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Abstract

A natural model of read-once linear branching programs is a branching program where
queries are F2 linear forms, and along each path, the queries are linearly independent. We
consider two restrictions of this model, which we call weakly and strongly read-once, both
generalizing standard read-once branching programs and parity decision trees. Our main
results are as follows.

• Average-case complexity. We define a pseudo-random class of functions which we
call directional affine extractors, and show that these functions are hard on average
for the strongly read-once model. We then present an explicit construction of such
function with good parameters. This strengthens the result of Cohen and Shinkar
(ITCS’16) who gave such average-case hardness for parity decision trees. Directional
affine extractors are stronger than the more familiar class of affine extractors. Given
the significance of these functions, we expect that our new class of functions might be
of independent interest.

• Proof complexity. We also consider the proof system Res[⊕] which is an extension of
resolution with linear queries. A refutation of a CNF in this proof system naturally de-
fined linear branching program solving the corresponding search problem. Conversely,
we show that a weakly read-once BP solving the search problem can be converted to
Res[⊕] refutation with constant blow up.

1 Introduction
Circuit complexity and proof complexity are two major lines of inquiry in complexity theory (see
[15, 18] for extensive introductions). The former theme attempts to identify explicit Boolean
functions which are not computable by small circuits from a certain restricted class, and the
latter aims to find tautologies which are not provable by short proofs in a given restricted proof
system. These seemingly unrelated topics are bound together in at least two different ways: via
feasible interpolation where a circuit lower bound for a concrete computational problem implies
proof size lower bounds (see, e.g., [17, 24, 12]), and more fundamentally many proof systems have
an underlying circuit class where proof lines come from. Notable examples are Frege, bounded
depth Frege, and extended Frege systems where proof lines are De Morgan formulas, AC0

circuits, and general Boolean circuits, respectively. Intuitively we expect that understanding a
circuit class in terms of lower bounds and techniques should yield results in the proof complexity
counterpart. This intuition has been triumphantly supported by bounded depth Frege lower
bounds using specialized Switching Lemmas (see e.g., [19, 23, 11]), the quintessential ingredient
of AC0 lower bounds (see, e.g., [9, 10]).

AC0[2] circuits and Res[⊕] proof system. It is not clear if this intuition should always
hold. Lower bounds for AC0[p] circuits (AC0 circuits with Modp gates) have been known for a
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long time [25, 29] yet lower bounds for bounded depth Frege systems with modular gates still
elude us. Perhaps this failure is not too surprising since our understanding of AC0[p] circuits
is not of the same status as our understanding of AC0. For example even for AC0[2], that is
AC0 with parity gates, no strong average-case lower bounds are known. Settling such bounds
is an important challenge since Shaltiel and Viola [28] showed that for standard worst-case to
average-case hardness amplification techniques to work, the circuit class is required to compute
the majority function, which is not the case for AC0[2]. Several works have highlighted the
special case of AC0 ◦ Mod2, where the parity gates are next to the input [27, 1, 7, 6, 13]. Among
these works we pay special attention to the result of Cohen and Shinkar [7] who considered the
depth-3 case of this problem and proved a strong average-case hardness for the special case of
parity decision trees. The more general case of DNF ◦ Mod2 remains open.

In the proof complexity parallel, a special case of AC0[2]-Frege was suggested by Itsykson
and Sokolov [14]. They considered the system Res[⊕] that is an extension of resolution which
reasons about disjunctions of linear equations of F2, which we call linear clauses. The rules of
this system are:

• the weakening rule: from a linear clause we can derive any other linear clause which is
semantically implied,

• the resolution rule: for every two linear clauses C and D and linear form f , we can derive
C ∨ D from (f = 0) ∨ C and (f = 1) ∨ D.

They proved exponential lower bounds for the tree-like restriction of this system. These lower
bounds were later extended in [8, 22]. For DAG-like proofs, the only known results are due to
Khaniki [16] who proved almost quadratic lower bounds, and to Lauria [20] for a restriction
of the system when parities are on a bounded number of variables. Super-polynomial lower
bounds for unrestricted DAG-like Res[⊕] are widely open.

Parity decision trees and tree-like Res[⊕]. Given an unsatisfiable CNF F = C1 ∧ . . . ∧ Cm,
the search problem for F is the computational problem of finding a clause Ci falsified by a
given assignment to the variables. A tree-like Res[⊕] refutation of F can be viewed as a parity
decision tree solving the search problem for an unsatisfiable CNF [8]. Recall that the strongest
average-case lower bounds for AC0[2] are in fact for parity decision trees. Thus it seems that
parity decision trees are at the frontier of our understanding in these two areas. Therefore a
natural approach to make progress towards both general Res[⊕] lower bounds and average-case
hardness for AC0[2] is to consider DAG-like structures more general than decision trees.

1.1 Our contributions

Motivated by strengthening tree-like Res[⊕] lower bounds as well as average-case lower bounds
for parity decision trees to more general models, we consider a model of read-once branching
programs (BPs) with linear queries. The most natural way to interpret the property of being
read-once in BPs with linear queries, is to impose that along every path, the queries are linearly
independent. However this models seems to be very powerful. We consider two restrictions of
this model which we call weakly read-once and strongly read-once, both of which extend parity
decision trees as well as standard read-once branching programs.

For strongly read-once BPs, we prove average-case hardness for a new class of psuedo-random
functions, and we give an explicit construction of such a function, thus strengthening the result
of Cohen and Shinkar [7] and making progress towards average-case hardness for DNF ◦ Mod2.
Our pseudo-random functions are defined below and might be of independent interest.

Directional affine extractors. The average-case hardness result of Cohen and Shinkar [7]
is for affine extractors. An affine extractor for dimension d and bias ϵ is a function such
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that restricted to any affine subspace of dimension at least d it has bias at most ϵ. Explicit
constructions for such functions are known (e.g., [4, 30, 3]). For our purposes it is not clear if
affine extractors are sufficient. Therefore we consider a more robust. We say that a function
f : {0, 1}n → {0, 1}n is a directional affine extractor for dimension d with bias ϵ, if for every
non-zero a ∈ {0, 1}n, the derivative of f in the direction a, Daf(x) = f(x+a)+f(x), is an affine
extractor for dimension d with bias ϵ. We give an explicit construction of a good directional
affine extractor for dimension larger than 2n/3.

For weakly read-once BPs we show a correspondence with Res[⊕]. More precisely, we show
that a weakly read-once BP solving the search problem for a CNF F , can be converted to a
Res[⊕] refutation of F . This also justifies considering a Res[⊕] counterpart to regular resolution.
Recall that in a regular resolution proof, no variable is resolved more than once along any path.
It is well-known that a read-once BP solving the search problem for an unsatisfiable CNF can
be converted to a regular resolution refutation of the formula. Our result should be interpreted
as an extension of this result to Res[⊕].

1.2 Read-once linear branching programs

The model of read-once branching programs is a natural and extensively studied model of
computation for which strong lower bounds are known [26, 2]. Here we consider an extension
of this model where queries are linear forms. A linear branching program P in the variables x
is a DAG with the following properties:

• it has exactly one source;

• it has two sinks labeled with 0 and 1 representing the values of the function that P
computes;

• every inner node is labeled by a linear form q over F2 in x which we call queries;

• every inner node with a label q has two outgoing edges labeled with 0 and 1 representing
the value of q.

Any assignment to the input variables naturally defines a path in the program. We say
that P computes a Boolean function f : {0, 1}n → {0, 1} if for every x ∈ {0, 1}n, the path in P
defined by x ends in the sink labeled with f(x).

We now define read-once linear BPs. Given an inner node v of a linear branching program
P we define Prev as the span of all queries that appear on any path from the source of P to v,
excluding the query at v, and Postv as the span of all queries in the subprogram starting at v.

Definition 1 (Weakly read-once linear branching program). We say that a linear branching
program P is weakly read-once if for every inner node v of P which queries q, it holds that
q ̸∈ Prev.

We can make this requirement more strict.

Definition 2 (Strongly read-once linear branching program). We say that a linear branching
program P is strongly read-once if for every inner node v of P, it holds that Prev ∩ Postv = {0}.

It follows from both definitions that queries alongside any path in weakly or strongly read-
once BP are linearly independent. Furthermore, both of these models generalize standard
read-once BPs and parity decision trees.

When the distinction between weakly or strongly read-once is not important, we simply
write “read-once”.
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2 Notation and basic facts
Each path in a read-once program defines an affine subspace given by the set of solutions of the
system corresponding to the queries on the path. Any affine subspace can be represented by a
vector space shifted by a vector from the affine space. For our purposes, we need to choose this
shift carefully.

Let p be a path in P leading to a node v with queries q1, . . . , qk and answers a1, . . . , ak

to these queries which define the affine subspace Sp = {x :
∧k

i=1 qi(x) = ai}. Let Vp be the
supporting vector space of Sp, i.e., Vp = {x :

∧k
i=1 qi(x) = 0}. Then clearly Sp = Vp + b for

any b ∈ Sp. Choose an arbitrary basis q′
1, . . . , q′

t for Postv. Since q′
1, . . . , q′

t are independent of
q1, . . . , qk, there exists b such that

∧k
i=1 qi(b) = ai and

∧t
i=1 q′

i(b) = 0. Then Sp = Vp + b and for
every q ∈ Postv, we have q(b) = 0.

Definition 3 (Canonical affine subspace). Given a path p which ends at a node v, we call Sp the
canonical affine subspace for p. Furthermore a canonical representation of Sp is any Vp + b = Sp

where every q ∈ Postv vanishes on b.

Throughout the paper we drop the word representation and simply say Vp+b is the canonical
affine subspace of p to mean that it is a canonical representation of Sp.

Since we will often use canonical affine subspaces to represent paths in BPs, we adopt the
following algebraic notation. Let us denote the space of all linear forms on Fn

2 (the dual space)
as (Fn

2 )∗. Given a subspace V of Fn
2 , we define V ⊥ as the space of all linear forms from (Fn

2 )∗

that vanish on V (this space is sometimes called the annihilator of V ), i.e.,

V ⊥ = {ℓ ∈ (Fn
2 )∗ : ∀v ∈ V, ℓ(v) = 0}.

Given a path p with queries q1, . . . , qk and its canonical affine subspace V + b, the space V ⊥ is
the query space of p, i.e., V ⊥ = span(q1, . . . , qk).

Throughout the paper we adopt the following notation.

• Given a vector c ∈ {0, 1}n the support of c is defined as

supp(c) := {i : ci ̸= 0}.

• Let σ be a partial assignment to the variables x1, . . . , xn. Then

dom(σ) := {i : σ(xi) is defined}.

• We say that a ∈ {0, 1}n is consistent with a partial assignment σ to x1, . . . , xn if for every
i ∈ dom(σ), it holds that σ(xi) = ai.

• Let V and W be two subspaces. Then the sum of V and W is the subspace

V + W := {v + w : v ∈ V, w ∈ W}.

Note that V + W = span(V ∪ W ).

• We write a + b without specifying the underlying field, if it is clear from the context and
often intended to be F2.
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2.1 The trace map

The trace map Tr: Fpn → Fp is defined as

Tr(x) :=
n−1∑
i=0

xpi
.

One important property that we need is that Tr is a linear map. We also use the following fact
about the trace.

Proposition 4 (cf. [21]). For every Fp-linear map π : Fpn → Fp there exists µ ∈ Fpn such that
for all x ∈ Fpn we have

π(x) = Tr(µ · x).

Furthermore, π is trivial if and only if µ = 0.

Since, we are interested in Boolean functions, we will only consider the case p = 2. Let
ϕ : Fn

2 → F2n be any F2-linear isomorphism. Then Tr(µ · ϕ(x)) is linear in x and we have the
following:

Proposition 5. The set of all linear Boolean functions coincides with the set of functions
ℓµ(x) = Tr(µ · ϕ(x)), where µ ∈ F2n.

In the rest of the paper we fix ϕ. To make the proofs more readable we use bold font to
denote the corresponding elements of F2n , e.g., x for ϕ(x).

2.2 Affine extractors and dispersers

A Boolean function f : {0, 1}n → {0, 1} is an affine disperser for dimension d if f is not constant
on any affine subspace of dimension at least d. Let us also recall affine extractors, which are
generalizations of affine dispersers.

The bias of f is defined as

bias(f) :=
∣∣∣Ex∈Un [(−1)f(x)]

∣∣∣,
where Un is a uniform distribution on {0, 1}n. Given an affine subspace f , the bias of f restricted
to S ⊆ {0, 1}n is defined as

bias(f |S) :=
∣∣∣Ex∈U(S)[(−1)f(x)]

∣∣∣,
where U(S) is a uniform distribution on S.

A Boolean function f : {0, 1}n → {0, 1} is an affine extractor for dimension d with bias ϵ if
for every affine subspace S of dimension d, the bias of f restricted to S, bias(f |S), is at most ϵ.

3 Affine mixedness
In this section we give a criterion for functions to be worst-case hard for read-once linear BPs.
Let us first recall mixedness from standard read-once BPs.

Definition 6. A Boolean function f : {0, 1}n → {0, 1} is d-mixed if for every I ⊆ [n] of size at
most n − d1 and every two distinct partial assignments σ and τ with dom(σ) = dom(τ) = I, it
holds that f |σ ̸= f |τ .

1This definition is commonly given for sets of size d instead of n − d. We deviate from this since for our
generalization to affine spaces, it corresponds to dimension which is more natural.
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Theorem 7 (Folklore; see [15] for a proof). Let f : {0, 1}n → {0, 1} be a d-mixed Boolean
function. Then any read-once branching program computing f has size at least 2n−d − 1.

Explicit constructions of d-mixed functions with d = o(n) and thus 2n−o(n) size lower bounds
for read-once BPs were given in [26, 2]. We generalize this notion for linear branching programs.
We need the following equivalent definition of d-mixedness.

Lemma 8. A Boolean function f is d-mixed if and only if for every partial assignments σ of
size at most n − d and every c ̸= 0 with supp(c) ⊆ dom(σ), there exists x consistent with σ such
that f(x) ̸= f(x + c).

Proof. (⇐) Let σ and τ be two distinct partial assignments with domain I of size at most n−d.
Define ci = τ(xi)+σ(xi) for i ∈ I and ci = 0 otherwise. By assumption there exists x consistent
with σ such that f(x) ̸= f(x + c). It follows from the definition of c that x + c is consistent
with τ . Define J = [n] \ I and z = xJ = (x + c)J . Then f |σ (z) = f(x) ̸= f(x + c) = f |τ (z).

(⇒) Let σ be a partial assignment with a domain of size at most n−d and let c be given such
that supp(c) ⊆ dom(σ). Define τ(xi) = σ(xi) + ci for i ∈ dom(σ). By assumption f |σ ̸= f |τ ,
hence there exists z such that f |σ (z) ̸= f |τ (z). Define x to take the same value as σ on dom(σ)
and equal to z otherwise. Then f(x) = f |σ (z) ̸= f |τ (z) = f(x + c).

Definition 9. A Boolean function f : {0, 1}n → {0, 1} is d-affine mixed if for every affine
subspace S of dimension at least d and every vector c ̸∈ V , where V is the supporting vector
space of S, there exists x ∈ S such that f(x) ̸= f(x + c).

It follows from Lemma 8 that d-affine mixedness implies d-mixedness since a partial assign-
ment is a special case of an affine subspace.

Now we are ready to prove a generalization of Theorem 7.

Theorem 10. Let f : {0, 1}n → {0, 1} be a d-affine mixed Boolean function. Then any strongly
read-once linear branching program computing f has size at least 2n−d − 1.

Proof. We prove that any such program P computing f starts with a complete binary tree of
depth n−d−1. Assume for the sake of contradiction that there are two paths p and q of length
at most n − d − 1, which meet for the first time at a node v. Let V + a and W + b be their
corresponding canonical affine subspaces. Both of them have dimension at least d + 1.

We start by proving V ⊥ = W ⊥ which implies V = W . Suppose that it is not the case.
Without loss of generality, there exists ℓ ∈ W ⊥ \ V ⊥. By the read-once property ℓ ̸∈ Postv.

Consider two affine subspaces V ′+a1 and V ′+a2 obtained by intersecting V +a with ℓ(x) = 0
and ℓ(x) = 1 such that for every ℓ′ ∈ Postv, ℓ′(a1) = 0 and ℓ′(a2) = 0 (recall that we can choose
such a1 and a2 since Prev ∩ Postv = {0}). By construction, they have dimension at least d.
Since f is d-affine mixed, there exists z ∈ V ′ such that f(z + a1) ̸= f(z + a2). Consider any
query ℓ′ in the subprogram starting at v. The fact that ℓ′ ∈ Postv implies ℓ′(a1) = ℓ′(a2) = 0.
Thus, we have ℓ′(z + a1) = ℓ′(z) = ℓ′(z + a2). It implies that in the subprogram starting at v
both z + a1 and z + a2 must follow the same path contradicting f(z + a1) ̸= f(z + a2).

Now, since V = W , V + b is the canonical affine subspace for q, and a ̸= b since p and q are
different paths. Again, since f is d-affine mixed, there exists z ∈ V such that f(z+a) ̸= f(z+b).
Analogously to the previous case, for every ℓ′ ∈ Postv we have ℓ′(a) = ℓ′(b) = 0, and thus
ℓ′(z + a) = ℓ′(z + b) contradicting f(z + a) ̸= f(z + b).

4 Affine dispersers for directional derivatives
In this section we give an explicit construction of an affine mixed function for linear dimension.
In fact, we give an even more powerful construction, which allows us to get an average-case
lower bound for strongly read-once linear branching programs.
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For a Boolean function f its directional derivative with respect to a non-zero vector a is
defined as

Daf(x) := f(x + a) + f(x).

Definition 11. A Boolean function f : {0, 1}n → {0, 1} is a directional affine extractor for
dimension d with bias ϵ if for every non-zero a, the derivative Daf is an affine extractor for
dimension d with bias ϵ.

Similarly, f is a directional affine disperser for dimension d if for every non-zero a, Daf is
an affine disperser for dimension d.

Observe that this notion is stronger than the one defined in the previous section: if f is a
directional affine disperser for dimension d, then it is d-affine mixed.

In what follows we construct a Boolean function f in n variables that is a good directional
affine extractor for dimensions bigger than 2

3n.
It is a well-known fact that the inner product function is an affine extractor. IP is a

member of the class of bent functions, which are all affine extractors. A Boolean function
f : {0, 1}n → {0, 1} is called a bent function if all Fourier coefficients of its ±1 representation
f±(x) := (−1)f(x) have the same absolute value.

Lemma 12 (Folklore; for a proof see, e.g., [7, 6]). Let f be a bent function on n variables and
c ≥ 1 be an integer. Then, f is an affine extractor for dimension k = n/2 + c with bias at most
2−c. In particular, f is an affine disperser for dimension n/2 + 1.

We apply this result to prove that the following function is an affine extractor.

Lemma 13. Let a0, a1, a2, a3 ∈ F2k with a0 ̸= 0. Let g : {0, 1}k × {0, 1}k → {0, 1} be the
function defined as

g(x, y) = Tr(a0 · ϕ(x) · ϕ(y) + a1 · ϕ(x) + a2 · ϕ(y) + a3).

Then g is an affine extractor for dimension k + c with bias at most 2−c. In particular, g is an
affine disperser for dimension k + 1.

Proof. Let g± be the ±1 representation of g. By Lemma 12, it is enough to prove that all Fourier
coefficients of g± have the same absolute value. Recall that given α ∈ {0, 1}2k the α-character
χα is defined as χα(x, y) = (−1)α·(x,y), where α · (x, y) is the inner product. Fourier coefficient
ĝ±(α) can be computed as follows.

ĝ±(α) =
∑

x,y∈{0,1}k

g±(x, y) · χα(x, y) =
∑

x,y∈{0,1}k

(−1)Tr(a0·x·y+a1·x+a2·y+a3) · χα(x, y).

Split α into two equal parts: α = (α1, α2). Then α · (x, y) = α1 ·x+α2 ·y. By Proposition 5,
there exist µ1, µ2 ∈ F2k such that α1 · x = Tr(µ1 · x) and α2 · y = Tr(µ2 · y). Also define

b1 := a−1
0 · (a1 + µ1),

b2 := a−1
0 · (a2 + µ2),

b3 := a3 + a−1
0 · (a1 + µ1) · (a2 + µ2).
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Then we can express ĝ±(α) in terms of bi:

ĝ±(α) =
∑

x,y∈{0,1}k

(−1)Tr(a0·x·y+a1·x+a2·y+a3) · (−1)Tr(µ1·x)+Tr(µ2·y)

=
∑

x,y∈{0,1}k

(−1)Tr(a0·x·y+a1·x+a2·y+a3+µ1·x+µ2·y)

=
∑

x,y∈{0,1}k

(−1)Tr(a0·(x+b2)·(y+b1)+b3)

= (−1)Tr(b3) ·
∑

x,y∈{0,1}k

(−1)Tr(a0·(x+b2)·(y+b1)).

Since x and y iterate through all vectors from {0, 1}k, a0 ·(x+b2) and y+b1 take all possible
values from F2k . It follows that

ĝ±(α) = (−1)Tr(b3)ĝ±(0).

We are now ready to present our directional affine extractor.

Theorem 14. Let f : {0, 1}k × {0, 1}k × {0, 1}k → {0, 1} be the function defined by

f(x, y, z) = Tr(ϕ(x) · ϕ(y) · ϕ(z)).

Then f is a directional affine extractor for dimension 2k + c with bias ϵ ≤ 2−c. In particular,
f is a directional affine disperser for dimension 2k + 1.

Proof. Consider the directional derivative of f in the non-zero direction a = (a1, a2, a3):

Daf(x, y, z) = f(x + a1, y + a2, z + a3) + f(x, y, z)
= Tr(ϕ(x + a1) · ϕ(y + a2) · ϕ(z + a3)) + Tr(x · y · z).

By linearity of Tr and ϕ we have

Daf(x, y, z) = Tr((x + a1) · (y + a2) · (z + a3) + x · y · z)
= Tr(a1 · y · z + a2 · x · z + a3 · x · y + ℓ(x, y, z)),

where ℓ is an affine function.
Without loss of generality we may assume that a3 ̸= 0. Let S be an affine subspace with

dimension at least 2k + c. We need show that the bias of f restricted to S is at most ϵ. Given
z0 ∈ {0, 1}k define Sz0 := {(x, y) : (x, y, z0) ∈ S}. For every z0 the affine subspace Sz0 is either
empty or has dimension at least k + c. Consider the restriction of Daf to z = z0.

hz0(x, y) := Daf(x, y, z0) = Tr(a3 · x · y + ℓ′
z0(x, y)),

where ℓ′
z0 is an affine function. By Lemma 13, hz0 is an affine extractor for dimension k + c

with bias ϵ ≤ 2−c. In particular, if Sz0 is non-empty, then bias(hz0 |Sz0
) ≤ ϵ.
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Thus, the bias of Daf restricted to S can easily be bounded as follows:

bias(Daf |S) =

∣∣∣∣∣∣ 1
|S|

∑
(x,y,z)∈S

(−1)Daf(x,y,z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
|S|

∑
z0∈{0,1}n

∑
(x,y,z0)∈S

(−1)Daf(x,y,z0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
|S|

∑
z0∈{0,1}n

∑
(x,y)∈Sz0

(−1)hz0 (x,y)

∣∣∣∣∣∣
≤ 1

|S|
∑

z0∈{0,1}n

∣∣∣∣∣∣
∑

(x,y)∈Sz0

(−1)hz0 (x,y)

∣∣∣∣∣∣
≤ 1

|S|
∑

z0∈{0,1}n

ϵ · |Sz0 | = ϵ.

5 Average-case lower bound
We consider a canonical form of strongly read-once linear branching programs. We adopt the
terminology of [5] and say that a read-once linear branching program is full if for every inner
node v of the program, all the paths leading to v have the same query space.

A multipath (w1, . . . , wm, v) is a linear branching program of the form

w1 w2 · · · wm v

That is, the program ignores the answers to the queries at wi for every i. Given a program
P, we say that a subset of nodes is an antichain if none of its nodes is a descendant of another.
For example, the set of nodes at a fixed depth and the set of leaves form an antichain. The
following lemma and its proof are easy extensions of Lemma 3.7 in [5].

Lemma 15. Every weakly read-once or strongly read-once linear branching program P of size
s in n variables has an equivalent full weakly read-once or strongly read-once linear branching
program P ′, respectively, of size at most 3n · s. Furthermore, the size of every antichain in P ′

is at most 2s.

Proof. We construct P ′ inductively. Consider the nodes of P in topological order. It is clear
that the start node satisfies the fullness property. Let v be a node of P and p1, . . . , pk the paths
that meet at v, and V1 +a1, . . . , Vk +ak their canonical affine subspaces. For every i ∈ [k] choose
a set of linearly independent queries Qi such that Vi

⊥ + span(Qi) = Pre(v).
For every i ∈ [k] do the following. Let Qi = {q1, . . . , qm}. Replace the edge ui → v with

a multipath (w1, . . . , wm, v) and an edge ui → w1, where wi are labeled with qi. After this
transformation, every path to v will have the query space Pre(v).

Since a branching program of size s has at most 2s edges and we replaced every edge with
a multipath of length at most n, the size of the constructed full read-once linear branching
program P ′ is at most s + 2s · n ≤ 3n · s.

Consider an antichain A in P ′. We map every node in A to nodes in P. Each node in A
is either originally in P or it was created by a multipath. In the former case we map it to
itself, and in the latter case we map it to the parent node from which it was created. Since the

9



out-degree in P is 2 and A is an antichain, at most 2 nodes are mapped to the same node. This
proves the result.

Denote by dist(f, g) the relative distance between Boolean function f and g.

Theorem 16. Let f : {0, 1}n → {0, 1} be a directional affine extractor for dimension d with bias
ϵ < 1

2 . Then for every g : {0, 1}n → {0, 1} computed by a strongly read-once linear branching
program P of size at most ϵ · 2n−d−1, it holds that dist(f, g) ≥ 1−

√
2ϵ

2 .

Proof. Let s denote the size of P. We first convert P into a full program. By Lemma 15, the
size of every antichain is at most 2s. We then construct an equivalent program P ′ in which
every path has length at least n − d. We can achieve this by extending every leaf of low depth
by a multipath of an appropriate length.

Consider the set A of nodes in P ′ at depth exactly n − d. Note that every v ∈ A is either
a node at depth n − d in P, or it is uniquely defined by a leaf of P by a multipath. Thus A is
identified by an antichain in P and thus |A| ≤ 2s.

We call an input x wrong if f(x) ̸= g(x). The distance dist(f, g) between f and g is the
fraction of wrong inputs.

Claim 17. Let v ∈ A and k the numbers of paths that meet at v. Then the number of wrong
inputs that pass through v is at least

k · 2d

2

(
1 −

√
ϵ + 1

k

)
.

Proof. Since the program is full, the corresponding canonical affine subspaces for the paths
that meet at v are V + a1, . . . , V + ak, for some d-dimensional vector space V , and distinct
a1, . . . , ak ∈ {0, 1}n. Recall that f is a directional affine extractor with bias ϵ. Then for every
i ̸= j, it holds that Dai+aj f = f(x + (ai + aj)) + f(x) is an affine extractor with bias ϵ, thus∣∣∣∣∣∑

x∈V

(−1)f(x+ai) · (−1)f(x+aj)
∣∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈V +aj

(−1)f(x+ai+aj)+f(x)

∣∣∣∣∣∣
= bias

(
Dai+aj f

∣∣∣
V +aj

)
· |V | ≤ ϵ|V |.

(1)

Every x ∈ V produces a partition of [k] into two parts (J, [k] \ J) such that f(x + ai) = 0
for i ∈ J and f(x + ai) = 1 for i ̸∈ J . Let mx be the size of the smallest part. By definition of
canonical affine subspace and the choice of ai, for any linear query q ∈ Postv we have q(ai) = 0
for all i ∈ [k]. Then x + a1, . . . , x + ak will follow the same path in the subprogram starting at
v. Hence, for every x ∈ V it holds that f(x + a1) = · · · = f(x + ak). It implies that at least mx

inputs of the form x + ai are wrong and the total number of wrong inputs passing through v is
at least

m :=
∑
x∈V

mx.

Now consider the following sum

E :=
∑
x∈V

1≤i<j≤k

|f(x + ai) − f(x + aj)|.

We apply double counting to this quantity to obtain the result. On the one hand, by
definitions of mx and m, we have

E =
∑
x∈V

mx · (k − mx) = km −
∑
x∈V

m2
x.

10



By the Cauchy–Schwarz inequality,
∑

x∈V m2
x ≥ (

∑
x∈V mx)2/|V | = m2/|V |. Thus,

E ≤ km − m2/|V |. (2)
On the other hand, E can be rewritten as follows.

E =
∑
x∈V

1≤i<j≤k

1
4
(
(−1)f(x+ai) − (−1)f(x+aj)

)2

= 1
4

∑
1≤i<j≤k

(
2|V | − 2

∑
x∈V

(−1)f(x+ai) · (−1)f(x+aj)
)

.

Applying (1), we obtain the following lower bound on E.

E ≥ 1
2

(
k

2

)
|V |(1 − ϵ). (3)

Combining (2) and (3), we get

km − m2/|V | ≥ 1
2

(
k

2

)
|V |(1 − ϵ).

This can be written as(
m − k|V |

2

)2
≤ 1

4k2|V |2 − 1 − ϵ

2

(
k

2

)
|V |2

= k2|V |2

4

(
1 − (1 − ϵ)

(
1 − 1

k

))
≤ k2|V |2

4

(
ϵ + 1

k

)
.

Thus,

m ≥ k|V |
2

(
1 −

√
ϵ + 1

k

)
= k · 2d

2

(
1 −

√
ϵ + 1

k

)
.

■

Let k(v) denote the number of paths that meet at v and define w(k) as

w(k) := k2d

2

(
1 −

√
ϵ + 1

k

)
.

Then by Claim 17 the total number of bad inputs that pass through A is at least
∑

v∈A w(k(v)) =∑
v∈A

k(v)2d

2

(
1 −

√
ϵ + 1

k(v)

)
. Since all paths in P ′ has length at least n − d,

∑
v∈A k(v) = 2n−d.

The function w is convex, hence by Jensen’s inequality, the total number of bad inputs
passing through A is at least

∑
v∈A

w(k(v)) ≥ |A| · w

(∑
v∈A k(v)

|A|

)
= 1

22n

1 −

√
ϵ + |A|

2n−d

 .

Since |A| ≤ 2s ≤ ϵ2n−d, this expression is at least
1 −

√
2ϵ

2 2n.

Plugging in the function of Theorem 14 we get the following corollary.
Corollary 18. Let f : {0, 1}

n
3 × {0, 1}

n
3 × {0, 1}

n
3 → {0, 1} be defined by f(x, y, z) = Tr(ϕ(x) ·

ϕ(y) · ϕ(z)). Then for every g : {0, 1}n → {0, 1} computed by a strongly read-once linear BP of
size at most 2

n
3 −o(n), dist(f, g) ≥ 1

2 − 2−o(n).
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6 Weakly read-once BPs and Res[⊕]
In this section we prove an analogue of the correspondence between read-once BPs and regular
resolution for Res[⊕] and weakly read-once BPs. The proof is a simple extension of standard
arguments.

Theorem 19.

1. Every Res[⊕] refutation of an unsatisfiable CNF F can be translated into a linear BP
without increasing its size.

2. Every weakly read-once BP of size s solving the search problem for CNF F = C1 ∧ . . .∧Cm

in n variables can be translated into a regular Res[⊕] refutation of F of size O(ns).

Proof. 1. Consider an application of the resolution rule in the proof DAG G. Suppose that it is
applied to clauses C0 ∨ (f = 0) and C1 ∨ (f = 1). Then we label the outgoing edges with f = 1
and f = 0 respectively. We leave the edges corresponding to the weakening rule unlabeled.

Let u be a vertex in G and Cu the clause it is labeled with. It can be shown by induction on
the depth of u that for every path to u, the linear system obtained from the equations written
on the edges on this path implies ¬Cu. The source contains the empty clause, hence the base
case holds. For the inductive step, consider any path leading to u and let v be the parent of u
on this path. Consider the case when v corresponds to an application of the resolution rule and
w be its other child. Let C0 ∨ (f = b), C1 ∨ (f = b + 1), and C1 ∨ C2 be the labels of u, w, and v
respectively, where b ∈ {0, 1}. By the induction hypothesis, every path to v implies ¬(C1 ∨ C2).
In particular, it implies ¬C1. By construction, the edge (v, u) is labeled with f = b + 1. Then
every path to u going through v implies ¬C1 ∧ (f = b + 1) = ¬(C1 ∧ (f = b)). Now consider
the case when u corresponds to an application of the weakening rule and let v be it parent on
this path. Let C and D be the labels of u and v. Every path to v implies ¬D by the induction
hypothesis and ¬D ⊨ ¬C. Thus, every path to u through v implies ¬C.

In particular, every path to the sinks of G falsifies some clause of F . To obtain the weakly
read-oncelinear BP, we remove labels at the inner nodes and contract all unlabeled edges.

2. A linear clause C =
∨k

i=1(fi = ai) can be viewed as a negation of a linear system ¬C =∧k
i=1(fi = ai + 1). We first convert P into a full BP of size O(ns) using Lemma 15. Inductively,

to every node v we associate a linear clause Cv such that:

1. Every assignment reaching v falsifies Cv.

2. If ¬Cv represents a linear system Bx = b, then the row space of B is Pre(v).

For the base case, with each leaf v we associate the clause Cv it is labeled with. The first
condition holds since P solves the search problem. To see the second property, note that any
path reaching v can be expressed as a linear system on a basis for Pre(v) which forces every
literal in Cv. This implies that single variables in Cv are in Pre(v).

For the inductive step, consider a node v, which queries q with outgoing neighbors u and w, in
the directions q = 0 and q = 1 respectively. Observe that ¬Cu ̸|= q(x) = 1 and ¬Cw ̸|= q(x) = 0.
Thus, there are only two cases to consider:

1. ¬Cu ̸|= q(x) = 0 or ¬Cw ̸|= q(x) = 1,

2. ¬Cu |= q(x) = 0 and ¬Cw |= q(x) = 1.

In the first case, we simply let Cv be Cu or Cw, depending on which condition holds. For the
second case, let B = {β1, . . . , βt} be a basis of Pre(v). Fullness implies Pre(u) = Pre(w) =
Pre(v) + span(q). Applying the inductive hypothesis, we can write ¬Cu = (q(x) = 0) ∧ (Bux =
bu) and ¬Cw = (q(x) = 1) ∧ (Bwx = bw), where Bu and Bw are matrices with rows in β1, . . . , βt

12



and bu and bw are some vectors. To write Cu and Cw in these forms, we might need to change
the basis, which we can do by applying the weakening rule. We claim that setting Cv so that
¬Cv can be written as Bux = bu ∧ Bwx = bw satisfies the requirements.

Consider any path to v. Such a path can be described by a system Rx = b where rows
in R are from B. Since every such path can be extended to both u and w, it follows that
Bux = bu ⊨ Rx = b and Bwx = bw ⊨ Rx = b. This means that Bux = bu ∧ Bwx = bw is
consistent and thus the derivation of Cv from Cu and Cw (possibly changing the basis) is a valid
Res[⊕] step. It is easy to see that conditions 1 and 2 hold for Cv.

Since for every v we create at most 2 extra clauses, the total size of the proof is at most
O(ns).

7 Conclusion
Several problems are immediately suggested by our work:

• Explicit constructions. Give an explicit construction of directional affine extractors (or
dispersers) for smaller dimension d, ideally d = o(n).

• Average-case complexity. Prove an average-case hardness result for the weakly read-once
BPs.

• Proof complexity. Prove a read-once linear BP lower bound for a search problem, that
is for some unsatisfiable CNF F = C1 ∧ . . . ∧ Cm, show that a read-once linear BP with
leaves labeled by Cis solving the corresponding search problem has to be large.
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