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Main goal

Theorem
Let 〈X ,d〉 be a separable complete metric space. TFAE:
(a) 〈X ,d〉 is a non-expansive retract of the Urysohn space U.
(b) 〈X ,d〉 is finitely hyperconvex, that is, given a finite family of

closed balls

F = {B(x0, r0), . . . ,B(xn−1, rn−1)}

with
⋂
F = ∅, there exist i < j < n such that

d(xi , xj) > ri + rj .

Remark
Implication (a) =⇒ (b) is easy.
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Theorem
Let K be a compact space of weight ℵ1. TFAE:
(a) K is a topological retract of ω∗.
(b) K is a 0-dimensional F-space, that is, disjoint open Fσ sets

have disjoint closures.

Remark
Implication (a) =⇒ (b) is trivial.
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Motivation

Theorem (Dolinka 2011)

Let M be a nice Fraı̈ssé class of finite models and let U be its
Fraı̈ssé limit. Given a countable model X , TFAE:
(a) X is a retract of U.
(b) X is algebraically closed.
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Injectivity

Definition
Let K ⊆ C be a pair of categories. We say that X ∈ Ob(C) is
K-injective in C if for every K-arrow i : a→ b and for every
C-arrow f : a→ X , there exists a C-arrow g : b → X such that
g ◦ i = f .

a
��

i
��

f // X

b
g
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The pushout of 〈f ,g〉

y
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// w
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The pushout of 〈f ,g〉
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The mixed pushout property

Mixed pushout: f ,g′ ∈ K and f ′,g ∈ L

y //
g′

// w

z //
f

//

g

OO

x

f ′

OO
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Theorem
Let K ⊆ L be two categories with the same objects and
satisfying the following conditions:
(h1) K has a weakly initial object.
(h2) 〈K,L〉 has the mixed pushout property.
(h3) K has a Fraı̈ssé sequence U.
Let X be a sequence in K. The following properties are
equivalent.
(a) X is K-injective.
(b) X is a retract of U.
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About the proof
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Definition (Cameron & Nešetřil 2006)
A countable relational structure X is homomorphism
homogeneous (HH) if every homomorphism between its finite
substructures extends to an endomorphism of X .

Theorem
Let K ⊆ L be a pair of categories with the same objects,
satisfying conditions (h1) – (h3) above. Let X be a sequence in
K. The following properties are equivalent:
(a) X is HH.
(b) X is a retract of a Fraı̈ssé sequence of some subcategory

of K satisfying (h1) – (h3).
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THE END
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relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182

DOLINKA, I., A characterization of retracts in certain
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