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Improved bounds to the length of proofs of finistic consistency

statements

P. Pudlak

Abstract: We shall consider a logical calculus with a C-rule restricted to
closed formulas. Let ConT(g) be a formalization of "there is no proof of

contradiction of length < n in T". We shall prove an Q(n. (log n)'z)
lower bound and 0(n) upper bound to the length of the shortest proof of
ConT(g) in T.

§0 Introduction

Let ConT(g) be a formalization of "there is no proof of

contradiction of length £ n in theory T". We consider the proofs ta he
strings in a finite alphabet and their length to be the length of the
string. Numerals n are constructed so that their length is 0O{log n). A

lower bound to the length of proofs of ConT(g) in T of the form n°

was first proved by H. Friedman [F]. In [P2] we proved such Jower bounds
under general assumptions about T and the formalization of provability in

T: we also proved a general upper bound of the form O(nk).

Here I address the natural problem of decreasing the gap between the
lower and the upper bounds as much as possible. I owe very much to Harvey
Friedman for suggesting that I work on this problem and discussing with me
some possible ways how to decrease the gap between the bounds.

Our aim is to devise a suitable logical calculus and restrict the
class of theories T so that the upper and lower bounds match as much as
possible. We extend the usual Hilbert style predicate calculus by the rule
C restricted to closed formulas, see §1. The rule C is essential for the
improved lower bound; the upper bound holds also for the calculus without
this rule. The theory T is any sufficiently strong finite fragment or
arithmetic, namely a finitely axiomatized theory between IZ1 and the true

arithmetic; however, generalization to much wider class of theories seems
to be possible.

From the philosophical point of view it would be more interesting to
consider formalizations of the predicate calculus which are closer to the

© 1987 American Mathematical Society
0271-4132/87 $1.00 + $.25 per page

309



310

P. PUDLAK

practical use of logic by mathematicians. H. Friedman calls such systems
"realistic" in his paper [F]. The C rule that we consider is only one of
the rules which such realistic systems should contain. We conjecture that
adding the others will not destroy the good bounds which we have here.

In the last section we apply our techniques to show how much the
length of a proof must increase if we want to reduce the quantifier depth of
formulas in the proof.

The problem that we consider in this paper is a special case of the
following more general question. Let theories (formal systems, areas of
evidence) S and T be given; what is the length of a shortest proof of
ConT(g) in S? 1In [K] page 241, Kreisel mentions this problem as a

possible modification of Hilbert's program and reports that Godel had
raised the problem in a conversation with him. The most interesting case
of this problem is, of course, when S is essentially weaker than T, and
this case is still open. If ConT(g) have short (say polynomial in n)

proofs in S, then we can reduce the "finitistic" consistency of T to
the truth of 8. On the other hand, it is well-known and easy to see that
a superpolynomial lower bound to the length of proofs of ConT(g) in §

implies that S does not prove P = NP. I am indebted to Georg Kreisel
for the information about the history of the problem and remarks about this
paper.

§1 The logical calculus and the theory

Throughout the paper T stands for a suitable formalization of a
sufficiently strong finite fragment of the true arithmetic.
The language of T. The usual language of Peano arithmetic can be

extended by a finite number of additional predicate and function symbols
(e.g. inequality and exponentiation). Moreover, we have an infinite set C
whose elements will be called C-constants. The elements of C are treated

as constants (e.g. they cannot be quantified), but their role is only
auxiliary.

Logical calculus

1. Propositional axioms and rules. We can choose any complete system

consisting of finitely many axiom schemas and rules.

2. Equality axioms. We consider the following schemas

>
]

VAYy=2zZ— Xx=12,
X =¥ A .. A X, =y, (R(xl...xn) - R(yl...yn)),

I
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for each predicate R,
X =y — t(x) = t(y), for each term t(x).

3. Quantifier axioms are given by two schemas
vx @(x) — ¢(t); ¢(t) — 3x ¢(x)
where t is a term free for x in ¢(x).

4. Quantifier rules

Q=¥ . Y0
¢ DVxy ' IXxyYy o0

where x 1is not free in o¢.

5. Rule C

where 3x ¢(x) is closed, c € C, and ¢ does not occur in the part of
the proof which precedes this application of the rule. Other C-constants
may occur in ¢.

Axioms of T. We take a sufficiently strong finite set of the true

arithmetical sentences. A very safe lower bound to the strength of T is
the system IZI, which is finitely axiomatizable.

Proofs in T are sequences of formulas defined in a usual way.

However we do not allow C-constants to appear in the theorems of T.

The rule C was introduced by Rosser [R] see also [M]. Our treatment
of the rule C differs slightly from the original one. The main difference
is that Rosser allows to apply the rule C also to 3dx ¢ which is not
closed. Then, however, one has to restrict the use of the quantifier rules.
Namely, a quantifier rule cannot be applied to a variable which is free in
some formula ¢(c) which has been derived by the rule C. We conjecture
that our proof of the lower bound can be extended to the calculus with
unrestricted rule C. The upper bound is proved for this calculus here.

The calculus with the rule C is similar to Hilbert's calculus with
e-operator, but, from the point of view of the length of proofs, there is

an essential difference. The expression is at least as long as the

&

¢ (x)
formula ¢(x), while the length of the C-constant is independent of the
formula. Thus C-constants may be used to abbreviate proofs.

The restriction of finite axiomatization of T is essential only for
the upper bound. The lower bound can be proved for theories axiomatized by
a schema, e.g. Peano arithmetic. Observe that the axioms and the rules of
the logical calculus are also in a sense schemas. The important point is,
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however, that they have syntactical restrictions ("t is free for x in
¢", "x 1is not free in ¢, "3x ¢ 1is closed"”). It is not the particular
form of the rules and axiom schemas but these syntactical restrictions that
are important for our proof of the lower bound. (The two other critical
things are the rule C and the way of substituting terms).

Gadel numbering

We assume that all syntactical objects are strings in a finite alphabet,
say {0,1}. In particular we assume that the length of the n-th variable
and C-constant is O0(log n). Terms, formulas and proofs are built from
simpler objects using concatenation. The length of such an object is the
length of the string which represents it. It will be denoted by |...]|.

Given a string (a .,ak) € {0,1}* we assign to it the Gsdel number

P
% 2l(a; + 1).

Given a number n € o, the number n is the term
ag + (1 +1) . (ag+ (L +1) . (ay, + ...,

where A, -8y € {0,1} and whose value is n. For x a term or a

formula, T? is the numeral of the Godel number of x. Thus
Inl = 0(log n); | 'l = o(|x]|).

The formalization of the function n +— n will be denoted by X. A proof

is a string which is the concatenation of some formulas; these formulas are
also called proof lines. Given an sentence ¢ we denote "¢"T the length
of the shortest proof of ¢ in T, if there is any, otherwise it is o;
(the subscript will be often omitted). As usual, 4 denotes a

contradiction, say 0 = 1. Finally we define Conp(x) as a formalization

of |4y > x".

§2. The lower bound

The following lemma reduces the proof of the lower bound to the proof
of an upper bound to the length of certain proofs.

Lemma 2.1

Let f: @ — @ be an increasing polynomial time computable function
and suppose that T proves the formalization of

(1) "for every sentence ¢ of length € log n, if "¢"T < n, then
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HN%eYlp S nllg S £(n)".
Then

licony(m)ily = 2(£™1(n)),

(f_1 is the inverse to f).

Proof (sketch):
Define by diagonalization &(x) s.t.
Tr é(x) & (IT8(x)?) > x).

Since

(2) lin = njj = (log n+2)0(1)

we get by substitution
(3) f1s(@) © (IFsml > p)ll = (log n+2)°(1),
Now suppose
fle ()l € n.
Using (1) and recalling that T proves only tfue sentences we get
Il IT& ()Y < oll < £(n),
whence, by (3)
41 = o(a + £(n) + (log n+2)°(1)) = o(£(n))
Thus we have proved that there exists a function g such that
g(n) = 0(£(n))
and

fle()ll € n 3 4 < g(n).

Since T proves the formalization of (1), the above argument can be
formalized in T, i.e.

(4) Tr fifs ()l < x - 1) < g(x)

Let
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U™ > gn)l] =m

Then, using (2) and (4),

Il HFs ()l > nll < m + (log n+2)0(?)
Thus, by (3),

"6(2)" <£m+ (log n+2)o(1)_

Since T 1is consistent, we have

v
=

fs (o)l
Hence
Il NP > gl = m > n - (log n+2)%(1) - q(n).

Since f 1s polynomial time computable, g can be chosen to have
this property too. Then we have for g(n) £ k (by Theorem 3.2, [P2])

llg(n) < Kl = (log (n + k) + 2)%(1)
whence

licong ()l = (£ (n)). [

Lemma 2.2

T proves (1) of Lemma 2.1 with f such that f(n) = 0(n.(log n)a)‘

The rest of this section is devoted to the proof of Lemma 2.2 which will
imply our lower bound.

First we prove some other lemmas. Let n™m denote the number of the
0,1 - string which is the concatenation of the strings with numbers n,m.

Lemma 2.3

The following sentences have proofs in T of lengths O0((log n +
log m)a):
(i) n+m=pn+m
(ii) o°m = Cm,
(iii) n#m, if n#m,
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(iv) n<m, if n<m.

Proof:

It is not difficult to see that the sentences above have proofs with
0(log n + log m) proof lines and each proof line is of length O(n + m) =

O(log n + log m). 1]

Now we shall consider sequences of arbitrary nonnegative integers.
Let Pp(x,y.z) denote a formallzation of the relation

"X 1is the y-th element of sequence z".

The next lemma shows that C-constants can be used to code sequences
efficiently.

Lemma 2.4
Let d be a proof of length 0(n), let bo""’bm—l be some closed
terms (including C-constants) of lengths O(log n), m<n. Then d can

be extended to a proof d' which contains sentences

-1, c),

ﬁ(bo,g.c) e ae ,ﬁ(bm_l-

where ¢ € C and

[@'| - 14 = o(m.{log n)?).
Proof:
Since |d| = 0(n), we can choose Cor+--+Cp_q € C such that they do not

occur in d and have lengths O(log n). T proves that for every x

there exists a one element sequence consisting of x, and for every Xx

and every sequence y, y can be extended by x. Thus one can prove in T
(using rule C)

B(b,,0.c.)
and for every i =1,...,m - 1,
B(by.1,c;) Avx < iVy(Bly,x,c;) & B(y.x,c;_4)).

Each of these sentences is obtained via an application of the universal

statement to bi' Ci» C4_1 and i. These terms have length 0(log n),

thus the proof for a fixed i has length O(log n) too.
Further we prove



316 P. PUDLAK

(«;) B(bj.d.cy 1) AV < iVYy(B(y.x.cp 4) © Blv.x,c;_4)),

for i =m-2,...,1 and

(a

o) Blby.0.cy 1)

To derive %54 from «; we need essentially only to show 1 -1 < i

which has a proof of length 0((log n)z). Taking c¢ = ¢ we conclude

m-1
the proof. a
The following is an easy modification.

Lemma 2.5
Let the numerals Kk .....k, be the terms b,,...,b, ; in the lemma
above and assume ko < ... < km—l' Then we can assume that d' contains

also the sentence
“c is an increasing sequence with k. the smallest element and Kk,

the largest element”. 0

Lemma 2.6

Suppose that ¢ codes an increasing sequence of numerals Kk
in the sense of Lemma 2.5 and c¢* codes a sequence of numerals
Eo""'lm—l

{ko,....km_l) and {£

in the sense of Lemma 2.4. Suppose that the sets
0.....Zm_1) are disjoint. Then there is an
extension of the proof of length O(m.(log n)z) which contains the

sentence
"c and ¢' code disjoint sets".

Proof:

Just realize that ¢, 3 (ko"“‘km—l} iff &, <k, ork;, >k, , or
30 < <mA Ky y <y <Kyl g

Lemma 2.7

Suppose ¢ codes the sequence of numerals go....,gm_l in the sense
of Lemma 2.4. Suppose that the numbers ko""'km—l are mutually

distinct. Then there is an extension of the proof of length 0(m.(log n)2)
which contains the sentence
"¢ is a sequence of mutually distinct elements"”.

Proof:

Let ¢ be given. Using a modification of Lemma 2.4 similar to Lemma
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2.5 we construct c¢' which codes the pairs <i,ki> and moreover we have
"if <Xy, Xp> is the x-th element of ¢',
<Y1, ¥p> is the y-th element of ¢' and x <y, then Xy < y2".

i.e. the sequence c¢' is ordered by the second coordinates. Extending the

proof by 0(m.(log n)2) we can also get
"for every x; and x5, if x, is the x,-th element of c,

then c¢' contains <x1.x2>".

These two statements imply the statement required in the lemma. a

Lemma 2.8

Let (P,<) be a poset which is a tree, let D be a subset of < and
let |P} = |D|] = m. Then there exists a subset E of < such that

(1) D ¢ E;

(ii) (x,v) € E> vy is a cover of x or there is 2z strictly between x
and y and (x,z), (z,v) € E;

(iii) |E] €2 m logzm.

Proof:

Let E consist of

(1) all (x,y) such that x < y and the distance between them is a
power of 2, (there are at most m log m such pairs, since (P,<) is a
tree);

(2) all (x.xi), i=1,...,k such that for some (x,y) € D and
some X ,...,X., X =X <X,... <X =Y where the distance between X5y
and xj is zzj and 21 . 12 o ML lk. (there are at most D-. logm =
m.log m such pairs). 0

Proof of Lemma 2.2

Assume that we are working inside of T. Let d = (¢1,...,¢m) be a
proof of length £ n of G =@ in T and |¢} £ log n. We are to show
that there exists a proof of “[j¢lly € n" in T whose length is 0(n.(log

n)z). The following is our plan. To each ¢; we assign a C-constant;

then, using Lemma 4, we form the sequence of these elements and prove that
it is a proof of ¢ of length £ n. However, for this purpose we have to
assign C-constants not only to each 05 but also to any subformula and

subterm of 9;- This enables us to verify all the necessary syntactical
relations.
For sake of clarity we distinguish 5 segments of the constructed

proof. Each segment will have at most O(n.log n) proof lines. Each proof
line will be a substitution instance of 'a formula from a finite set
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(independent of ¢ and n). The substituted terms will be of length
O(log n). Since we shall need only O0(n) C-constants, we can choose them

to be of length O0(log n). Thus the total length 0(n. (log n)2) will be
assured.

1-st segment. It contains the proofs of the sentence of the form
y{(c,i) = "c is the i-th variable"

resp.

6(c,i) = "c is the i-th C-constant”,

for every i such that i-th variable resp. C-constant occurs in d. Such
proofs are obtained from the proofs of the sentences

vxay y(y,x), vx3dy é(y.x).

(Thus each vy(c,i) resp. é(c,i) has a proof with a fixed number of proof

lines). Further the first segment contains the proofs of sentences such as

¢ 1is a term resulting from an application of the function
symbol F to terms cl,cz".

where F is a binary function symbol, ¢y resp. ¢, has already been
assigned to some terms tl resp. tz, and subterm F(tl,tz) occurs in d,
(c.cl,c2 € C). In this way we assign a C-constant to every subterm of d.

Again these proofs consist of a fixed number of proof lines each. The same
procedure is applied to subformulas of d. Since |d] € n, there are at
most n subformulas and subterms of d. Thus the total length of the
first segment is only O(n.log n).

2-nd segment. This segment contains the proofs of those syntactical
properties of formulas which are needed to prove that each 0, is an axiom

or follows from the preceding formulas.

For propositional axioms and rules this has been essentially done in
the first segment. For Modus Ponens e.g. we only need the sentences of the
form

¢ is an implication with antecedent ¢y and consequent c,

This is true also for the equality axioms, except for the last one, and
nonlogical axioms.

For the instances of the last equality axiom, quantifier axioms, and
rule C we need sentences of the form

(*) "¢ is  {[t/x]",
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where ¢ and ¢ are formulas or terms. Suppose first that ¢ and ¢
are terms. To prove (*) we prove the similar statements for all subterms
of ¢ and the corresponding subterms of ¢. We start with constants and
variables, for which it is trivial, and proceed to more complex terms. In
this process we make use of the equality

F(tl,...,tk)[t/x] = F(tI[t/x]....,tk[t/x]).

In case ¢ and ¢ are formulas the proof is similar. The only difference
is that we start (1) only with constants and variables which are not in the
scope of any quantifier bounding x, and (2) with the maximal subformulas
which begin with a quantifier bounding x. Now we shall count how many
sentences of the form (*) we need. For each 0; we have to check at most

one rule or axiom. Thus each 94 produces at most one pair ¢, ¢ and

one term t. To prove (*) for this pair and this term we have to consider
all the pairs determined by a subterm or subformula of ¢ and the term t.
There are at most |¢| € |¢il of such subobjects. Altogether we need at

most 2|¢i| £ n pairs of the form (*). When proving sentences (*), each
transition from simple formulas or terms to more complex ones requires a

proof of length O0((log n)2), since we need only some facts proved in the
first segment and sentences such as

"x 1is the j-th variable, y is the k-th variable and j = k".

Hence the total length of the proofs of sentences (*) is 0(n.(log n)z).
For quantifier axioms we need further sentences of the form

(**) "t is a term free for variable x in ¥".

The proof of such a sentence can be constructed as follows.

(i) First we produce C,. a sequence containing the indices of variables

occurring in t (by Lemma 2.4). Then we prove

"

¢y contains all indices of variables of t"

(via proving this statement for all subterms of t).
(ii) Next we form Cy which is the sequence of indices of variables which

are not free for x in vy (again by Lemma 4), and prove
(F*x) "02 contains all indices of variables which are not free for

X in <",
To prove (***) we prove this statement for some subformulas of ¥. Like in
the case of substitution, we start with constants and variables which are
not in the scope of a quantifier bounding x and with maximal subformulas
which begin with such a quantifier and proceed to more complex subobjects
of y¥. We have to prove at the same time also sentences of the form

X 1is not free in ¢" resp. "x is free in ¢£".
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(iii) Using Lemma 2.6 we prove

"c1 is disjoint with cz".
The total length of the proofs of sentences (**) can be estimated in the
same way as it was done for substitution.

For quantifier rules we need also sentences

x is not free in #¥".
They are proved in a similar way as above.

The last syntactical property that we have to consider is the property
of being a closed formula. This property cannot be proved inductively as

above. We shall use the following characterization: ¥ is closed iff for
every x which occurs in ¢ every occurence of x is in a formula which
begins ¥x or 3x. In the first segment of the proof we have proved the

relations

(+) "¢ is a subformula (subterm) of ¢"

only when ¢ is an immediate subformula (subterm) of ¢. We cannot prove
all such statements since there are too many of them, (generally, of the

order of |¢|2). However Lemma 2.8 enables us to prove just O(jv]|log|¥])
of such relations, since we need (+) only when

(++) £ is an occurence of a variable x in ¥ and ¢ is a formula
containg ¢ and beginning with vx or 3x,

(there are at most |y¥| such pairs).

Formally, we can do it as follows.
(i) First we form the tree of subobjects of <. This tree consists of
sequences (al.az,....aj) where

(+++) ay =¥ and a;,, 1is an immediate subobject of a;, Vi < j. of

course, we introduce a C-constant for every node of the tree, starting at
the root and going in the depth. When introducing a new node we always
prove the property (+++). Thus we need O0(k) proof lines, where k = |¥|.
Then, using Lemma 4, we introduce a sequence c¢ whose elements are (the

constants of) the nodes. This requires a proof of length O0(k.(log n)2).
(ii) To prove that c contains all the nodes of the subobject tree it
suffices to prove that it contains v and with any ¢ all its immediate
subobjects. The fact that c¢ contains only nodes of this tree can be
easily derived from (+++).

(iii) In (i) we have the relations

"b is an immediate successor of a",

i.e. we have the covering relation of the tree.
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By Lemma 2.8 we can use just these relations and transitivity (condition
(ii) of Lemma 2.8) to prove < 2k.log k relation of the form

"b is below a",

so that they contain all the pairs of the form (++).

(iv) For i =1,2,...,8, where £ is the size of the tree, we prove
"if (al....,aJ) is among the first i members of ¢ and aJ is a
variable, then ¢ contains (bl""'bj) which precedes (al,...,aJ)

in the tree and bj is a formula beginning with a quantifier
bounding the variable aj“.
Using the relations proved in (iii) we can do it in 0(2) = 0(k) lines.
Thus the length of the proof that ¥ 1is closed will be
0(k. (log n)z). We need this fact only for some of the formulas GyreeiOp.

Thus the total length of such proofs will be the required O(n.(log n)z).

3-rd_segment. Let cy be the C-~constant assigned to 9 i=1,...,m.
Using Lemma 2.4 we form the sequence ¢ = (cl,...,cm). Now for
i=1,...,m we prove
Vi < i, c; is an axiom or it follows from some formulas in
(cl""'ci—l)“'

This has a proof of length 0(m.(log n)z) = 0(n.(log n)2). At the same
time we form another sequence c' such that the i~th member of c¢' is the
index of the C-constant used in the i-th application of the C-rule in the
proof d. To show that ¢ is a proof we have to prove that c¢' is
one-to-one. By Lemma 2.7 this has also a short proof.

4-th segment. It consists of the proof of

cp = Tol.
This can be proved again by proving a similar statement for all subobjects
of ¢. In the course of this proof we need statements such as

"Ta — #7 is an implication with antecedent Tal and consequent

rg1n

Since syntactical objects are formalized as sequences, this reads

Fa — g1 = TI~P,1ATEY
By Lemma 2.3 it has a proof of length 0((log n)2). beause |a], [B| £ |¢]
< log n. The total length of this segment is thus O((log n)3).

5-th segment. Here we prove for i =1,....m
"the length of c; is 51"
where ki = |¢|. Again this is done via proving similar statements for all

subobjects of Pqoeee There are at most n such subobjects. Each
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transition from simpler objects to a more complex one is based on a proof
of an equality

for k, £ £ n. This has a proof of length 0((log n)z). by Lemma 2.3.
Thus the total length of all these proofs is as required. Eventually we
prove for i =1,...,m, 1in a similar fashion,

“(cl.....ci) has length k1 + .. kl".

Hence we get the proof that the length of ¢ 1is < n. This concludes the
proof of Lemma 2 and with it the proof of the lower bound. ]

Theorem 2.9

HConT(g)HT =Q(n.(log n)_z).
Proof - by Lemma 2.1, 2.2 and the fact that n.(log n)_2 is

asymptotically equal to the inverse function to n.(log n)2. a

83 The upper bound

In this section we shall prove a linear upper bound to HConT(g)HT.

The proof is based on a partiai definition of truth (or satisfaction).
Since one can define the truth for all formulas up to a fixed quantifier
depth, the quantifier depth of formulas in the proof is more important than
its length. We obtain the linear upper bound by showing that the
quantifier depth of formulas in an optimal proof of length n is at most

0(vyn). We use the construction of the partial definition of truth from
[P2], hence we describe only those parts of the construction which are
essential for the linear bound. As stated in §1, we shall use unrestricted
rule C in this section.

Definition

(i) Formulas of guantifier depth 0 are open formulas.

(ii) Formulas of quantifier depth n + 1 are all Boolean combinations of

formulas of the form 3x ¢ and Vx ¢, where ¢ is a formula of
quantifier depth n.

(iii) The quantifier depth of a proof is the maximum quantifier depth of a
formula in jt.

Definition
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We call an occurrence of a formula ¢ in a formal ¥
(i) a depth O subformula of ¥ if ¢ =v;
(ii) a depth n + 1 subformula of vy if ¢ is a maximal proper
subformula of some depth n subformula of 4.
In the following lemma we shall call two formulas similar if they are

identical after omitting the terms from them.
Consider an instance of a rule (resp. an axiom or axiom schema, if
£ =0)

Ppr-vrPyp
%
Such an instance is determined by some formulas ¢1,....¢k, from which
9410y are constructed using quantifiers, connectives and substitutions
of terms. (In case of equality axioms and nonlogical axioms vl""'*k
are fixed). The construction is fixed for a given rule, hence *1""'¢k
are at most depth K subformulas of Qg Py for some fixed K. Thus

one can take K so large that any depth n subformula ¢ of any 9
n > K is similar to a subformula of some vj. (In case of equality axioms
and nonlogical axioms we take K so that there are no depth K

subformulas). In the following lemmas K is so large that this property
holds for all axioms, logical axiom schemas and rules of T.

Lemma 3.1

Let ¢ be a formula, ¢ a sentence (not containing C-constants), let

be an instance of a rule, (axiom schema or axiom, for £ = 0). Suppose no

depth n subformula of G i=0,....8, n<K is similar to ¢. Let
¢6,...,¢é be formulas obtained by replacing every formula similar to &
by ¢. Then
004
i SOMND Y
A

is an instance of (the same) rule (resp. axiom schema or axiom) and does
not contain any free variable or C-constant which is not already in

@gr Py

Proof:
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It is clear that if 9gor- -0y are constructed from ¢1,...,¢k. then
the same construction yields mb,...,wé from the corresponding vi....,%k.
Since ¢ 1is closed, all the syntactical restrictions (such as "t is free
for x in %", "x is not free in ¥" and "y is closed") are satisfied
too. The rest is also clear. (]

Lemma 3.2

Let d be the shortest proof of a sentence ¢; suppose that the
quantifier depth of ¢ is < n and the quantifier depth of d is 2 2n.

Then the length of d is Q(nz).

Proof:

Let n > max(|0 = 0, K). Let d be a proof of ¢, d = (¢1.....¢m).
P =@ Let the quantifier depth of ¢ be < n and the quantifier depth
of Py be 2 2n for some t. Then there are subformulas ¢0....,¢S of
@ such that the quantifier depth of wi is exactly i, i =0,...,s.

We shall show that for each vi with i > n there exists a depth

A
=

subformula of some ¢j which is similar to ¢i. Suppose the contrary.
Then, by Lemma 3.1, we can replace all formulas similar to vi by 0-=20
in d. The resulting proof is shorter, since |0 = 0] < n < lwil. and

proves ¢, since quantifier depth of ¢ is smaller than quantifier depth
of %i. i > n.

K+1

Every formula contains at most L = 2 - 1 depth € K subformulas.
Hence we can choose at least
S = sl 5 gn
L =L
formulas from ¢n+1""'¢s so that they occur in different ¢j's. Since

the length of each ¢i, i >n is at least n, the length of d must be
2

rF

a

Lemma 3.3

There exists a polynomial p(x) such that for every proof d of o
of length n there exists a proof d' of ¢ of length p(n) and such that
d' does not use the rule C and the quantifier depths of d and d' are
the same.

Proof:



LENGTH OF PROOFS 325
Let Proeear@py =0 be the proof d. Let ¢1(c1),
¢2(cl.c2).....vk(cl.....ck) be formulas derived using the rule C in d,
where Cys.v-:C are the corresponding C-constants. Let Vyreeo Vg be
the first k variables not occurring in d. For i =1,...,n, denote by ¢i
the formula obtained from 4 by substituting Vyreeoa Vg for CyrreerCp

respectively. Let ¢} denote

¥ (V) A ..o AYp(yq....y) = @), where
wl(c]),....¢l(cl,...,cz) are all the formulas derived by the rule C in
the segment G050y of the proof d. 1If 4 is derived by the rule C

in d, then ¢} is a propositional tautology. Thus we have eliminated

the rule C. However, ¢§.....¢; is not a proof. We have to insert some

derivations in propositional calculus to get a proof d°. For instance,
let ¢J =a > ¥Yx g be derived from 9y = B in d. Then we cannot

derive ¢} from ¢q. First we have to transform 0y ito

then we apply the quantifier rule and then we transform the resulting
formula into ¢3.

Now d° is a proof of
YA ARy ) 2o
We shall eliminate the antecedent. First we transform the formula into
Y¥poeyg) = [y A L A vy ey g) 0]
and apply a quantifier rule to get

™) 3y Yelyyo o) = 1 1.

In d° we have a formula of the form

(**) "pl(yl) A ... A ‘¥'k_1(y1...vk_1) — 3x y’k(yl---YR_lrx).
since 3x wk(cl,....ck_l.x) must occur in d. From (*) and (**) we get
easily

YV A DAYy e y) oo
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The same procedure we apply then to ¢k—1 and so on. Eventually we obtain

a proof d' of ¢. We leave to the reader to check the properties of the
proof d'. 0

Now we shall describe a partial definition of truth (satisfaction) in
T. Every natural number can be viewed as a code of an infinite sequence of
numbers (where only finitely many members are nonzero). We want to
construct a formula Satn(x,y) which should express that "formula x with

quantifier depth n is satisfied by the sequence coded by y". Since we
assume that T is strong (at least IEI.), the satisfaction of open

formulas can be easily defined so that all the basic properties of it are
provable in T. Let Sato(x,y) be such a formula. For n > 0 we

describe in more detail the properties of Satn that we need.

Let R be a binary relation symbol which is not in the language of
T. Let X(R,x,y) be a formula with the following meaning (in the theory
obtaind from T by adding formulas containing R, but adding no new
axioms).
(1) x 1is an atomic formula and Sat,(x.,y) or

(2) x 1s a Boolean combination of some formulas Kpveoo oKy and the same
Boolean combination of R(xl.y)....,R(xk.y) is true or
(3) x is 3vix'. vy a variable, x' a formula, and there exists y'

such that y' codes a sequence which differs from y only in the i-th
member and R(x',y') or
(4) x is Vvix’ etc.

Then we say that Satn(x.y) is a partial definition of truth for

formulas of quantifier depth n in T if

T+ "x is a formula of quantifier depth n" —

— (Sat;(x,y) & Z(Sat,x,y)).

Thus Y are Tarski's conditions.

Lemma 3.4

There exist formulas Satn(x.y). n=20,1,2,..., of lengths 0{(n) and

such that T proves by a proof of length O(nz) that Satn is a partial
definition of truth for formulas of quantifier depth < n.

Proof (sketch):

We construct Satn via iterated application of I to Sato.
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(Consider 3 to be an operator which constructs a formula from every
formula with two free variables). First we have to assure that the lengths
of Satn grow only linearly. To this end we have to replace 3 by an

equivalent formula which contains only one occurrence of R. Further we
have to make sure that the number of variables does not increase. If we
introduced new variables at each step, then the length of Satn would be

at least Q(n.log n), since the length of variables iucieases as log n.
Such techniques are described e.g. in [FR], Chapter 7. Thus we get
Sat  (x,y) of length 0O(n) and such that

HSatn+1(x,y) « Z(Satn.x,y)llT =0(n), n - 0.1,...
To prove Tarski's conditions for Satn, we need only to show that

vxvy "x formula of quantifier depth € n" —
— (Satn+1(x.y) > Satn(x,y)), n=0,1,...

Denote this formula by @n‘ Then one can show that the proofs of
én - Qn+1

have linear lengths. 1In fact they are just instances of a sing -
"proof-schema”. Since ¢° is provable in T we get

e iy = on®). g

The following lemma is an easy corollary, (cf. Lemma 5 2 and 5 3 of

[P2]).

Lemma 3.5

a) For every sentence « there exists a constant K such that for every
n, n Jlarger or equal to the quantifier depth of «,

lle & vy sat (fa¥,y)[ly < K » n?.

b) T proves via a proof of length 0(n2) that Satn preserves the

logical rules and logical axioms for formulas of quantifier depth £ n. a

Lemma 3.6

There exists a constant K such that for every formula a(x)
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fle(0) A ¥x(a(x) — a(x+1)) — a(n)j] € K « Ja| « (log (n + 2))2.

Proof:
A well-known construction
B(x) := VYy(a(y) — «(x + V¥))
produces a formula closed under addition from any formula «(x) closed

under successor; moreover the domain defined by f is contained in «.
Thus the proof of «(n) is reduced to the proof of g(n). But n is

obtained from O wusing O(log n) additions and applications of successor
functions. All the intermediate terms have length O0(log n) too. Hence

the proof pAg(n) has length 0(log n)2). a
Theorem 3.7
"COHT(E)"T = 0(n).

Proof:

Let n be given. Since the proofs of Lemma 3.2 and 3.3 are
elementary, they are provable in T. Thus we can consider only proofs

which have quantifier depth 2/n and length p(n), p some polynomial.
Let m = 2/n. By Lemma 3.5

lI-sat, ("1 ,y)|| = o(n?) = o(n).

Hence it suffices to show that any formula of such a proof is true. More
precisely, let «(x) be the following formula

vw, v ("w is a proof of quantifier depth < m and length < x" A
A "v a formula of w" — Vy Satm(v,y)).
Then it suffices to prove that

fla (R(0))llp = O(n).

By Lemma 3.5, a) the nonlogical axioms of T are true and b) logical
axioms are true and logical rules preserve the truth. Moreover, this is

provable in T by a proof of length O(mz). Thus we have

lle(0) A ¥x(a(x) = a(x + 1)y = 0(n) = 0(n).
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Hence, by Lemma 3.6, and since

la| = o(lsat l) = 0(m),
we get
e (p(n))lly = O(n + m « (log p(n))2 ) = o(n). 1

Remark. We cannot use induction to prove «(n). It is not possible to

prove Vx a(x) in T, since this would imply the consistency of T.

§4 A speed-up result

Let T be a finitely axiomatizable theory, « a sentence and let k
be an integer larger or equal to the quantifier depth of the axioms of T
and ¢. Then, if ¢ is provable in T, then there exists a proof of o«
in T whose quantifier depth in < k. This can be proved using Hilbert's
e-calculus, Herbrand's theorem, or Gentzen's cut elimination theorem. Some
estimates are known how much longer a proof must be after elimination of
formulas of quantifier depth larger or equal to k, ($]. [P1]. An
estimate of this kind will be derived here.

2
. : i _ n k
Let 2  be the stack function, i.e. 2, =1, 2., =2" ILet H¢HT

denote the length of a shortest proof of ¢ in T whose quantifier depth

is < k, {(or o if there is no such proof). Let Con?(x) formalize

"LH$ > X. In this section the particular logical calculus is not so much

important; e.g. we can omit rule C from the calculus of 81.

Proposition 4.1

Let T be a theory containing a sufficiently large fragment of
arithmetic, k a sufficiently large integer. Then there exists = > 0
such that for every n

k Kk £
"CnnT(Zn)HT > (2n) .
Proof (sketch):

One can easily show that the binary relation y = 2x is computable in

polynomial time. Thus by Theorem 3.2 of [P2]
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2y = 24lly < p(log 2,).

for some polynomial p. The direct proof of this inequality is also easy.
In both cases the proofs use formulas of bounded complexity. Hence we can
add the superscript k. Applying Theorem 3.6 of [P2] we get

icony (2p)llg > (2,)°

This theorem was proved under very general assumptions about the
provability predicate. In particular if we replace the usual provability
by k quantifier depth provability (k sufficiently large), then the
assumptions are satisfied. Thus we can add the superscripts to the
inequality. 0

In the following two lemmas T is again a sufficiently strong finite
fragment of arithmetic.

Lemma 4.2

There exists a formula «{(x) such that T proves

(a) «(0) A Vx(a(x) = a«(x + 1));
(b) ¥x (a(x) — Con¥(x)).

Proof :

Such a formula has been defined in the proof of Theorem 3.7, where we
have to substitute k for m. a

Lemma 4.3
For every formula «(x), if T proves (a) of Lemma 4.2, then
llec(2y)lly = 0(n?).
Proof :
Let al(x) be defined by
®y(x) = Vy(a(y) = «(2X + y)).
Then

Tk o (0) A Vx(ey(x) = (o) (x+1) A «(27))).
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The same construction can be applied to al(x) and so on. Thus we obtain

a sequence of formulas

a (x) (= a(x)), @g(x), ay(x),...
such that

(}) T+ VK (@, (x) = « (2%).

n+1

Using the technique of Lemma 3.4 we can construct the formulas so that
their length and the length of the proofs in (*) grows only linearly, from
which we obtain the required guadratic upper bound. D

Proposition 4.4

let T be a sufficiently strong finite fragment of arithmetic. Then
for every k

ficonk (2, )iy = 0(n?).

Proof:
By Lemmas 4.2 and 4.3
HConk(Z M~ S const. + [la(2 )lm = O(nz) a
T “n’T = ' n’iT !

Propositions 4.1 and 4.4 show that if we transform a general proof
into a proof with bounded quantifier depth its length sometimes must
increase from n to 2 _ ., &> 0. Up to the constant =z, this seems to

e/n
be sharp, since the reduction techniques depend mainly on the quantifier
depth and by Lemma 3.2 we know that the quantifier depth of an optimal

proof of length n is 0(/n). If this were really so, i.e. if the upper

bound for the redution were 2 _, then by Proposition 4.4 we would get
Key/n

another proof of the linear upper bound for HConT(g)HT. Let us remark

that the same speed-up can be proved for GBdel—Bernays and Zermelo-Fraenkel
w.r.t. set formulas.
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