed by f(s), g(s). The computation will stop if one of

the following four cases occurs:

(i) we get a positive answer to a query "V zcp(a, u, z)?" ;
(ii) 'IjJ(o,JiO») is not true, i.e. -,'IjJ(O, Xl) is true;

(iii) if e is witnessed by f(s), g(8);

(iv) s = r - 1.

SOME RELATIONS BETWEEN SUBSYSTEMS

We define the witnessing functions according to which case occurs:

(i) we set g'(a, h,x) = u and A(a) is witnessed;

513

(ii) the lower sequent is witnessed independently of the values of f', g';

(iii) if e is witnessed by f(s),g(s), then we take them as f',g';
(iv) define f',g' as f(r-I),g(r-I).

We only have to check that the lower sequent is witnessed also in case (iv).

If (iv) occurs, then none of the (i)-(iii) has occurred before, in particular
W(O, fiG») is true. Suppose W(Vn f(r-I») is false. Then there is some s < r

such that w(vs,fi s») is true and --W(vs+I,fis») is false. Since f,g witness
the upper squent, this is possible only if e is witnessed by f(s), g(s), which

is a contradiction. Thus the lower sequent is witnessed also in case (iv).

We have tacitly assumed that 3YIW(t,YI) does not occur in e. Hit does,
then fi s) will not be included in f' and case (iv) will be subsumed in case

(iii).

We hope that this illustrates sufficiently well the changes that must be
done in Buss' proof, and we are not going to consider other instances of
rules and axioms. To state the main idea briefly: the change is in the
possibility that a positive answer to a query "V zr.p(a, t, z)?" may occur. In
such a case the computation stops, since we have a witness for A(a). 0

Now we describe a proof of Theorem 2. The assumptions are similar,
except that we have a weaker rule of induction

e, --W(bh),W(bn + 1)
e, --W(O), wet)

since W is only ~~. We use the same definition of witnessing as in the above

proof, hence no witnessing functions occur in --W(bh), w(h + 1), --1j;(O) , wet).
Let f, 9 be witnessing functions for the upper sequent. We shall define
witnessing functions f', g' for the lower sequent. Let a, h', x be input, where

again h' = (b l , ... ,bh- I , bh+ l , ... ,bk). First we check whether --W(O) V W(t)
is true. If it is true, then we take arb~trary values for f', g'. If not, then we

use binary search to find some u such that W(u) & --W(u + 1), u < t. This
is possible, since now we can use W(x) as an oracle. Then we put

f'(a, h',x) = f(a,b l , ... ,bh-I,U,bh+l,'" ,bk,X),

g'(a, h', x) = g(a, bl, ... , bh - I , u, bh+l,"" bk, x).

In this case we witness e. Here no iterations of witnessing functions occur.
Hence it holds for every rule: if the number of queries is constant (i.e. does

514 PAVEL PUDLAK

not depend on parameters a, b, x), then it is constant in the lower sequent

too. Consequently the number of queries used to compute the witness for

the end sequent is constant. (It is not hard to prove a more precise upper

bound: the number of queries is bounded by the number of applications of

V-rule to formulae cp(a, t, bh).) 0

7. RELATIVIZATIONS

We conjecture that there are optimization problems C, p, with C in IIf
(of type 2) whose optimal solutiosn cannot be computed in polynomial

time using counterexample computations (of type 1) with :Ef oracles. By

Corollary 4, this conjecture implies that 8~+1 i= T~+l. We shall justify

this conjecture for i = 0 and i = 1 by showing that for suitable oracles

the relativized version is true. Clearly it is sufficient to prove it for i =
1. These results imply separations of the corresponding fragments of the

system obtained from 8 2 by adding a new uninterpreted predicate, (see

Corollary 6 below).

In the following proof it will be convenient to consider oracles as map

pings A : N3 ----> {O, I}.

Theorelll 4. There exists an oracle A such that there is no polynomial
time interactive algorithm (type 1) with a (:Ei)A oracle which computes
the largest y such that y :s; x and

Vu :s; x(A(x, y, u) = 0) V Y = O.

I.e. in the optimization problem C(x, y) is Vu :s; x(A(x, y, u) = O)Vy = 0,

which is in (IIn A , and p(y) = y. In the proof of Theorem 5 we shall assume

some familiarity with the concept of relativization. As usual we shall use

finite approximations to oracle A. The key lemma which enables us to

diagonalize at level :Ef is the following.

Lelllllla 1. Let RG:(v) be a (:EnG: predicate, where Q is a variable for an

oracle. Let a partial mapping A' be given, let v be given. Then there exists
an extension A" of A' such that it has only polynomially more elements
than A' (i.e. IA"\A'I :s; q(lvl), for some polynomial q), and for any two
extensions A and B of A"

SOME RELATIONS BETWEEN SUBSYSTEMS 515

i.e. A" forces R(v) or ,R(v).

Proof. First uppose that there exists some Ao :2 A' such that RAo (v) holds

true. Take an accepting computation for v which uses Ao and add to A'

the queries asked by this computation. Any extension which gives the same

answer to these queries will allow this accepting computation. If there is

no such extension A o, then put A" = A'. D

Proof of Theorem 5. We construct the oracle in w steps. In the i-th step we

diagonalize the i-th STUDENT, which is a polynomially bounded Turing

machine and a ~f oracle. The precise meaning of this statement is that we

construct a finite extension Ai of the previous approximation to the oracle,

we take an input Xi and define a strategy for TEACHER so that for any

extension of Ai, STUDENT does not compute the optimal solution to Xi

in P(IXil) steps, where p is the polynomial bound to STUDENT. We can

always take Xi so large that on Xj with j < i, STUDENT never asks queries

of the form "A(xi,r,s) = 07".

On input X, STUDENT uses I:f oracle only for inputs whose size is

polynomially bounded in Ixi. Hence there is a polynomial bound q'(lxl)

to all possible values q(lvl) for queries v asked during the computation on

input X, (q is the polynomial from Lemma 1). Put p'(lxl) = p(lxl) . q'(lxl),

(we assume also q'(lxl) :::: 1). We choose Xi so large that

Each Ai is also constructed in several stages,

These stages will correspond to the queries of STUDENT. At the same

time we define the strategy for TEACHER. We have to define the strategy

of TEA CHER only for Xl, X2, ... , since other inputs are not used for the

diagonalization. Let i be given. The strategy of TEACHER will consist of

her answers YI, Y2, The approximations A7 will be constructed using

Lemma 1, hence if we take any extension of A7 and if TEACHER uses

YI, ... ,Yk-l, the computation of STUDENT will be the same up to the k

th query. The number of these stages is bounded by the number of queries

that STUDENT can pose to TEACHER and this in turn is bounded by the

total running time p(IXil) of STUDENT.

516 PAVEL PUDLAK

There are three reasons to extend the current approximation to the or-
acle A:

(1) to force the computation of STUDENT;
(2) to force that the answers of TEACHER are correct;

(3) to force that STUDENT has asked the wrong question (this can be
avoided by taking an enumeration of STUDENTS who do not ask
wrong questions).

By Lemma 1, we can always add q'(IXil) new elements into the approx
imation of the oracle so that an answer of Ei oracle is forced. In this

way we add at most q'(IXil) new elements to the approximation to A in

each computation step. Hence for (1) we have to add at most P'(IXil) ele
ments. To ensure (3) we need just one element. Once STUDENT asked a

wrong question (Le. he asked TEACHER whether Y is maximal such that

Vz ~ XiAi(Xi, y, z) = 0 for some y such that :Jz ~ XiAi(Xi, y, z) = 1), the
construction of Ai and TEACHER's strategy is finished. For (2) we have to

add all triples (Xi, Yk, z) for each answer Yk of TEACHER and each z ~ x.
We shall construct Af and Yk in such a way that we add new elements into
the domain only if we need them because of one of the reasons (1)-(3) and
the following condition is satisfied:

for k > 0, Yk is the largest answer of TEACHER and Yk ~ k·

(P'(IXil) + 1).

Suppose the condition is satisfied at stage k - 1. We take any exten
sion B of A~-i and let STUDENT work until he presents a conjecture to

TEACHER. Let Bf- i be an approximation which forces this computation
of STUDENT, A~-i ~ Bf- i ~ B, and let the conjecture of STUDENT be

y. If Y > Yk-i, then we can extend Bf-i to Af by adding just one element
to it in such a way that STUDENTs answer is wrong (for any extension of

An· This is because, for such a Y ~ Xi, there can be at most P'(IXil) < Xi

elements z ~ Xi such that Bf-i (Xi, y, z) is defined. Otherwise Y ~ Yk-i'

There are at most p'(IXil) elements Y' > Yk-i such that Bf-i(Xi,Y',Z) is
defined. By the assumption that the condition holds for k - 1,

Yk-i + P'(IXil) ~ (k - 1) . (P'(IXil) + 1) + P'(IXil) ~

~ k· (p'(IXil) + 1) ~ P(IXil) . (P'(IXil) + 1) < Xi.

Hence we can take Yk such that Yk-i < Yk ~ Xi, Bf-i(Xi' Yk, z) is undefined
for all z and

Yk ~ Yk-i + p'(IXil) + 1.

SOME RELATIONS BETWEEN SUBSYSTEMS 517

By the assumption that the condition holds for k - 1,

Thus we can extend B7- 1 to A1 by putting

A1(Xi, Yk, z) = 0 for every z ::; Xi,

and the condition will be preserved.

After polynomially many steps STUDENT must stop, but we can still

extend the oracle so that there exists a larger counterexample, because

Yk + P'(IXil) ::; k· (P'(IXil) + 1) + P'(IXil) ::;

::; (k + 1) . (p'(IXil) + 1) ::; (P(IXil) + 1) . (p'(IXiD + 1) < Xi.

Hence he is not able to find the optimal solution. o
Remarks. (1) The proof above is essentially the same as for the similar re

sult in [KPTj. (2) We have shown more for this oracle: for every STUDENT

there exists an input X such that either he asks a wrong question on X or

he uses the trivial strategy on X without success.

Let S2(0') (resp. T~(O')) be 52 (resp. T2) extended by adding a new pred

icate to the language and extending PIND (resp. IND) to ~7(0') formulae

(which are defined as ~~ in the extended language).

Corollary 5. For i = 1 and i = 2, T~(O') -=1= 5~(0').

Proof. First it is necessary to check that Proposition 1, Theorem 3 and

hence also Corollary 4 can be relativized by adding a new uninterpreted

predicate 0'. Take C (x, y) to be

\;fu::; x(O'(x,y,u) = 0) Vy = 0,

and p(y) = y. Then, by relativized Corollary 4, for any interpretation of

0' as a subset A <:;;; N, we should be able to compute y form x using an

interactive computation with oracle A. If we choose the interpretation fo

0' to be A from Theorem 5, we get a contradiction. In this way, we obtain

the result for i = 2. For i = 1 we take the same A and encode in it some

NpA-complete problem. Thus former ~f sets become P sets. Or we can

prove a theorem similar to Theorem 5 for this simpler case using a trivial

modification of the proof above. 0

518 PAVEL PUDLAK

8. OPEN PROBLEMS

We would like to prove the conjecture that there are optimization prob

lems C, p with C in IIf which cannot be computed by (type 1) interactive
computations with ~f oracles, since it implies that S~+l i- T~+l. As this

conjecture implies that P i- NP, it is hopeless to try to prove the conjec

ture directly. In the present situation the following two problems seem to

be more feasible:

(1) Reduce the conjecture to the statement that Polynomial Hierarchy

is proper, or a similar statement in complexity theory.
(2) Find oracles for each i such that the relativized statements are true.

A proof of (2) would imply T~(a) i- S~(a). Similar statements for type 1
optimization problems and type 0 interactive computations were proved in

[KPT]. Note that there is a different approach to the separation of fragments

of Bounded Arithmetic. It is based on proof systems for the propositional
calculus [KP]. There we would need to show superpolynomiallower bounds

to the length of proofs in certain proof systems for the propositional cal

culus. This is a weaker question than NP i- coNP. Even less we know
about the related problem:

(3) Is T~ partially conservative over S~, e.g. is T~ \fII~-conservative over

S~?

Some results on this problem have been recently obtained by Krajicek

[Kr]. Also note taht Krajicek and Takeuti [KT] have constructed a consis
tency statement which is the strongest \fII~-formula provable in T~, hence

it is the best candidate for a possible separation of T~ from S~.

ACKNOWLEDGMENTS

I would like to thank Jan Krajicek and Jifi Sgall for carefully reading
the manuscript and suggesting several improvements.

SOME RELATIONS BETWEEN SUBSYSTEMS 519

REFERENCES

[B1] S. R. Buss, Bounded Arithmetic, Bibliopolis, Napoli, 1986.
[B2] ___ , Axiomatizations and conservation results for fragments of bounded arith-

metic, Contemporary Mathematics, AMS Proc. of Workshop in Logic and Compu
tation, 1987 106 (1990), 57-84.

[B3] ___ , The Polynomial Hierarchy and intuitionistic bounded arithmetic, in "Struc-
ture in Complexity Theory", LNCS 223, Springer-Verlag, 1986, pp. 77-103.

[C] S. A. Cook, Feasibly constructive proofs and the propositional calculus, Proc. 7-th
STOC (1975), 73-89.

[Kr] J. Krajicek, No counterexample interpretation and interactive computations, these
proceedings.

[KP] J. Krajicek and P. Pudlak, Quantified propositional calculi and fragments of bounded
arithmetic, Zeitschrift f. Math. Logik 36(1) (1990), 29-46.

[KPT] J. Krajicek, P. Pudlak and G. Takeuti, Bounded arithmetic and Polynomial Hi
erarchy, Annals of Pure and Applied Logic, to appear.

[KT] J. Krajicek and G. Takeuti, On induction-free provability, Discrete Applied Math
ematics (to appear).

[K] G. Kreisel, On the interpretation of non-finitist proofs, JSL 16 (1951), 241-267.
[PW] J. Paris and A. Wilkie, On the scheme of induction for bounded arithmetic for-

mulas, Annals of Pure and Applied Logic 35(3) (1987), 205-303.
[Pal R. Parikh, Existence and feasibility in arithmetic, JSL 36 (1971), 494-508.
[Pu] P. Pudlak, A note on bounded arithmetic, Fundamenta Mathematicae, to appear.
[Sch] H. Schwichtenberg, Proof Theory: Some applications of cut-elimination, in "Hand-

book of Mathematical Logic", J. Barwise ed. (1977), 867-895.
[T] G. Takeuti, Some relations among systems of bounded arithmetic, Preprint.

MATHEMATICAL INSTITUTE GSAV, ZITNA 25, PRAHA 1, CZECHOSLOVAKIA

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, BERKELEY CA 94720

A PART OF THIS MANUSCRIPT WAS PREPARED WHILE THE AUTHOR WAS A MEMBER OF THE
MATHEMATICAL SCIENCES RESEARCH INSTITUTE, BERKELEY.

RESEARCH AT MSRI SUPPORTED IN PART BY NSF GRANT DMS-8505550.

