## Recent developments in the Fraïssé-Jónsson theory

#### Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC)
and
Jan Kochanowski University, Kielce (POLAND)
http://www.ujk.edu.pl/~wkubis/

Trends in Set Theory Warszawa, 9 July 2012

## **Outline**

- Introduction
- The setup
  - Fraïssé sequences
  - Existence
  - Universality
  - Uniqueness
  - A counterexample for uniqueness
  - On the Cantor set
- Retracts of Fraïssé limits
- Metric categories
- Uncountable Fraïssé sequences
  - The singular case
- The end



- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

## General assumptions

We fix a category  $\Re$  of "small" objects, satisfying the following conditions:

- A has the Amalgamation Property.
- ②  $\mathfrak{K}$  has a weakly initial object 0, that is,  $\mathfrak{K}(0,x) \neq \emptyset$  for every  $\mathfrak{K}$ -object x.

## The Amalgamation Property:

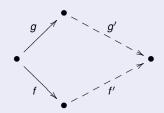


## General assumptions

We fix a category  $\Re$  of "small" objects, satisfying the following conditions:

- A has the Amalgamation Property.
- ②  $\mathfrak{K}$  has a weakly initial object 0, that is,  $\mathfrak{K}(0,x) \neq \emptyset$  for every  $\mathfrak{K}$ -object x.

## The Amalgamation Property:



## Fraïssé sequences

#### Crucial definition:

A sequence

$$U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \cdots$$

#### is Fraïssé

if for every n, for every  $\Re$ -arrow  $f: u_n \to y$  there exist  $m \ge n$  and a  $\Re$ -arrow  $g: y \to u_m$  such that  $g \circ f = u_n^m$ .



## Fraïssé sequences

#### Crucial definition:

A sequence

$$U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \cdots$$

is Fraïssé

if for every n, for every  $\mathfrak{K}$ -arrow  $f\colon u_n\to y$  there exist  $m\geqslant n$  and a  $\mathfrak{K}$ -arrow  $g\colon y\to u_m$  such that  $g\circ f=u_n^m$ .



#### Existence

#### **Theorem**

Let  $\kappa \geqslant \aleph_0$  be a regular cardinal. Assume  $\Re$  is  $\kappa$ -bounded and dominated by  $\leqslant \kappa$  arrows. Then  $\Re$  has a Fraïssé sequence of length  $\kappa$ .

#### Definition

A category  $\Re$  is  $\kappa$ -bounded if every sequence of length  $< \kappa$  has an upper bound in  $\Re$ .

An upper bound for a sequence  $\vec{x}: \delta \to \mathfrak{K}$  is a  $\mathfrak{K}$ -object y and a collection of  $\mathfrak{K}$ -arrows  $f_{\xi}: x_{\xi} \to y$  such that

$$f_{\xi}=f_{\eta}\circ x_{\xi}^{\eta}$$

whenever  $\xi < \eta < \varrho$ .



## Existence

#### **Theorem**

Let  $\kappa \geqslant \aleph_0$  be a regular cardinal. Assume  $\Re$  is  $\kappa$ -bounded and dominated by  $\leqslant \kappa$  arrows. Then  $\Re$  has a Fraïssé sequence of length  $\kappa$ .

#### Definition

A category  $\mathfrak K$  is  $\kappa$ -bounded if every sequence of length  $<\kappa$  has an upper bound in  $\mathfrak K$ .

An upper bound for a sequence  $\vec{x}: \delta \to \Re$  is a  $\Re$ -object y and a collection of  $\Re$ -arrows  $f_{\xi}: x_{\xi} \to y$  such that

$$f_{\xi}=f_{\eta}\circ x_{\xi}^{\eta}$$

whenever  $\xi < \eta < \varrho$ .



#### Existence

#### **Theorem**

Let  $\kappa \geqslant \aleph_0$  be a regular cardinal. Assume  $\Re$  is  $\kappa$ -bounded and dominated by  $\leqslant \kappa$  arrows. Then  $\Re$  has a Fraïssé sequence of length  $\kappa$ .

#### Definition

A category  $\mathfrak K$  is  $\kappa$ -bounded if every sequence of length  $<\kappa$  has an upper bound in  $\mathfrak K$ .

An upper bound for a sequence  $\vec{x} : \delta \to \mathfrak{K}$  is a  $\mathfrak{K}$ -object y and a collection of  $\mathfrak{K}$ -arrows  $f_{\xi} : x_{\xi} \to y$  such that

$$f_{\xi}=f_{\eta}\circ x_{\xi}^{\eta}$$

whenever  $\xi < \eta < \varrho$ .



## Universality

#### **Theorem**

Let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{R}$ . Let  $\vec{x}$  be a continuous sequence of length  $\leqslant$  length( $\vec{u}$ ). Then there exists an arrow

$$\vec{f} \colon \vec{x} \to \vec{u}$$

in the category of  $\Re$ -sequences.

#### Definition

A sequence  $\vec{x}$  is continuous if for every limit ordinal  $\delta < \text{length}(\vec{x})$ , it holds that  $x_{\delta} = \text{lim}(x \upharpoonright \delta)$ .

## Universality

#### **Theorem**

Let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{R}$ . Let  $\vec{x}$  be a continuous sequence of length  $\leqslant$  length( $\vec{u}$ ). Then there exists an arrow

$$\vec{f} \colon \vec{x} \to \vec{u}$$

in the category of  $\Re$ -sequences.

#### Definition

A sequence  $\vec{x}$  is continuous if for every limit ordinal  $\delta < \text{length}(\vec{x})$ , it holds that  $x_{\delta} = \lim(x \upharpoonright \delta)$ .

## Theorem (Uniqueness)

Let  $\vec{u}$  and  $\vec{v}$  be continuous Fraïssé sequences of the same regular length. Then

 $\vec{u} \approx \vec{v}$ 

in the category of sequences.

## Theorem (Homogeneity)

Let  $\vec{u}$  be a continuous Fraïssé sequence and let  $i: a \to \vec{u}$ ,  $j: b \to \vec{u}$  be such that a, b are  $\Re$ -objects. Then for every isomorphism  $h: a \to b$  there exists an automorphism  $H: \vec{u} \to \vec{u}$  for which the diagram

is commutative.

## Theorem (Uniqueness)

Let  $\vec{u}$  and  $\vec{v}$  be continuous Fraïssé sequences of the same regular length. Then

$$\vec{u} \approx \vec{v}$$

in the category of sequences.

## Theorem (Homogeneity)

Let  $\vec{u}$  be a continuous Fraïssé sequence and let  $i: a \to \vec{u}, j: b \to \vec{u}$  be such that a, b are  $\Re$ -objects. Then for every isomorphism  $h: a \to b$  there exists an automorphism  $H: \vec{u} \to \vec{u}$  for which the diagram



is commutative.

## A counterexample

#### **Theorem**

There exists a category of countable binary trees with uncountably many pairwise incomparable Fraïssé sequences of length  $\omega_1$ .

- Objects: Countable complete binary trees
- Arrows: Embeddings onto initial segments

## A counterexample

#### **Theorem**

There exists a category of countable binary trees with uncountably many pairwise incomparable Fraïssé sequences of length  $\omega_1$ .

- Objects: Countable complete binary trees
- Arrows: Embeddings onto initial segments

## **Embedding-Projection Pairs**

## Definition (cf. Droste & Göbel 1989)

Fix a category  $\mathfrak{K}$ . The category  $\mathfrak{K}$  of embedding-projection pairs is defined as follows:

- The objects of ‡\(\mathcal{R}\) are the objects of \(\mathcal{R}\).
- An arrow from a to b is a pair  $\langle e, r \rangle$ , where  $e: a \to b$ ,  $r: b \to a$  are  $\mathfrak{K}$ -arrows satisfying

$$r \circ e = id_a$$
.

## **Embedding-Projection Pairs**

## Definition (cf. Droste & Göbel 1989)

Fix a category  $\mathfrak{K}$ . The category  $\mathfrak{K}$  of embedding-projection pairs is defined as follows:

- The objects of ‡\(\epsilon\) are the objects of \(\epsilon\).
- An arrow from a to b is a pair  $\langle e, r \rangle$ , where  $e: a \to b$ ,  $r: b \to a$  are  $\mathfrak{K}$ -arrows satisfying

$$r \circ e = id_a$$
.

#### The Cantor Set

#### **Theorem**

There exists a continuous function  $u \colon 2^\omega \to 2^\omega$  with the following property:

Given a continuous map f: K → L between 0-dimensional compact metric spaces, there exist embeddings i: K → 2<sup>ω</sup>, j: L → 2<sup>ω</sup> and retractions r: 2<sup>ω</sup> → K, s: 2<sup>ω</sup> → L such that the diagrams





commute.

#### **Theorem**

There exists a sequence of continuous maps  $\{u_n\colon 2^\omega\to 2^\omega\}_{n\in\omega}$  with the following property:

Given a sequence of continuous maps {f<sub>n</sub>: K → L}<sub>n∈ω</sub> between 0-dimensional compact metric spaces, there exist embeddings i: K → 2<sup>ω</sup>, j: L → 2<sup>ω</sup>, retractions r: 2<sup>ω</sup> → K, s: 2<sup>ω</sup> → L, and a strictly increasing function φ: ω → ω, such that for each n ∈ ω the diagrams





are commutative.

#### **Theorem**

Assume CH. There exists a Banach space V of density  $\aleph_1$  and with the following properties:

- ullet V contains isometric copies of all Banach spaces of density  $\leqslant \aleph_1$ .
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

## Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density  $\epsilon$ .

#### **Theorem**

Assume CH. There exists a Banach space V of density  $\aleph_1$  and with the following properties:

- V contains isometric copies of all Banach spaces of density  $\leqslant \aleph_1$ .
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

## Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density  $\mathfrak c$ .

#### **Theorem**

Assume CH. There exists a Banach space V of density  $\aleph_1$  and with the following properties:

- V contains isometric copies of all Banach spaces of density  $\leqslant \aleph_1$ .
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

## Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density c.

#### Theorem

Assume CH. There exists a Banach space V of density  $\aleph_1$  and with the following properties:

- V contains isometric copies of all Banach spaces of density  $\leqslant \aleph_1$ .
- Every linear isometry between separable subspaces of V extends to an auto-isometry of V.

## Theorem (Brech & Koszmider 2011)

It is consistent with ZFC that there is no isomorphically universal Banach space for density  $\mathfrak{c}$ .

#### **Theorem**

If CH holds then there exists a complementably universal Banach space for Schauder bases of length  $\omega_1$ .

## Theorem (Pełczyński 1969)

The class of separable Banach spaces with Schauder bases has a complementably universal object.

#### **Theorem**

If CH holds then there exists a complementably universal Banach space for Schauder bases of length  $\omega_1$ .

## Theorem (Pełczyński 1969)

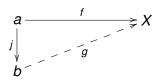
The class of separable Banach spaces with Schauder bases has a complementably universal object.

Retracts of Fraïssé limits

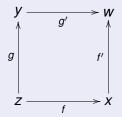
## Injectivity

#### **Definition**

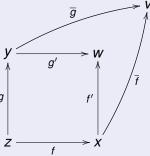
Let  $\mathfrak{K} \subseteq \mathfrak{L}$  be two categories. An  $\mathfrak{L}$ -object X is  $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective if for every  $\mathfrak{K}$ -arrow  $j \colon a \to b$ , for every  $\mathfrak{L}$ -arrow  $f \colon a \to X$  there is an  $\mathfrak{L}$ -arrow  $g \colon b \to X$  such that  $g \upharpoonright a = f$ .



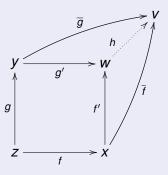
## A pushout square



# A pushout square



## A pushout square



#### **Definition**

A pair of categories  $\mathfrak{K} \subseteq \mathfrak{L}$  is nice if for every  $\mathfrak{K}$ -arrow  $i \colon c \to a$ , for every  $\mathfrak{L}$ -arrow  $f \colon c \to b$ , there exist an  $\mathfrak{L}$ -arrow  $g \colon a \to w$  and a  $\mathfrak{K}$ -arrow  $j \colon b \to w$  for which the diagram



is a pushout square in  $\mathfrak{L}$ .

#### **Theorem**

Let  $\mathfrak{K} \subseteq \mathfrak{L}$  be a nice pair of categories and let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{K}$ . For a  $\mathfrak{K}$ -sequence  $\vec{x}$ , the following properties are equivalent:

- $\mathbf{0}$   $\vec{x}$  is a retract of  $\vec{u}$ .
- 2  $\vec{x}$  is  $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective.

Special cases: Dolinka 2011

## Corollary

Let X be a Polish metric space. Then X is a non-expansive retract of the Urysohn space  $\mathbb{U}$  if and only if X is finitely hyperconvex.

Let  $\mathfrak{K} \subseteq \mathfrak{L}$  be a nice pair of categories and let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{K}$ . For a  $\mathfrak{K}$ -sequence  $\vec{x}$ , the following properties are equivalent:

- $\mathbf{0}$   $\vec{x}$  is a retract of  $\vec{u}$ .
- 2  $\vec{x}$  is  $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective.

Special cases: Dolinka 2011

# Corollary

Let X be a Polish metric space. Then X is a non-expansive retract of the Urysohn space  $\mathbb{U}$  if and only if X is finitely hyperconvex.

Let  $\mathfrak{K} \subseteq \mathfrak{L}$  be a nice pair of categories and let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{K}$ . For a  $\mathfrak{K}$ -sequence  $\vec{x}$ , the following properties are equivalent:

- $\mathbf{0}$   $\vec{x}$  is a retract of  $\vec{u}$ .
- 2  $\vec{x}$  is  $\langle \mathfrak{K}, \mathfrak{L} \rangle$ -injective.

Special cases: Dolinka 2011

# Corollary

Let X be a Polish metric space. Then X is a non-expansive retract of the Urysohn space  $\mathbb{U}$  if and only if X is finitely hyperconvex.

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

## **Theorem**

- $\bigcirc$  X is homomorphism homogeneous with respect to  $\mathscr{F}$ .
- ② There exists a nice subcategory  $\mathscr{F}_0$  of  $\mathscr{F}$  such that X is a retract of  $\mathsf{Flim}(\mathscr{F}_0)$ .

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

## **Theorem**

- $\bigcirc$  X is homomorphism homogeneous with respect to  $\mathscr{F}$ .
- ② There exists a nice subcategory  $\mathscr{F}_0$  of  $\mathscr{F}$  such that X is a retract of  $\mathsf{Flim}(\mathscr{F}_0)$ .

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

## **Theorem**

- lacktriangledown X is homomorphism homogeneous with respect to  $\mathscr{F}$ .
- ② There exists a nice subcategory  $\mathscr{F}_0$  of  $\mathscr{F}$  such that X is a retract of  $\mathsf{Flim}(\mathscr{F}_0)$ .

A structure X is homomorphism homogeneous with respect to its "small" substructures if every homomorphism between "small" substructures of X extends to an endomorphism of X.

## **Theorem**

- lacktriangledown X is homomorphism homogeneous with respect to  $\mathscr{F}$ .
- ② There exists a nice subcategory  $\mathscr{F}_0$  of  $\mathscr{F}$  such that X is a retract of  $\mathsf{Flim}(\mathscr{F}_0)$ .

Metric categories

# Motivation:

# Theorem (Gurarii 1966)

There exists a separable Banach space  $\mathbb G$  satisfying the following condition.

Given finite dimensional spaces  $E \subseteq F$ , given an isometric embedding  $f \colon E \to \mathbb{G}$ , for every  $\varepsilon > 0$  there exists an extension  $g \colon F \to \mathbb{G}$  of f such that  $\|g\| \cdot \|g^{-1}\| < 1 + \varepsilon$ .

# Theorem (Lusky 1976)

The Gurarii space is unique up to a linear isometry.



# Motivation:

# Theorem (Gurarii 1966)

There exists a separable Banach space  $\mathbb G$  satisfying the following condition.

Given finite dimensional spaces  $E \subseteq F$ , given an isometric embedding  $f \colon E \to \mathbb{G}$ , for every  $\varepsilon > 0$  there exists an extension  $g \colon F \to \mathbb{G}$  of f such that  $\|g\| \cdot \|g^{-1}\| < 1 + \varepsilon$ .

# Theorem (Lusky 1976)

The Gurariĭ space is unique up to a linear isometry.

# Lemma (Solecki & K. 2011)

Let  $f\colon X\to Y$  be an  $\varepsilon$ -isometric embedding of finite dimensional Banach spaces. Then there exist a finite dimensional Banach space Z and isometric embeddings  $i\colon X\to Z$ ,  $j\colon Y\to Z$  such that

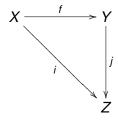
$$||j \circ f - i|| < \varepsilon.$$



## Lemma (Solecki & K. 2011)

Let  $f\colon X\to Y$  be an  $\varepsilon$ -isometric embedding of finite dimensional Banach spaces. Then there exist a finite dimensional Banach space Z and isometric embeddings  $i\colon X\to Z$ ,  $j\colon Y\to Z$  such that

$$||j \circ f - i|| < \varepsilon.$$



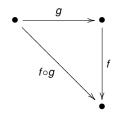
# Metric categories

A *metric* on a category  $\mathfrak R$  is a function  $\mu \colon \mathfrak R \to [0, +\infty]$  satisfying the following conditions:

$$(M_1)$$
  $\mu(id_x) = 0$  for every object  $x$ .

$$(\mathsf{M}_2) \ \mu(f \circ g) \leqslant \mu(f) + \mu(g).$$

$$(\mathsf{M}_3) \ \mu(g) \leqslant \mu(f \circ g) + \mu(f).$$



We further assume that  $\Re$  is enriched over metric spaces.

That is, for each  $\mathfrak{K}$ -objects a, b a metric  $\varrho$  is defined on  $\mathfrak{K}(a, b)$  so that

$$(M_4) \ \varrho(f \circ h, g \circ h) \leqslant \varrho(f, g)$$

$$(M_5) \ \varrho(k \circ f, k \circ g) \leqslant \varrho(f, g)$$

Moreover, the compatibility of  $\mu$  and  $\varrho$  says:

(M<sub>6</sub>)  $\mu$  is uniformly continuous with respect to  $\varrho$ .

# Prototype example

Let  $\Re$  be the category of metric spaces with non-expansive maps and define

$$\mu(f) = \log \operatorname{Lip}(f^{-1}).$$

We further assume that  $\Re$  is enriched over metric spaces.

That is, for each  $\mathfrak{K}$ -objects a, b a metric  $\varrho$  is defined on  $\mathfrak{K}(a, b)$  so that

$$(M_4) \ \varrho(f \circ h, g \circ h) \leqslant \varrho(f, g)$$

$$(M_5) \ \varrho(k \circ f, k \circ g) \leqslant \varrho(f, g)$$

Moreover, the compatibility of  $\mu$  and  $\varrho$  says:

(M<sub>6</sub>)  $\mu$  is uniformly continuous with respect to  $\varrho$ .

# Prototype example

Let  $\mathfrak K$  be the category of metric spaces with non-expansive maps and define

$$\mu(f) = \log \operatorname{Lip}(f^{-1}).$$

## The Law of Return

Given  $\varepsilon>0$ , there is  $\eta>0$ , such that whenever f is a  $\Re$ -arrow with  $\mu(f)<\eta$ , then there exist  $\Re$ -arrows g,h with  $\mu(g)$  and  $\mu(h)$  arbitrarily small and

$$\varrho(g\circ f,h)<\varepsilon$$

holds.

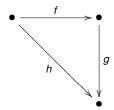


## The Law of Return

Given  $\varepsilon > 0$ , there is  $\eta > 0$ , such that whenever f is a  $\Re$ -arrow with  $\mu(f) < \eta$ , then there exist  $\Re$ -arrows g, h with  $\mu(g)$  and  $\mu(h)$  arbitrarily small and

$$\varrho(g\circ f,h)<\varepsilon$$

holds.



A sequence  $\vec{x}$  is Cauchy if

$$(\forall \ \varepsilon > 0)(\exists \ n_0)(\forall \ m \geqslant n \geqslant n_0) \ \ \mu(x_n^m) < \varepsilon.$$

Denote by  $\sigma \Re$  the category of all Cauchy sequences in  $\Re$ .

## Claim

The functions  $\mu$  and  $\varrho$  naturally extend from  $\Re$  to  $\sigma\Re$ .

A sequence  $\vec{x}$  is Cauchy if

$$(\forall \ \varepsilon > 0)(\exists \ n_0)(\forall \ m \geqslant n \geqslant n_0) \ \ \mu(x_n^m) < \varepsilon.$$

Denote by  $\sigma \Re$  the category of all Cauchy sequences in  $\Re$ .

#### Claim

The functions  $\mu$  and  $\varrho$  naturally extend from  $\Re$  to  $\sigma \Re$ .

A Cauchy sequence  $\vec{u} \colon \omega \to \mathfrak{K}$  is Fraïssé if

Given  $\varepsilon > 0$ , there are  $\eta > 0$  and  $n_0$  such that whenever  $n \geqslant n_0$  and  $f \colon u_n \to y$  is a  $\Re$ -arrow satisfying  $\mu(f) < \eta$ , there exist m > n and a  $\Re$ -arrow  $g \colon y \to u_m$  such that  $\mu(g)$  is arbitrarily small and

$$\varrho(g \circ f, u_n^m) < \varepsilon.$$

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  is dominated by countably many arrows. Then there exists a Fraïssé sequence in  $\mathfrak{K}$ .

## **Theorem**

Assume  $\langle \mathfrak{R}, \mu, \varrho \rangle$  satisfies the Law of Return and let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{R}$ . Then:

- For every Cauchy sequence  $\vec{x}$  there exists an arrow  $F : \vec{x} \to \vec{u}$  such that  $\mu(F) = 0$ .
- ② For every other Fraïssé sequence  $\vec{v}$  there exists an isomorphism  $H \colon \vec{u} \to \vec{v}$  such that  $\mu(H) = 0$ .

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  is dominated by countably many arrows. Then there exists a Fraïssé sequence in  $\mathfrak{K}$ .

## **Theorem**

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  satisfies the Law of Return and let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{K}$ . Then:

- For every Cauchy sequence  $\vec{x}$  there exists an arrow  $F : \vec{x} \to \vec{u}$  such that  $\mu(F) = 0$ .
- ② For every other Fraïssé sequence  $\vec{v}$  there exists an isomorphism  $H \colon \vec{u} \to \vec{v}$  such that  $\mu(H) = 0$ .

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  is dominated by countably many arrows. Then there exists a Fraïssé sequence in  $\mathfrak{K}$ .

### **Theorem**

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  satisfies the Law of Return and let  $\vec{u}$  be a Fraïssé sequence in  $\mathfrak{K}$ . Then:

- For every Cauchy sequence  $\vec{x}$  there exists an arrow  $F : \vec{x} \to \vec{u}$  such that  $\mu(F) = 0$ .
- ② For every other Fraïssé sequence  $\vec{v}$  there exists an isomorphism  $H \colon \vec{u} \to \vec{v}$  such that  $\mu(H) = 0$ .

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  is dominated by countably many arrows. Then there exists a Fraïssé sequence in  $\mathfrak{K}$ .

### **Theorem**

Assume  $\langle \mathfrak{K}, \mu, \varrho \rangle$  satisfies the Law of Return and let  $\vec{\mathfrak{u}}$  be a Fraïssé sequence in  $\mathfrak{K}$ . Then:

- For every Cauchy sequence  $\vec{x}$  there exists an arrow  $F : \vec{x} \to \vec{u}$  such that  $\mu(F) = 0$ .
- ② For every other Fraïssé sequence  $\vec{v}$  there exists an isomorphism  $H \colon \vec{u} \to \vec{v}$  such that  $\mu(H) = 0$ .

# An application

# Theorem (Garbulińska & K. 2012)

There exists a linear operator  $u_\infty\colon \mathbb{G} \to \mathbb{G}$  with  $\|u_\infty\| = 1$  and with the following property:

• Given a linear operator  $T: X \to Y$  between separable Banach spaces with  $||T|| \le 1$ , there exist isometric embeddings  $i: X \to \mathbb{G}$  and  $j: Y \to \mathbb{G}$  for which the following diagram commutes.



Uncountable Fraïssé classes (joint with Antonio Avilés)

# A natural question

Assume  $\mathscr{F}$  is an uncountable class of finite models with the pushout property. Does there exist an  $\mathscr{F}$ -universal and  $\mathscr{F}$ -homogeneous structure?

If so, could it be a Fraïssé-Jónsson limit?

## Motivation

 A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550

# A natural question

Assume  $\mathscr{F}$  is an uncountable class of finite models with the pushout property. Does there exist an  $\mathscr{F}$ -universal and  $\mathscr{F}$ -homogeneous structure?

If so, could it be a Fraïssé-Jónsson limit?

## Motivation

 A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550

# A natural question

Assume  $\mathscr{F}$  is an uncountable class of finite models with the pushout property. Does there exist an  $\mathscr{F}$ -universal and  $\mathscr{F}$ -homogeneous structure?

If so, could it be a Fraïssé-Jónsson limit?

## Motivation:

 A. AVILÉS, C. BRECH, A Boolean algebra and a Banach space obtained by push-out iteration, Topology Appl. 158 (2011) 1534–1550

Assume  $\mathscr{F} \subseteq \mathfrak{C}$  and  $\mathfrak{C}$  is a category with the pushout property. A  $\mathfrak{C}$ -arrow  $f \colon x \to y$  is called an  $\mathscr{F}$ -cell if there are  $\mathfrak{C}$ -arrows  $i \colon r \to x$ ,  $j \colon s \to y$  and an  $\mathscr{F}$ -arrow  $g \colon r \to s$  for which the square



is a pushout in  $\mathfrak{C}$ .

An  $\mathscr{F}$ -cell complex is a continuous sequence  $\vec{x} \colon \delta \to \mathfrak{C}$  such that  $x_0$  is an object of  $\mathscr{F}$  and  $x_{\alpha}^{\alpha+1}$  is an  $\mathscr{F}$ -cell for every  $\alpha < \delta$ .

## Source:

 M. HOVEY, Model Categories, Mathematical Surveys and Monographs, Vol. 63, AMS, Providence, RI, 1999

An  $\mathscr{F}$ -cell complex is a continuous sequence  $\vec{x} \colon \delta \to \mathfrak{C}$  such that  $x_0$  is an object of  $\mathscr{F}$  and  $x_{\alpha}^{\alpha+1}$  is an  $\mathscr{F}$ -cell for every  $\alpha < \delta$ .

#### Source:

 M. HOVEY, Model Categories, Mathematical Surveys and Monographs, Vol. 63, AMS, Providence, RI, 1999

Denote by  $\mathfrak{K}_{\delta}(\mathscr{F})$  the subcategory of  $\mathfrak{C}$  whose arrows are  $\mathscr{F}$ -cell complexes of length  $\delta$ . Write

$$\mathfrak{K}_{<\kappa}(\mathscr{F}) = \bigcup_{\delta < \kappa} \mathfrak{K}_{\delta}(\mathscr{F}).$$

# Theorem (Avilés & K.)

Assume  $\kappa$  is an infinite regular cardinal and  $\mathfrak C$  is  $\kappa$ -continuous. Then the category  $\mathfrak R_{<\kappa}(\mathscr F)$  has a Fraïssé sequence of length  $\kappa$ .

Denote by  $\mathfrak{K}_{\delta}(\mathscr{F})$  the subcategory of  $\mathfrak{C}$  whose arrows are  $\mathscr{F}$ -cell complexes of length  $\delta$ . Write

$$\mathfrak{K}_{<\kappa}(\mathscr{F}) = \bigcup_{\delta < \kappa} \mathfrak{K}_{\delta}(\mathscr{F}).$$

# Theorem (Avilés & K.)

Assume  $\kappa$  is an infinite regular cardinal and  $\mathfrak C$  is  $\kappa$ -continuous. Then the category  $\mathfrak R_{<\kappa}(\mathscr F)$  has a Fraïssé sequence of length  $\kappa$ .

## Theorem (Avilés & K.)

Assume  $\kappa \geqslant |\mathscr{F}|$  and  $\mathfrak{C} \supseteq \mathscr{F}$  is  $\kappa$ -continuous. There exists a unique  $\mathfrak{K}_{\kappa}(\mathscr{F})$ -object U which is  $\mathfrak{K}_{<\kappa}(\mathscr{F})$ -homogeneous and  $\mathfrak{K}_{\kappa}(\mathscr{F})$ -universal. In particular, U is  $\mathscr{F}$ -homogeneous.

# Example

- ullet  ${\mathfrak C}=$  Boolean algebras with monomorphisms.
- F = finite Boolean algebras.

## Claim

The objects of  $\Re_{\kappa}(\mathscr{F})$  are projective Boolean algebras of size  $\leqslant \kappa$ .

# Theorem (Shchepin 1976)

Let  $\lambda$  be an infinite cardinal. The free Boolean algebra with  $\lambda$  generators is the unique homogeneous projective Boolean algebra of cardinality  $\lambda$ .

# Example

- ullet  ${\mathfrak C}=$  Boolean algebras with monomorphisms.
- F = finite Boolean algebras.

## Claim

The objects of  $\mathfrak{K}_{\kappa}(\mathscr{F})$  are projective Boolean algebras of size  $\leqslant \kappa$ .

# Theorem (Shchepin 1976)

Let  $\lambda$  be an infinite cardinal. The free Boolean algebra with  $\lambda$  generators is the unique homogeneous projective Boolean algebra of cardinality  $\lambda$ .

# Example

- ullet  ${\mathfrak C}=$  Boolean algebras with monomorphisms.
- $\mathscr{F}$  = finite Boolean algebras.

## Claim

The objects of  $\mathfrak{K}_{\kappa}(\mathscr{F})$  are projective Boolean algebras of size  $\leqslant \kappa$ .

# Theorem (Shchepin 1976)

Let  $\lambda$  be an infinite cardinal. The free Boolean algebra with  $\lambda$  generators is the unique homogeneous projective Boolean algebra of cardinality  $\lambda$ .

### THE END