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Implication (a) = (b) is easy.
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Motivation

Motivation

Theorem (Dolinka

Let 9 be a nice Fraissé class of finite models and let U be its
Fraissé limit. Given a countable model X, TFAE:

(a) X is a retract of U.
(b) X is algebraically closed.
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Injectivity

Definition

Let 8 C C be a pair of categories. We say that X € Ob(C) is
RK-injective in C if for every K-arrow i: a — b and for every
C-arrow f: a — X, there exists a C-arrow g: b — X such that
goi="f.
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Main result

The mixed pushout property

Mixed pushout: f,g € Rand f',g € £
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Main result

Let & C £ be two categories with the same objects and
satisfying the following conditions:

(h1) 8 has a weakly initial object.
(h2) (R, £) has the mixed pushout property.
(h3) R has a Fraissé sequence U.

Let X be a sequence in K. The following properties are
equivalent.

(a) X is R-injective.
(b) X is a retract of U.




Main result

About the proof

Xo>—— Ugo

X1>——= Wi 1>——= Uy,

\

Xo>——> Wo 1> Woo>—> Uy,

|\

X3>——> W3 1>——> W32 W33 Uy,

SN
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Definition (Cameron & Nesettil 2006)

A countable relational structure X is homomorphism
homogeneous (HH) if every homomorphism between its finite
substructures extends to an endomorphism of X.




HH objects

Definition (Cameron & Nesettil 2006)

A countable relational structure X is homomorphism
homogeneous (HH) if every homomorphism between its finite
substructures extends to an endomorphism of X.

Theorem

Let & C £ be a pair of categories with the same objects,
satisfying conditions (h1) — (h3) above. Let X be a sequence in
R. The following properties are equivalent:

(a) X is HH.
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Definition (Cameron & Nesettil 2006)

A countable relational structure X is homomorphism
homogeneous (HH) if every homomorphism between its finite
substructures extends to an endomorphism of X.

Theorem

Let & C £ be a pair of categories with the same objects,

satisfying conditions (h1) — (h3) above. Let X be a sequence in

R. The following properties are equivalent:

(a) X is HH.

(b) X is a retract of a Fraissé sequence of some subcategory
of R satisfying (h1) — (h3).
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