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We study generalizations of Ramsey theorem to systems of finite subsets of w. A system & of
finite subsets of o is called to be Ramsey if for every partition ¥ =%, U¥, there exists an
infinite set 'Y S :such that $,N[Y]* =0 or L,N[Y]"*=9. We give'some sufficiént condi-
tions for a: system to be Ramsey. We also. prove a theorem which concerns partitions into
infinitely many classes. This may be regarded as a common generalization of Erdos—~Rado and
Nash-Williams theorems.

Introduction

Let & be a system of finite subsets of w. Let us 'say that & is Ramsey if for every
partition ¥ = ¥, U, there exists an infinite set Y < w such'that ,N[Y]** =@ or
F>,N[Y]"® =@. Now, the Ramsey theorem can be stated as follows: if ¥<[w],
then & is Ramsey. Not every & is Ramsey, consider ¥ =[w]'U[w T and ¥, =[w]’,
¥, =[wP. In [3] Nash-Williams gave, inter alia, a sufficient condition for a set
system & to be Ramsey. He proved that if a set system & does not contain two
sets s, t such that s is a proper initial segment of ¢, then & is Ramsey. We give a
new proof of this fact and show other sufficient conditions. All these conditions are
also in some sense necessary.

Another possible generalization of the Ramsey theorem’ was considered by
Erdos and Rado [1]. Let Y be an infinite subset of . A partition [Y]* ={J, &,
iscalled canonical -if there exists n€{0,1,...,k} and 1<sj,<j,< v+ <j, <k
such that {x;, X5, ..., X}, {V1, Y25 -+ » V€[ Y]* ‘are elements of the same &; iff
X =Y X =V -+ » X = ;.. Erdos -and Rado proved that for every partition
[w] =17 &; there exists an infinite set Y < w such that the partition restricted
to the set [Y]* is canonical. Generalization of the concept of canonical partition
to the set systems: that contain sets of various finite cardinalities presents:some

_ difficulties. We have chosen a definition which is in the case of [@]* a bit weaker

but in general case provides an aesthetically pleasing balance between generality
and clarity. We prove a “generalization” of Erdos—Rado theorem for Ramsey set
systems.

All this is proved via transfinite induction on ,. The idea of using transfinite
induction occurred to us after reading Ketonen’s paper [2].
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Notation. s, t,... will always denote finite subsets of w; XY, Z, ... infinite
subsets of w; ¥,J,... sets of finite subsets of w; «, B,... countable ordinal
numbers; s< ¢t means s is an initial segment of t (s< t: proper initial segment);
I X=2N[X]" is the restriction of & to X,

F={s€ ¥ | n=min s}
Fay=1s [ {n}Us e ¥, n <min s};

inclusion is denoted by <; proper inclusion by <.

Definition. (a) & is Ramsey on X if for every partition ¥=%,U - -+ U¥, there
exists Y such that at most one of the sets ¥, Y-+ &, Y is nonempty.

(b) & is Sperner if there do not exist s, t€ & such that sct.

(c) & is thin if there do not exist s, t€ & such that s<t.

(d) & is a-uniform on X if a =0, ¥={@} or a >0, §¢ ¥, and for every ne X,
Py 18 @, uniform on X N{n, ), where «, +1=a for every ne X, if « is not limit,
or {a, },x is increasing and converging to « if « is limit.

(e) & is uniform on X if ¥ is a-uniform on X for some a.

For k € w, there is exactly one k-uniform system on X, the system of k-element
subsets of X. It is easy to show that there are infinitely many a-uniform systems
for each a = w. A typical example of an w-uniform system is the set of all s X
such that the cardinality of s equals to the least element of s. Similarly for o +1,
take the set of all s € X such that the cardinality of s is equal to the least but one
element of s.

Lemma 1. If & is uniform on X, then & is a maximal thin systems on X.

Proof. By induction on « such that & is a-uniform:

(1) a =0, then the assertion is trivial.

(2) >0 and let the assertion hold for every B<a. If s;te?, s<t, then
mins=mint=n; s—{n}<t—{n} in %,,, which is a contradiction with the in-
duction hypothesis that &, is thin. Thus & is thin. If s € X, n =min s, then there
is t€ P,y such that t<s—{n} or s—{n}<t, because ¥, is minimal. This implies
{ntut<sors<{ntUtand {n}Ute?, which is the maximality condition for ¥.

Lemma 2. If & is a-uniform on X, Y< X then &Y is a-uniform on Y.
Proof. By induction on a.
Definition. < X X[ X]™* is called admissible on X if:

(O nRY, Z< Y implies n & Z (heredity);
(2) for every ne X, Y < X there exists Z< Y such that n ® Z (cofinality).
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Lemma 3 (Nash-Williams [3]). For every admissible R, there exists Y such that for
every ne Y, n (Y N(n, x)).

Proof. Using cofinality of R define a sequence Y,< Y,=Y;--- such that
n; ® Y, and n; <n;,, for n, =min Y. Put Y ={ny, n,, . . .}, and use heredity of R.

Let #0, put $*={t|Ise P, t<s}. Let us call & regular (singular) if the
relation > is (is not) well-founded on ¥*. (> is well-founded means that there
does not exist an infinite sequence §;< s,< - - *).

For & regular define a countable ordinal (&) — the type of & —as follows. First
define for every s e ¥* an ordinal 74(s) by well-founded induction:

T(s)={r () s <t, t e F*}.

Then put T(¥) = 14().
The following property enables us (o use transfinite induction for regular ¥’s.
For every n, either ¥,,=0 or 7(¥,,))<7(¥). This is because, for {n}e ¥*,

T(F ) = 7({n}) <74(0).

Lemma 4. For every &, X there exists Y < X such that ¥ Y =0 or #! Y contains
a system uniform on Y.

Proof. Let &, consist of the elements of ¥ minimal with respect to inclusion. ¥,
is Sperner and if &, satisfies the condition of the lemma, so does &. Hence it is
sufficient to prove the lemma for & Sperner, & # . Consider these two cases:

(a) & is singular. Then take a sequence s,< $,< - - -, 5; € X; of elements of &*,
and put Y = lJs;, Let t be an arbitrary finite subset of Y. Then t<s; for some i.
Since & is Sperner, t¢¥. Thus ¥ Y =0.

(b) & is regular. We shall prove by induction on 7(¥) that for every X, there is
Y < X such that 1 Y=0 or #1'Y is uniform on Y.

Consider the relatign n ® Z defined by the condition: ¥, Z is empty or
uniform on Z N(n, «). By Lemma 2, & is hereditary. If &, Z # @, then 7(%,,)) <
7(¥). So we can use the induction hypothesis to show that @ is cofinal. Thus, by
Lemma 3, we have some Z such that, for every n€ Z, &, | Z is empty or uniform
on ZN(n,o). If ¥, Z=0 for infinitely many n’s ne€ Z, then let Y consist of
these n’s. Otherwise choose n’s such that ¥, | Z is uniform on Z N(n, »), and
corresponding ordinals are either equal or form an increasing sequence.

Theorem 1. The following statements are equivalent:

(1) & is Ramsey.

(2) There exists an X such that & | X is Sperner.

(3) There exists an X such that ¥ } X is either empty or uniform on X.

(4) There exists an X such that & | X is thin.

(5) There exists an X such that for no Y < X there exist ¥y, &, uniform on
Y, ¥ NF=0 and S, UL, &Y.
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Proof. (1)=(2). Let $=%,U¥,, where &, consists of all the elements of &
minimal w.r.t. inclusion, and ¥, contains the other elements of &. Let X be given
by the Ramsey property of & for the partition ¥ =%, U¥,. If ¥, } X =@, then also
#21 X =0. So we have ¥ X =, X anyway.

(2)=>(3) By Lemma 4.

(3)=>(4) By Lemma 1 any uniform & is thin.

(4)=>(5) By Lemma 1 union of two uniform systems cannot be thin.

B> Let =%, UF,U - UP,. By Lemma 2 and Lemma 4 we can find
Y, i such that &, |'Y is empty or contains a subset uniform on Y. By hypothesis
(5), &; 'Y is nonempty at most for one i.

Lemma 5. Let & be uniform on X, and let A be a function A : ¥ —> w such that
A(s)¢s for every se #. Then there is a Y such that A(s)¢ Y for every se #| Y.

Proof. Let & be a-uniform on X. We shall prove lemma by induction on a. Let
a>0, (a =0 is trivial). Consider the relation n 2 Y defined by the condition

AMF! YINY=p and (Sl YIN[O0, n]<1,

Heredity of ® is evident. We shall prove its cofinality. Let neX; Y& X be
arbitrary. Then, by the induction hypothesis applied to a natural translation of A
to a function defined on ¥,,, we have some Z,< Y such that

/\(‘?[n]rzl)nzl =¢-

Then using the Ramsey property of ;] Z; we obtain some Z,, which satisfies
also the second part of the condition. Thus @ is adminisible. Let Z be such that
n ®(ZN(n, ) for every ne Z. Then we have a function f : Z — o such that if
se P Z, M(s)e Z, then A(s) = f(min s). The graph of f has an independent set Y,
(since it is 3-colourable). Y is the required set, because if we had se¥!Y,
A(s)e Y, then we would have also minse Y and f(mins)=A(s)e Y.

Lemma 6. Let &, &, be uniform on X, ¢4, ¢, one-to-one mappings defined on

¥y, ¥, respectively. Then there exists a Y satisfying one of the following conditions:
(@) L1 Y=Y and ¢,(s) = @u(s) for every se £, 1Y, (i.e. 01! Y=0,1Y),
(b) @i(Z11 V)N gL} Y)=9.

Proof. Divide &, into two parts by the condition
se¥, and  @,(s) = @x(s). (1)

Let Z be given by the Ramsey property for this partition. If every se %} Z
satisfies (1), then we have ¥, | Z< &, Z. By maximality of uniform systems we
have &, Z =%, Z. Thus (a) is satisfied for Y = Z. If every s € ¥, | Z satisfies the
negation of (1), define functions A4, A, as follows: for s € #,, A,(s) € t —s whenever
t—s =0 and ¢,(s) = @,(t), otherwise arbitrarily; A, is defined dually. This is always
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possible, since for given s there is at most one t such that ¢,(s) = @,(t), and vice
versa. Let Y be such that

Al(ytrY)nY=¢5 i=1927

according to Lemma 6. We shall prove that Y satisfies (b). Suppose ¢(s) = ¢,(t)
for some se %, 1Y, te ¥, Y. As we assume the negation of (1), we must have
s#t If e.g. t—s# 0, then A,(s)e t < Y, which is a contradiction. Thus ¢,(s) = ¢,(t)
is impossible.

Lemma 7. Under the assumption of the preceeding lemma, if &, is a-uniform, ¥,
is B-uniform, and o # B, then (2) of the preceding lemma is excluded.

Proof. It is easy to prove by induction that if & is a-uniform, then it is not
B-uniform for any B# a. Further, a-uniformity is heraditary. Therefore &; and
&, cannot coincide on-an infinite set.

Definition. A mapping ¢ defined on & is called canonical colouring of &¥ on X if
the following holds:
(1) & is uniform on X.
(2) There exists a2 uniform J and a mapping f: ¥ — I such that
(a) f(s)cs for every se ¥,
(b) for every s, te &, @(s)=o(t) iff f(s)=71(t).
Condition (b) is equivalent with:
(b") There exists a one-to-one mapping ¢ defined on J such that ¢(s)=
U (f(s)) for every se &.

Roughly speaking, ¢ is a canonical colouring of & if the colour of each se ¥ is
determined by some subset ¢ of s. The original definition of Erdds and Rado
required that also the position of t in s is fixed.

Now we shall prove an analogy of Erdés-Rado theorem for Ramsey systems.
By Theorem 1, we can restrict ourselves to uniform systems.

Theorem 2. For every & uniform on X, and every mapping ¢ defined on &, there is
Y c X such that ¢ [ (£ 1Y) is canonical colouring of #1Y on Y.

Proof. (I) Let ¢ be a-uniform. We shall use induction on a. If a =0, then the
statement is trivial. Suppose now that a >0 and the theorem is proved for every
B < «a. Define

ew(s)=e@({n}Us} for seP(n).

LetJ,, f., ¢, be the corresponding uniform system and mappings of (2) and (b).
The property of being cannonical is obviously hereditary. Therefore, (using the
induction hypothesis), ® is admissible, where n RY means ¢, | (%! Y) is
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cannonical. Thus we can assume that the ¢,’s are cannonical colourings of ¥,
on X N(n, ).

(I1) We can also assume that the ordinals corresponding to 7, n€ X are either
all equal or form an increasing sequence.

(ITII) We shall show that (if we restrict ourselves on some infinite subset) the
following condition holds for every n <m.

either T, (m,o)=9,, U1 T = Ui

(1
or ¢, ([ (m,©) N, (T,)=0.

This follows from Lemma 3, where m RY means: “for every n, n<m, (1)
relativized to Y holds”. Again heredity is trivial. Cofinality follows from Lemma
6, where we consider couples ¢, [ (T, | (m, »)), ¢, by turns for every n, n <m.

(IV) Using Ramsey’s theorem for graphs we can assume that one part of the
alternative (1) holds simultaneously for all n’s. According to this we divide the
rest of the proof. _

@ T, (m,0)=T, and ¢, F,. =, for every n<m.

Then we define Y =X—{ng}, where ng=min X, 9= Ty f(8)=Ff(s—{n}) for
s€¥, n=mins, ¢ =4,. J is uniform on Y, f(s)< s for every se #| Y, ¢ is one-
to-one, since J,,, f,, ¥, have these properties. It remains to verify the equality
from (b’) of the definition of canonical colouring: .

@(8) = @ey(s —{n}) = ¥, (fu (s = {nH) = 4, (. (s = {n})) = Y(f(s)),

where s ¥ Y, n=min s.

(i) ¢, (T, 1 (m, )N, (T,.)=9 for every n<m.

Define sets J,, , , and mappings ¢, ). for every n <m, s < (n, m] as follows:
ted  mm=m<mint, sUteT,, P (1) =,(sUt), for t€ T, )m

In the same way as done in (3) we can find a suitable infinite subset of X such
that for every triple n, m, s, n <m, s < (n, m] either

gn,(s),m = ij’ ‘[’n.(s),m = ¢’m (2)
or

Y (s)m (‘Ojn,(s),m) N, (T ) = 9. ' 3)

For s =0 we have (3) by the assumption of this paragraph, since J, gy =T, |
(m, ). For s#@, J, (. is uniform on X N(m, «) and

T(gn,(s),m) < 'T(gn) = T(gm)-
The first inequality here follows e.g. from the formula
Tnom =C- (T n)(nx))(n/z) e ')(nk) I (m, o)

where {n,,...,n.}=s. The second inequality was secured in (II). This, however,
implies that we have (3) also for each s #§ (see Lemma 7).
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Now define:
J={ntUrt|teT,},
f&)y={ntUf,(s—{n} for se¥, n=mins,
Y(t)= ¢, (t—{n}) for n=mint.

J is uniform since J,,’s are uniform and by (II). f(s) < s is also trivial.
Further we have for all n <m,

d/n (gn) = U ] ‘l’n,(s),m (gn,(s),m)a

se(nm
therefore . (7,) Ny, (T,.) =0 by (3).
If we denote i, 1(1) = ¢, (t—{n}) for teJF, n=min¢, then ¢ =", ¢,
It follows that ¢ is the union of a family of one-to-one mappings, the ranges of
which are disjoint, therefore ¢ is one-to-one. It remains only the equality

@(8) = oo (s —{nh) = ¢, (f. (s —{n}) = ¢{n} U £, (s —{n}))
= (f(s)) for se¥, n=mins.

At first glance it may seem that our definition of canonical colouring is rather
weak. The next proposition shows that it is not quite so.

Proposition. Let ¢ be a canonical colouring of ¥ on X, let 54, f; and T ,, f, be two
couples satisfying condition (2) of the definition. Then there is Y such that

T Y=9,1Y and filY=£1Y.

Consequently, the ordinals of I, and J, are equal.

Proof. Let ¢, ¢, be the corresponding one-to-one mappings given by (b'). Apply
Lemma 6 to these mappings. Then the condition (b) of Lemma 6 is excluded as we
have

Q)#(P(«?YY)E%(%TY% i=1,2.

Therefore T, ¢, and T, ¢, coincide on Y. fy, f, are uniquely determined by ¢,
and ¢. (f;(s) is the unique teJ,, for which (1) = ¢(s).)
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