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ABSTRACT. We shall introduce a special mode of interactive computations 
of optimal solutions to optimization problems. A restricted version of 
such computations was used in [KPT] to show that T~ = S~+1 implies 
Ef+2 = IIf+2· Here we shall reduce the question whether T~ = S~ to a 
question about interactive computations (in a more general sense) of some 
optimization problems. 

1. INTRODUCTION 

We shall consider fragments of bounded arithmetic 8 2 . This is a first 

order theory of arithmetic, where the induction schema is restricted to 
bounded formulae. Our main reason for studying such systems is their close 

relation to low level computational complexity. We hope that eventually 
this research will bring new insight into the problems in complexity theory. 

Ideally, we would like to show some independence results for such theories 
and sentences stating some unknown relations between complexity classes. 
In order to be able to prove such results, we have to understand better the 

mutual relation between the complexity theory and such logical theories. 
This paper attempts to make another step in this direction. 

The first system for bounded arithmetic was proposed and studied by 

Parikh [Pal. Nowadays his system is known as 16.0 ; it is Peano Arith

metic with induction restricted to bounded arithmetical formulae. This 

and related systems have been extensively studied by Paris and Wilkie (see 
[PW] for a survey paper). The system 8 2 and an equivalent system T2 

were introduced by Buss [Bl]. These systems are conservative extensions 
of It10 + n1 , where n1 is Vx3y(y = 2f\og2(x+1)l). The richer language of 

8 2 and T2 enables one to define natural fragments 8~ and T~, i = 1,2, .... 
The definition of 8~ and T~ is motivated by Stockmeyer's Polynomial Hier
archy. This hierarchy is a natural extension of the classes P, NP, co NP in 

499 

Y. N. Moschovakis (ed.), Logic from Computer Science
© Springer-Verlag New York, Inc. 1992



500 PAVEL PUDLAK 

a much similar way as the arithmetical hierarchy is an extension of classes 

recursive sets, recursively enumerable sets, complements of recursively enu

merable sets, etc. It is an open problem whether 52 is finitely axiomatizable. 

This problem is equivalent to the statement that 52 collapses to some frag

ment 5~. Similarly it is an open problem whether Polynomial Hierarchy 

collapses to some level. 

In [KPT] we showed that if 52 is finitely axiomatizable, then Polynomial 

Hierarchy collapses. This was done by proving 

(where ~f+l and IIf+2 are levels in the Polynomial Hierarchy), and using 

the fact that we have the following inclusions 

T~ <;;; 5~ <;;; Ti <;;; 5~ <;;; Ti <;;; ... 

Hence assuming a plausible conjecture that Polynomial Hierarchy does not 

collapse, the odd inclusions are strict. Here we try to do a similar thing with 

the even inclusions. We shall present a conjecture on certain computations 

which implies that also the odd levels are strict. This is a conjecture about a 

new concept and, unfortunately, we are not able to reduce it to any problem 

in complexity theory which has been considered before. 

It should be stressed that the motivation for showing S2 -I T2 is not 

only to clear up the remaining problems. A strong conservation result 

has been proved for pairs T2 and S~+l in [B2]. If there were some partial 

conservativity also between pairs S~ and T~, we would have some partial 

conservativity of the whole system 52 over its fragments S~. This seems 

rather unlikely. The separation of S~ from T2 could be the first step toward 

showing that there is no such conservativity. For related results see also 

Krajicek's paper [Kr] in these proceedings. 

2. FRAGMENTS OF BOUNDED ARITHMETIC 

We shall use fragments of systems of bounded arithmetic 52 and T2 of 

Buss [BI]. Each system has a finite set of basic open axioms and an axiom 

schema of induction. We consider two schemata. Ordinary induction IND: 

'P(O) & \ix('P(x) -4 'P(x + 1)) -4 \ix'P(x); 

and polynomial induction PIND: 

'P(O) & \ix('P(lx/2J) -4 'P(x)) -4 \ix'P(x). 
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8 2 is the system with the basic axioms and the schema PIND for all bounded 

formulae; T2 is the system with the basic axioms and the usual schema of 
induction IND for all bounded formulae. 

The particular choice of primitive notions and basic axioms describing 

the primitive notions is not very important, hence we shall not give a precise 
definition, instead we shall describe the most important properties that we 
need: 

(1) the language contains a finite number of polynomial time com
putable functions and predicates; 

(2) there are natural classes of formulae defining the sets in the Poly
nomial Hierarchy. 

The reason for extending the usual language of arithmetic is that we 

want to have naturally defined fragments of these theories. If we did not 
extend the language, the bottom fragments would not have nice proper

ties. Furthermore, the schemata of induction for bounded formulae are not 
strong enough to pove the existence of functions that grow faster than the 
terms of the language. Thus it is more convenient to add functions with 

higher growth rate than extend the axiomatization, which is rr~, by a rrg 
axiom. The higher growth rate is needed in order to be able to formalize 
polynomial time computations. If a sequence s of length k is encoded by 

a binary expansion of a number n, then n is about 2k. If we need another 
sequence of length k 2 , then we need a number of size 2k2, which is about 
2(flog2(n+2)1)2. That is why we need such a function. Note that there is an 

alternative approach which is based on the sequence as the basic primitive 

concept instead of the concept of the number. This has been considered by 
Cook [C], (however his theories PV and PV1 are quantifier free). 

The classes of bounded formulae ~~ and rr~ are defined as follows. First 

choose a suitable class ~g(= rrg) whose formulae define sets in P. Then we 

define ~~ and respectively rr~ as the classes of formulae with the correspond
ing prefix of bounded quantifiers follows by a ~g formula. The formulae in 

~g are defined using sharply bounded quantifiers. These are bounded quan

tifiers where the bound is always the logarithm of a term. Thus we shall 

use also the function flog2(x + 1)1, which is denoted by Ixl. For i > 0, the 
formulae in ~~ (respectively in rrn define just the sets in ~f (respectively 
in rrn. Using this relation we shall sometimes identify ~f sets with their 

~~ definitions. ~g formulae, as they are usually defined, do not define all 
sets in P. This is rather inconvenient and complicates the statements of 
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the theorems. Therefore in this paper we shall assume that I:g is a suit

able class of formulae that define just the sets in P. Such a class can be 
constructed by formalizing polynomial time Turing machine computations. 

This change influences only the weakest fragment that we consider T~: now 

in ~ we can define all polynomial time computable functions. To get the 
full symmetry, we shall use another convention which is not quite standard: 

we shall sometimes denote P by ~b and IIb· 
Now we can define fragments of bounded arithmetic: 8~ is 8 2 with PIND 

restricted to ~~ formulae, T~ is T2 with induction restricted to ~~ formulae, 

i ::::: o. Thus, for instance, we can think of T~ as "induction for P", and of 

8~ as "polynomial induction for NP" . 
Often it will be more convenient to use the following schema LIND (a 

form of the least number principle) instead of PIND: 

-'<p(x,O) V 3t < Ixl(<p(x, t) & -'<p(x, t + 1)) V <p(x, Ixl). 

Fragments 8~ can be axiomatized by this schema for ~~ formulae. It has 

been proven in [B1] that 

hence 

Many facts about the subsystems I~? of Peano Arithmetic transfer to 

fragments 8~ and T~ (e.g. PIND ~~ == PIND II~), but not all. In partic
ular the proof that Peano Arithmetic is not finitely axiomatizable breaks 
down in the new context. To prove that Peano Arithmetic is not finitely 

axiomatizable one shows that 

(where Con denotes the consistency), and uses G6del's Theorem to show 

that 

does not hold. While G6del's Theorem holds for fragments of bounded 
arithmetic (see [B1]), 8 2 does not prove even the consistency of basic ax

ioms; (there are stronger results in this direction in [B1], [PW], [Pu], [T]). 
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3. OPTIMIZATION PROBLEMS 

The aim of this paper is to show that there is a close connection between 

fragments S~ and T~ on the one hand and certain interactive computations 
of solutions to optimization problems on the other hand. Here we introduce 

some basic terminology on optimization problems. 

Let C(x, y) be a binary relation, let p be a function; both are defined on 

natural numbers. We shall think of x as an input. For an input x, any y such 
that C(x, y) holds will be called a feasible solution to x, (put otherwise, Cis 

the condition that determines what is feasible for x). Function p measures 

how good a solution is: if y and y' are feasible solutions, then y' is better 

than y if p(y) < p(y'). If there is no better solution to x than y, then y 

is called an optimal solution. For a pair C, p to determine an optimization 
problem we shall assume two purely technical conditions, which will greatly 
simplify the exposition: 

(1) 0 is a feasible solution to any x; 

(2) if Y is a feasible solution to x, then y ::; x. 

We shall, of course, assume that all finite objects are encoded as numbers. 

From the practical point of view only problems where C is in P and p 

is polynomial time computable are interesting. Most of the NP-problems 

come from optimization. Let us consider two examples. 

(1) CLIQUE 
C(x, y) == "y is a clique in graph x", 
p(y) = "the size of y" , 
(0 is assumed to be the code of the empty clique). 

(2) TRAVELLING SALESPERSON 
C(x, y) == "y is a tour in graph x whose edges are labelled by 

numbers (or y = 0)", 

p(y) = "sum of all the labels of the graph minus the length (i.e. 

the sum of the labels) of the tour" (and p(O) = 0). 

It seems that there is some inherent difference between the two problems. 
In the first case the range of p on feasible solutions to x is bounded by 

a polynomial in the size of x, (in fact it is less than the size of x). In 
the second case the range may be exponentially large in the size of x, 
since numbers up to 2n - 1 have length less than or equal to n in binary 
notation. For usual deterministic polynomial time computations this makes 
little difference, since we know that both problems are NP-hard, but if we 
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have some extra information available the first type of a problem is more 
likely to be solvable. 

It is possible to define a hierarchy of optimization problems according to 
the size of the range of p. However, for this paper we need only the distinc

tion between the polynomial size range and the exponential size range. We 
shall call them type 1 and type 2 optimization problems respectively. Thus 

type 2 are in fact all optimization problems and we use this term only to 
stress the difference. For reasons of symmetry which will be apparent later, 

we define also type 0: the problems in which the range of p is uniformly 

bounded by a constant. 

Optimization problems with C in P will be related to fragments T~, Sf, 
Ti- For higher fragments we shall need C in I1Ll' while p will always be 
polynomial time computable. 

4. COMPUTATIONS WITH COUNTEREXAMPLES 

Let an optimization problem C(x, y), p be given. Suppose a person called 
STUDENT is to determine an optimal solution to x and suppose he can 

use the help of another person called TEACHER. STUDENT has limited 

ability, (in the simplest case he can perform deterministic polynomial time 
computations), while TEACHER knows everything about the given prob

lem. STUDENT can ask questions of the form: 

Is y an optimal solution to x? 

TEACHER must answer correctly and, moreover, if her answer is negative, 

she must produce a counterexample which is some better feasible solution 

to x. The aim of TEACHER is to test STUDENT, so she can choose coun
terexamples which convey as little information as possible to STUDENT. 

Formally we would model STUDENT as a mutlitape Turing machine 

where the queries of STUDENT and answers of TEACHER will appear on 

a special tape of the machine. The queries are computed by the machine, 
while the answers come from outside following an arbitrary strategy. We 

define that STUDENT (i.e. a given Turing machine) solves the optimiza
tion problem, if for every x and every strategy of TEACHER, STUDENT 
computes some optimal solution to x. Thus TEACHER does not act as an 

oracle in the ordinary sense, she is rather a person in a two player game. 
Further we shall modify this model by allowing STUDENT to use an or

dinary racle from some class Ef and by restricting the number of queries 
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posed to TEA CHER. However we shall always assume that the number of 

steps in the computation is bounded by a polynomial. 

There is a trivial strategy for STUDENT (which is often used by stupid 

students) according to which his first conjecture is 0 and then STUDENT 
just repeats the answers of TEACHER. Clearly, for optimization problems 

of type I, this strategy produces always a solution. We conjecture that 

there is no strategy for STUDENT in general (i.e. for type 2). In fact, if 

we measure the complexity by the number of queries that STUDENT must 

ask, then it is plausible that there is no better strategy for hard problems 

than the trivial one. 

We define two types of computations with counterexamples: 

type 0: the number of queries is bounded by a constant; 

type 1: the number of queries is unbounded, (implicitly it is always bounded 

by a polynomial, since all computations are bounded by a polyno

mial). 

We have already noticed that type 1 computations solve type 1 problems; 

the same is true for types O. 

Let us consider for a moment computations with counterexamples with

out an additional I;f oracle, and suppose we want to find an optimal solution 

for a predicate C(x, y) which is in P. If we want to use the usual oracle 

computation instead of the counterexample computation, we can replace 

TEACHER by a I;f oracle as follows. The query 

Is y optimal? 

is ITf, and if the answer is not, we can ask a I;f oracle about the bits of a 

better feasible solution. Hence if optimal solutions can be computed with 

counterexamples, then they can be computed by computations with a I;f 
oracle. However, the computations with I;f oracles are too strong: it is an 

easy exercise to show that any (i.e. type 2) problems can be solved using 

such computations. So it is important that STUDENT is allowed to ask 

only about feasible solutions to x when he is computing an optimal solution 

to x. 

We shall also use computations with counterexamples in a more general 

situation. Let B(x, y, z) be a ternary predicate, let x be given. Now the 

aim of STUDENT is to find some y such that \jz :::; xB(x,y,z). Again 

STUDENT can produce a conjecture y and ask TEACHER whether \jz :::; 
xB(x,y,z) is true. If it is not true, TEACHER must give to STUDENT 
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some z such that z S x & ,B(x, y, z). Such a z will be called a counterex

ample. If C(x, y), p(y) is an optimization problem, then we define B(x, y, z) 
by 

B(x, y, z) == C(x, y) & (p(y) < p(z) ---+ ,C(x, z»j 

thus Vz S xB(x, y, z) expresses that y is an optimal solution to x. Note that 

if C is in ~~ U II~, then B is in ~~+ 1 n II~+ 1 . Now this more general definition 
of computatios allows STUDENT to ask also about elements which are not 

feasible solutions to C. But this is no real advantage for STUDENT, since 
STUDENT can always test himself whether y is a feasible solution, and if 

it is not, then clearly z = 0 is a counterexample and he can use it as a 

possible answer to TEACHER. 

5. THE EXISTENCE OF OPTIMAL SOLUTIONS 

IN FRAGMENTS OF BOUNDED ARITHMETIC 

We consider optimization problems of the form C(x, y), p(y) where 

C(x, y) is IIf and p is polynomial time computable. We shall suppose 
that C(x, y) is defined by a II~ formula, p(y) is defined by a ~g formula, 

and formulae C(x, 0) and C(x, y) -t Y S x are provable in the fragment in 
question. If C(x, y), p(y) is a type 1 optimization problem, we shall require 
that 

C(x, y) -t p(y) < Ixl 
is also provable. 

Proposition 1. The following holds modulo the basic axioms for i ~ o. 
(1) PIND ~~+l is equivalent with the schema saying that every IIf 

optimization problem of type 1 has an optimal solution; 

(2) IND ~~+l is equivalent with the schema saying that every IIf opti
mization problem of type 2 has an optimal solution. 

Proof. We shall prove only (1), since (2) is similar. We shall use the equiv

alent schema LIND ~~+l. Let C (x, y), p(y) be given, let C (x, y) be in IIf. 
Assume that C(x, y) -t p(y) < Ixl is provable in the base theory. Take 
cp(x, t) defined by 

cp(x, t) == 3y S x(C(x, y) & t S p(y». 

From LIND ~~+l we get 

,cp(x,O) V 3t < Ixl(cp(x, t) & ,cp(x, t + 1» V cp(x, Ix!), 
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which just expresses the existence of an optimal solution. 

Proving the other direction assume that we are given some ~r+l formula 
W(x, u). We want to derive an instance of PIND for w(x, u), where u is 

the induction variable and x is a parameter. It is easily seen that we can 
consider only formulae of the form 

W(x,u) == 3v((u,v) ~ x & 'I/J(x,u, v)), 

where (-, -) is the pairing function and 'I/J is nr, since PIND for such 

formulae proves the full schema PIND ~r+l. Let C(x, y) and p(y) be defined 
by 

C(x, y) == (y ~ x & 'IjJ(x, (y)o, (y)t) & (y)o :::; Ixl) V y = 0, 

p(O) = 0, 

p(y) = (Y)o for y > 0, 

where (y)o and (y h are the decoding functions for the pairing function. 
Suppose we have 

W(x,O) and Vu < Ixl(w(x, u) - W(x, u + 1)). 

If the problem C, p has an optimal solution y for a given x, then it must be 

such that (y)o = lxi, hence we have W(x, Ixl). Thus we have shown PIND 
for W. 0 

Note that to prove that a type 0 optimization problem has an optimal 

solution, we do not need any induction. 

6. SEPARATION OF FRAGMENTS 

It has been noted quite early in the history of proof theory, that if we 

prove a sentence Vx3y<p(x, y) in some theory, then we have some informa
tion about how difficult is to find some y for a given x such that <p( x, y). 

In his fundamental paper [Pal Parikh showed that if Vx3y<p(x, y), with <p 
bounded, is provable in lilo, then y can be bounded by a polynomial in 
x, consequently it can be computed in linear space. Buss [B1] proved a 
theorem about 8 2 which gives essentially more information. He proved the 

following theorem. 
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Theorem 1. Let i 2: 0, let cp(x, y) be E~+l> and suppose 

S~+l I- '</x3ycp(x, y). 

Then there exists a function f computable in polynomial time with a Ef 
oracle such that 

N F '</xcp(x, f(x)). 

(Actually he proved more: under the same assumption S~+l I- '</xcp(x, 

f(x)).) 
We are not able to use this theorem to show that fragments S~ are 

different assuming e.g. that Polynomial Hierarchy does not collapse. (This 
is however possible for the intuitionistic version of these fragments using the 

intuitionistic version of Theorem 1 which was proved in [B3].) Therefore 

we shall use more complex formulae than E~, but then also we have to use 
a stronger mode of computation-this will be just the computations with 

counterexamples. The concept of counterexamples is also not new in proof 
theory, it goes back to Kreisel [K]. Recently Jan Krajicek [Kr] noted a close 
connection between the present concept and the former one, which can be 

used to give an alternative proof of the following theorems. 

Theorem 2 [KPT]. Suppose that for i > 0, and cp in Er+1 

T~ I- '</x3y'</z::; xcp(x,y,z). 

Then, for a given x, one can compute y such that '</Z ::; xcp(x, y, z) in 
polynomial time using a Ef oracle by a type ° counterexample computation 
(i.e. using a constant number of counterexamples). 

The following is a new result. 

Theorem 3. Suppose that for i > 0, and cp in E~+l 

S~+ll- '</x3y'</z::; xcp(x,y,z). 

Then, for a gien x, one can compute y such that '</ z ::; xcp( x, y, z) in polyno
mial time using a Ef oracle by a type 1 counterexample computation (i.e. 
using ;;t.n unbounded number of counterexamples). 

Let C, p be an optimization problem with C in IIf and p polynomial 

time computable. We have constructed a E~+l formula B(x, y, z) such that 
'</Z ::; yB(x, y, z) expresses that y is an optimal solution to x. Thus we can 
apply Theorems 2 and 3. 
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Corollary 1. For i ~ 0 and C in Ilf, if T~ proves that C (x, y), p(y) has 
an optimal solution for every x, then optimal solutions can be computed 
using a type 0 computation with a ~f oracle. 

Corollary 2. For i ~ 0 and C in Ilf, if S~+l proves that C(x, y), p(y) has 
an optimal solution for every x, then optimal solutions can be computed 
using a type 1 computation with a ~f oracle. 

By Proposition 1 we know that the existence of optimal solutions (for 

certain type of problems) is equivalent to (certain type of) induction. Thus 

we get: 

Corollary 3 [KPT]. For i ~ 0, ifT~ = S~+1, then every type 1 optimiza
tion problem C, p with C in Ilf can be computed by a type 0 computation 

with a ~f oracle. 

Corollary 4. For i ~ 0, if S~+l = Td+ 1 , then every optimization problem 
C, p with C in Ilf can be computed by a type 1 computation with a ~f 

oracle. 

Conclusions in both corollaries seem unlikely which strongly suggests 

that T~ #- S~+l and S~+l #- Td+ 1 • In [KPT] it has been shown that the 

conclusion of Corollary 3 implies that ~f+2 = Ilf+2 which is usually conjec
tured to be false. For the conclusion of Corollary 4 it is an open problem, 

whether it implies anything like that. 

7. PROOF OF THEOREM 3 

Here we shall sketch the idea of a proof of Theorem 3. The proof is a 

modification of Buss' proof of Theorem 1. Theorem 2 was proved using 
different means. We shall observe that it can be obtained by modifying 

the proof given below. Hence there is a uniform way to prove all three 

theorems. 

We consider the sequent calculus of Schwichtenberg [Sch]. The sequents 

are sets of formulae; logical connectives are &, V,..." where negation is al

lowed only at atomic formulae (if 'P is not atomic, ""'P is an abbreviation 

for the equivalent formula obtained by applying De Morgan's laws). The 

system has initial sequents of the form r, 'P, ""'P, (which is r u {'P,""'P}), a 
rule for &, two rules for V, one rule for each quantifier and a cut rule. The 
rules which are important for the proof will be explained in the course of 

the proof. We formalize S~+l in this system by allowing initial sequents of 
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the form r, rp (which is r u {rp}) for rp a basic axiom and by adding the 

following rule for each 'Ij; (x) in ~~+ I: 

8,--.,'Ij;(lbj2J),'Ij;(b) 
8, -,'Ij;(O) , 'Ij;(t) 

where b is not free in 8 and t is a term. 

Let rp(a, y, z) in ~~+l be fixed, let A(a) be defined by 

A(a) == 3,yVzrp(a, y, z). 

In order to simplify notation we shall assume that the bound z ::; a is im

plicit in rp( a, y, z). Suppose a proof of A( a) is given. By cut elimination we 

can assume that it is free-cut-free, i.e. the cut formulae are only substitution 

instances of basic axioms or induction formulae. Thus this proof contains 

only ~~+l and II~+1 formulae and substitution instances of subformulae of 

A(a), which are either A(a) itself, or Vzrp(a, t, z), for some term t, or a ~~+1 

formulae. Thus the general form of a sequent r in the proof is 

where 

II,~,~, <1>, A(a), 

II are II~+1 formulae which are not in II~ U ~~; 

~ are ~~+l formulae which are not in II~ u ~~; 
~ are II~ u ~~ formulae; 

<I> is a set of formulae of the form Vxr.p(a, t, z); 

and we can assume that A(a) is present in each sequent. 

N ow we are going to define the concept of witnessing functions for such 

a r. Recall that we have defined ~~+l (II~+l resp.) formulae so that they 

consist of a prefix of existential (universal resp.) bounded quantifiers fol

lowed by a II~ (~~ resp.) formula. We shall call these quantifiers essential. 

Let a, bl , ... ,bk be the string of free variables of r. We shall denote strings 

of variables and functions by boldface letters (e.g. b denotes bl , ... , bk ). 

We choose distinct variables Xl, ... ,Xl for all (distinct) occurrences of vari

ables at essential quantifiers in II and, similarly, YI, ... ,Ym for variables at 

essential quantifiers in ~. A string of functions 

h(a, b,x), ... ,fm(a, b,x),g(a, b,x), 
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will be called witnessing functions for r if the following formula is true for 

all assignments of natural numbers to a, b, x: 

(*) 1\ -,II(x) -t V E(f(a, b,x)) V V ~ V A(a) V Vz<p(a,g(a, b,x), z). 

Here II(x) denotes II with essential bounded quanfiers omitted an their vari

ables replaced by Xl, ... ,Xl; similarly in E(f(a, b,x)) essential quantifiers 

are omitted and their variables are replaced by !lea, b,x), ... , fm(a, b, x). 
Note that no witnessing functions occur in CP, though the formulae in cP are 

not in II~+ 1 . 

Using induction on the depth of a sequent in the proof, we shall show that 
every sequent has witnessing functions computable in the following way. 

THere is a Turing machine with a Er oracle which on an input a, b, x pro

duces the values !lea, b,x), ... , fm(a, b,x),g(a, b,x) in polynomially many 
steps. During the computation it may ask queries of the form Vz<p(a, u, z)? 
where u is some value produced during the computation. If the answer is 

negative, it gets a counterexample, i.e. some Zo such that -'<p(a, u, zo). If the 
answer is positive, it puts g(a, b, x) = u and some default values for fi'S and 

stops. In aprticular, we get the type of computation required in the theo
rem for the end sequent, since it consists of A(a) only. As defined above, 

we have to consider all possible strategies for the person (TEACHER) who 
answers the queries. Thus it would be more appropriate to talk about 

functionals fl, ... , fm' rather than functions. Or we can say: for any strat

egy of TEACHER the computed functions are witnessing functions for the 
sequent. 

The induction steps are similar to those in Buss' proof, except for those 

rules where the principalformula is a subformula of A( a). 
(1) Consider the following instance of the V-rule: 

e, <pea, t, bh ) 

e, Vz<p(a, t, z)· 

Suppose we have witnessing functions f(a, b, x), g(a, b, x) for the upper se

quent. The lower sequent has free variables a, b /, where b ' = (b l , ... , bh - l , 

bh+I. ... , bk). To get the witnessing functios for the lower sequent, we omit 

the witnessing functions for <pea, t, z) and change the remaining ones as 
follows. First we compute the value of the term t, then we ask the query 
"Vz<p(a, t, z)?". If the answer is positive, then the lower sequent is witnessed 

no matter how we define the functions. If the answer is negative and the 
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counterexample is u, then we define the witnessing functions for the lower 

sequent by substituting u for bi . Thus the functions depend only on a, b',x. 
(2) Suppose 3-rule is applied to Vxcp(a, t, z) to obtain 3yVzcp(a, y, z). 

Since this is just A(a), which is present in every sequent, the instance looks 
like this: 

e, Vzcp(a, t, z) 
e 

Suppose we have f, 9 for the upper sequent. The computation of f', g' for 

the lower sequent will be the following. First compute the value of t, then 

ask "Iorallzcp(a, t, z)?". If the answer is positive, set g'(a, b, x) = t and the 
value of f' is irrelevant; otherwise compute f', g' as for the upper sequent. 

(3) Consider an instance of the PIND ~~+1 rule: 

e, VX1-''IjJ( L bt/2 J, xd, 3Y1'IjJ(b1, yd 
e, VX1 -,'IjJ(O, Xl), 3Y1'IjJ(t, Y1) 

where 'IjJ is II~. In order to simplify notation we assume that there is only 
one essential bounded quantifier and we omit the bound; also we have 

chosen the indices to be equal to 1. Suppose we have witnessing functions 

f(a, b,x),g(a, b,x) for the upper sequent. We shall assume that 3Y1 is 
witnessed by It. Now we define witnessing functions f' (a, b' , x), g' (a, b', x) 
for the lower sequent, where b' = (b2 , •.. , bk ). First we compute 0 = 
vo, ... ,Vr = t such that LVj+t/2J = Vj, for j = O, ... ,r -1. Then we 
compute f(s), g(s) as follows. Set 

and for s ~ 0 let 

I (S+l) I ( b' I(s) ) j = j a, Vs, , 1 , X2,· .. , Xl , 

(s+1) - ( b' I(s) ) 9 - 9 a, Vs, , 1 , X2, ... , Xl , 

(fjO) is not defined for j > 1, lis) are iterations of It). In each step of 

the iteration s = 0,1, ... we also check whether 'IjJ(Vs , lis») is true and 
whether e is witnessed by f(s), g(s). The computation will stop if one of 

the following four cases occurs: 

(i) we get a positive answer to a query "V zcp(a, u, z)?" ; 
(ii) 'IjJ(o,JiO») is not true, i.e. -,'IjJ(O, Xl) is true; 

(iii) if e is witnessed by f(s), g(8); 

(iv) s = r - 1. 
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We define the witnessing functions according to which case occurs: 

(i) we set g'(a, h,x) = u and A(a) is witnessed; 
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(ii) the lower sequent is witnessed independently of the values of f', g'; 

(iii) if e is witnessed by f(s),g(s), then we take them as f',g'; 
(iv) define f',g' as f(r-I),g(r-I). 

We only have to check that the lower sequent is witnessed also in case (iv). 

If (iv) occurs, then none of the (i)-(iii) has occurred before, in particular 
W(O, fiG») is true. Suppose W(Vn f(r-I») is false. Then there is some s < r 

such that w(vs,fi s») is true and --W(vs+I,fis») is false. Since f,g witness 
the upper squent, this is possible only if e is witnessed by f(s), g(s), which 

is a contradiction. Thus the lower sequent is witnessed also in case (iv). 

We have tacitly assumed that 3YIW(t,YI) does not occur in e. Hit does, 
then fi s ) will not be included in f' and case (iv) will be subsumed in case 

(iii). 

We hope that this illustrates sufficiently well the changes that must be 
done in Buss' proof, and we are not going to consider other instances of 
rules and axioms. To state the main idea briefly: the change is in the 
possibility that a positive answer to a query "V zr.p( a, t, z )?" may occur. In 
such a case the computation stops, since we have a witness for A(a). 0 

Now we describe a proof of Theorem 2. The assumptions are similar, 
except that we have a weaker rule of induction 

e, --W(bh),W(bn + 1) 
e, --W(O), wet) 

since W is only ~~. We use the same definition of witnessing as in the above 

proof, hence no witnessing functions occur in --W(bh ), w(h + 1), --1j;(O) , wet). 
Let f, 9 be witnessing functions for the upper sequent. We shall define 
witnessing functions f', g' for the lower sequent. Let a, h', x be input, where 

again h' = (b l , ... ,bh- I , bh+ l , ... ,bk). First we check whether --W(O) V W(t) 
is true. If it is true, then we take arb~trary values for f', g'. If not, then we 

use binary search to find some u such that W(u) & --W(u + 1), u < t. This 
is possible, since now we can use W(x) as an oracle. Then we put 

f'(a, h',x) = f(a,b l , ... ,bh-I,U,bh+l,'" ,bk,X), 

g'(a, h', x) = g(a, bl, ... , bh - I , u, bh+l,"" bk, x). 

In this case we witness e. Here no iterations of witnessing functions occur. 
Hence it holds for every rule: if the number of queries is constant (i.e. does 
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not depend on parameters a, b, x), then it is constant in the lower sequent 

too. Consequently the number of queries used to compute the witness for 

the end sequent is constant. (It is not hard to prove a more precise upper 

bound: the number of queries is bounded by the number of applications of 

V-rule to formulae cp(a, t, bh ).) 0 

7. RELATIVIZATIONS 

We conjecture that there are optimization problems C, p, with C in IIf 
(of type 2) whose optimal solutiosn cannot be computed in polynomial 

time using counterexample computations (of type 1) with :Ef oracles. By 

Corollary 4, this conjecture implies that 8~+1 i= T~+l. We shall justify 

this conjecture for i = 0 and i = 1 by showing that for suitable oracles 

the relativized version is true. Clearly it is sufficient to prove it for i = 
1. These results imply separations of the corresponding fragments of the 

system obtained from 8 2 by adding a new uninterpreted predicate, (see 

Corollary 6 below). 

In the following proof it will be convenient to consider oracles as map

pings A : N3 ----> {O, I}. 

Theorelll 4. There exists an oracle A such that there is no polynomial 
time interactive algorithm (type 1) with a (:Ei)A oracle which computes 
the largest y such that y :s; x and 

Vu :s; x(A(x, y, u) = 0) V Y = O. 

I.e. in the optimization problem C(x, y) is Vu :s; x(A(x, y, u) = O)Vy = 0, 

which is in (IIn A , and p(y) = y. In the proof of Theorem 5 we shall assume 

some familiarity with the concept of relativization. As usual we shall use 

finite approximations to oracle A. The key lemma which enables us to 

diagonalize at level :Ef is the following. 

Lelllllla 1. Let RG:(v) be a (:EnG: predicate, where Q is a variable for an 

oracle. Let a partial mapping A' be given, let v be given. Then there exists 
an extension A" of A' such that it has only polynomially more elements 
than A' (i.e. IA"\A'I :s; q(lvl), for some polynomial q), and for any two 
extensions A and B of A" 
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i.e. A" forces R( v) or ,R( v). 

Proof. First uppose that there exists some Ao :2 A' such that RAo (v) holds 

true. Take an accepting computation for v which uses Ao and add to A' 

the queries asked by this computation. Any extension which gives the same 

answer to these queries will allow this accepting computation. If there is 

no such extension A o, then put A" = A'. D 

Proof of Theorem 5. We construct the oracle in w steps. In the i-th step we 

diagonalize the i-th STUDENT, which is a polynomially bounded Turing 

machine and a ~f oracle. The precise meaning of this statement is that we 

construct a finite extension Ai of the previous approximation to the oracle, 

we take an input Xi and define a strategy for TEACHER so that for any 

extension of Ai, STUDENT does not compute the optimal solution to Xi 

in P(IXil) steps, where p is the polynomial bound to STUDENT. We can 

always take Xi so large that on Xj with j < i, STUDENT never asks queries 

of the form "A(xi,r,s) = 07". 

On input X, STUDENT uses I:f oracle only for inputs whose size is 

polynomially bounded in Ixi. Hence there is a polynomial bound q'(lxl) 

to all possible values q(lvl) for queries v asked during the computation on 

input X, (q is the polynomial from Lemma 1). Put p'(lxl) = p(lxl) . q'(lxl), 

(we assume also q'(lxl) :::: 1). We choose Xi so large that 

Each Ai is also constructed in several stages, 

These stages will correspond to the queries of STUDENT. At the same 

time we define the strategy for TEACHER. We have to define the strategy 

of TEA CHER only for Xl, X2, ... , since other inputs are not used for the 

diagonalization. Let i be given. The strategy of TEACHER will consist of 

her answers YI, Y2, . .. . The approximations A7 will be constructed using 

Lemma 1, hence if we take any extension of A7 and if TEACHER uses 

YI, ... ,Yk-l, the computation of STUDENT will be the same up to the k

th query. The number of these stages is bounded by the number of queries 

that STUDENT can pose to TEACHER and this in turn is bounded by the 

total running time p(IXil) of STUDENT. 
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There are three reasons to extend the current approximation to the or-
acle A: 

(1) to force the computation of STUDENT; 
(2) to force that the answers of TEACHER are correct; 

(3) to force that STUDENT has asked the wrong question (this can be 
avoided by taking an enumeration of STUDENTS who do not ask 
wrong questions). 

By Lemma 1, we can always add q'(IXil) new elements into the approx
imation of the oracle so that an answer of Ei oracle is forced. In this 

way we add at most q'(IXil) new elements to the approximation to A in 

each computation step. Hence for (1) we have to add at most P'(IXil) ele
ments. To ensure (3) we need just one element. Once STUDENT asked a 

wrong question (Le. he asked TEACHER whether Y is maximal such that 

Vz ~ XiAi(Xi, y, z) = 0 for some y such that :Jz ~ XiAi(Xi, y, z) = 1), the 
construction of Ai and TEACHER's strategy is finished. For (2) we have to 

add all triples (Xi, Yk, z) for each answer Yk of TEACHER and each z ~ x. 
We shall construct Af and Yk in such a way that we add new elements into 
the domain only if we need them because of one of the reasons (1)-(3) and 
the following condition is satisfied: 

for k > 0, Yk is the largest answer of TEACHER and Yk ~ k· 

(P'(IXil) + 1). 

Suppose the condition is satisfied at stage k - 1. We take any exten
sion B of A~-i and let STUDENT work until he presents a conjecture to 

TEACHER. Let Bf- i be an approximation which forces this computation 
of STUDENT, A~-i ~ Bf- i ~ B, and let the conjecture of STUDENT be 

y. If Y > Yk-i, then we can extend Bf-i to Af by adding just one element 
to it in such a way that STUDENTs answer is wrong (for any extension of 

An· This is because, for such a Y ~ Xi, there can be at most P'(IXil) < Xi 

elements z ~ Xi such that Bf-i (Xi, y, z) is defined. Otherwise Y ~ Yk-i' 

There are at most p'(IXil) elements Y' > Yk-i such that Bf-i(Xi,Y',Z) is 
defined. By the assumption that the condition holds for k - 1, 

Yk-i + P'(IXil) ~ (k - 1) . (P'(IXil) + 1) + P'(IXil) ~ 

~ k· (p'(IXil) + 1) ~ P(IXil) . (P'(IXil) + 1) < Xi. 

Hence we can take Yk such that Yk-i < Yk ~ Xi, Bf-i(Xi' Yk, z) is undefined 
for all z and 

Yk ~ Yk-i + p'(IXil) + 1. 
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By the assumption that the condition holds for k - 1, 

Thus we can extend B7- 1 to A1 by putting 

A1(Xi, Yk, z) = 0 for every z ::; Xi, 

and the condition will be preserved. 

After polynomially many steps STUDENT must stop, but we can still 

extend the oracle so that there exists a larger counterexample, because 

Yk + P'(IXil) ::; k· (P'(IXil) + 1) + P'(IXil) ::; 

::; (k + 1) . (p'(IXil) + 1) ::; (P(IXil) + 1) . (p'(IXiD + 1) < Xi. 

Hence he is not able to find the optimal solution. o 
Remarks. (1) The proof above is essentially the same as for the similar re

sult in [KPTj. (2) We have shown more for this oracle: for every STUDENT 

there exists an input X such that either he asks a wrong question on X or 

he uses the trivial strategy on X without success. 

Let S2(0') (resp. T~(O')) be 52 (resp. T2) extended by adding a new pred

icate to the language and extending PIND (resp. IND) to ~7(0') formulae 

(which are defined as ~~ in the extended language). 

Corollary 5. For i = 1 and i = 2, T~(O') -=1= 5~(0'). 

Proof. First it is necessary to check that Proposition 1, Theorem 3 and 

hence also Corollary 4 can be relativized by adding a new uninterpreted 

predicate 0'. Take C (x, y) to be 

\;fu::; x(O'(x,y,u) = 0) Vy = 0, 

and p(y) = y. Then, by relativized Corollary 4, for any interpretation of 

0' as a subset A <:;;; N, we should be able to compute y form x using an 

interactive computation with oracle A. If we choose the interpretation fo 

0' to be A from Theorem 5, we get a contradiction. In this way, we obtain 

the result for i = 2. For i = 1 we take the same A and encode in it some 

NpA-complete problem. Thus former ~f sets become P sets. Or we can 

prove a theorem similar to Theorem 5 for this simpler case using a trivial 

modification of the proof above. 0 
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8. OPEN PROBLEMS 

We would like to prove the conjecture that there are optimization prob

lems C, p with C in IIf which cannot be computed by (type 1) interactive 
computations with ~f oracles, since it implies that S~+l i- T~+l. As this 

conjecture implies that P i- NP, it is hopeless to try to prove the conjec

ture directly. In the present situation the following two problems seem to 

be more feasible: 

(1) Reduce the conjecture to the statement that Polynomial Hierarchy 

is proper, or a similar statement in complexity theory. 
(2) Find oracles for each i such that the relativized statements are true. 

A proof of (2) would imply T~(a) i- S~(a). Similar statements for type 1 
optimization problems and type 0 interactive computations were proved in 

[KPT]. Note that there is a different approach to the separation of fragments 

of Bounded Arithmetic. It is based on proof systems for the propositional 
calculus [KP]. There we would need to show superpolynomiallower bounds 

to the length of proofs in certain proof systems for the propositional cal

culus. This is a weaker question than NP i- coNP. Even less we know 
about the related problem: 

(3) Is T~ partially conservative over S~, e.g. is T~ \fII~-conservative over 

S~? 

Some results on this problem have been recently obtained by Krajicek 

[Kr]. Also note taht Krajicek and Takeuti [KT] have constructed a consis
tency statement which is the strongest \fII~-formula provable in T~, hence 

it is the best candidate for a possible separation of T~ from S~. 
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