

Retracts of universal homogeneous structures

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC) and Jan Kochanowski University, Kielce (POLAND) http://www.pu.kielce.pl/~wkubis/

TOPOSYM, Prague 2011

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Dedicated to the memory of my friend Paweł Waszkiewicz

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Outline)					

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

3 Injectivity

5 Main result

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Main	noal					

Let $\langle X, d \rangle$ be a separable complete metric space. TFAE:

(a) $\langle X, d \rangle$ is a non-expansive retract of the Urysohn space \mathbb{U} .

(b) (X, d) is finitely hyperconvex, that is, given a finite family of closed balls

$$\mathcal{F} = \{\overline{\mathsf{B}}(x_0, r_0), \dots, \overline{\mathsf{B}}(x_{n-1}, r_{n-1})\}$$

with $\bigcap \mathcal{F} = \emptyset$, there exist i < j < n such that

 $d(x_i, x_j) > r_i + r_j.$

Remark

Implication (a) \implies (b) is easy.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Main	leon					

Let $\langle X, d \rangle$ be a separable complete metric space. TFAE:

- (a) $\langle X, d \rangle$ is a non-expansive retract of the Urysohn space \mathbb{U} .
- (b) ⟨X, d⟩ is finitely hyperconvex, that is, given a finite family of closed balls

$$\mathcal{F} = \{\overline{\mathsf{B}}(x_0, r_0), \dots, \overline{\mathsf{B}}(x_{n-1}, r_{n-1})\}$$

with $\bigcap \mathcal{F} = \emptyset$, there exist i < j < n such that

 $d(x_i, x_j) > r_i + r_j.$

Remark

Implication (a) \implies (b) is easy.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Main	leon					

you

Let $\langle X, d \rangle$ be a separable complete metric space. TFAE:

- (a) $\langle X, d \rangle$ is a non-expansive retract of the Urysohn space \mathbb{U} .
- (b) ⟨X, d⟩ is finitely hyperconvex, that is, given a finite family of closed balls

$$\mathcal{F} = \{\overline{\mathsf{B}}(x_0, r_0), \dots, \overline{\mathsf{B}}(x_{n-1}, r_{n-1})\}$$

with $\bigcap \mathcal{F} = \emptyset$, there exist i < j < n such that

 $d(x_i, x_j) > r_i + r_j.$

Remark

Implication (a) \implies (b) is easy.

he goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end		
The	orom							
Lot		nact snac	e of weight	». ΤΕΔΕ ·				
	Let K be a compact space of weight \aleph_1 . TFAE:							
(a) (b)	K is a 0-di	imensional int closures	F-space, the \mathcal{L}	hat is, disjoir	nt open F_{σ} s	ets		
_								
Imp	olication (a)	\Longrightarrow (b) is t	rivial.					

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end		
Π	heorem							
Let K be a compact space of weight \aleph_1 . TFAE:								
((a) K is a topological retract of ω^* .							
(b) K is a 0-di have disjo	mensional int closures	F-space, tl s.	hat is, disjoir	nt open F_{σ} se	ets		
						_		
L.	mplication (a)	\rightarrow (b) is t	rivial					

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

Implication (a) \implies (b) is trivial.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end		
The	eorem							
Let	Let K be a compact space of weight \aleph_1 . TFAE:							
(a)	(a) K is a topological retract of ω^* .							
(b)	K is a 0-d have disjo	imensional int closures	F-space, tl s.	hat is, disjoir	nt open F_{σ} s	ets		
Rer	mark							
Imp	lication (a)	\Longrightarrow (b) is t	rivial.					

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Motiva	ation					

Theorem (Dolinka 2011)

Let \mathfrak{M} be a **nice** Fraïssé class of finite models and let U be its Fraïssé limit. Given a countable model X, TFAE:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(a) X is a retract of U.

(b) X is algebraically closed.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Motiva	tion					

Theorem (Dolinka 2011)

Let \mathfrak{M} be a **nice** Fraïssé class of finite models and let U be its Fraïssé limit. Given a countable model X, TFAE:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

(a) X is a retract of U.

(b) X is algebraically closed.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end
Iniecti	vitv					

Definition

Let $\mathfrak{K} \subseteq \mathcal{C}$ be a pair of categories. We say that $X \in Ob(\mathcal{C})$ is \mathfrak{K} -injective in \mathcal{C} if for every \mathfrak{K} -arrow $i: a \to b$ and for every \mathcal{C} -arrow $f: a \to X$, there exists a \mathcal{C} -arrow $g: b \to X$ such that $g \circ i = f$.

イロト 不良 とくほ とくほう 二日

▲ロ▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

The pushout of $\langle f,g \rangle$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

The pushout of $\overline{\langle f, g \rangle}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Mixed pushout: $f, g' \in \mathfrak{K}$ and $f', g \in \mathfrak{L}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories with the same objects and satisfying the following conditions:

(h1) 系 has a weakly initial object.

(h2) $\langle \mathfrak{K}, \mathfrak{L}
angle$ has the mixed pushout property.

(h3) £ has a Fraïssé sequence U.

Let X be a sequence in \Re . The following properties are equivalent.

・ コット (雪) (小田) (コット 日)

(a) X is *R*-injective.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories with the same objects and satisfying the following conditions:

(h1) A has a weakly initial object.

(h2) $\langle \mathfrak{K}, \mathfrak{L}
angle$ has the mixed pushout property.

(h3) £ has a Fraïssé sequence U.

Let X be a sequence in \Re . The following properties are equivalent.

・ コット (雪) (小田) (コット 日)

(a) X is *R*-injective.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories with the same objects and satisfying the following conditions:

(h1) A has a weakly initial object.

(h2) $\langle \mathfrak{K}, \mathfrak{L} \rangle$ has the mixed pushout property.

(h3) £ has a Fraïssé sequence U.

Let X be a sequence in \mathfrak{K} . The following properties are equivalent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(a) X is *R*-injective.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories with the same objects and satisfying the following conditions:

(h1) A has a weakly initial object.

(h2) $\langle \mathfrak{K}, \mathfrak{L} \rangle$ has the mixed pushout property.

(h3) R has a Fraïssé sequence U.

Let X be a sequence in \mathfrak{K} . The following properties are equivalent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(a) X is \Re -injective.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories with the same objects and satisfying the following conditions:

(h1) A has a weakly initial object.

(h2) $\langle \mathfrak{K}, \mathfrak{L} \rangle$ has the mixed pushout property.

(h3) R has a Fraïssé sequence U.

Let X be a sequence in \Re . The following properties are equivalent.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

(a) X is *R*-injective.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

About the proof

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Definition (Cameron & Nešetřil 2006)

A countable relational structure X is homomorphism homogeneous (HH) if every homomorphism between its finite substructures extends to an endomorphism of X.

Theorem

Let $\Re \subseteq \mathfrak{L}$ be a pair of categories with the same objects, satisfying conditions (h1) – (h3) above. Let X be a sequence in \Re . The following properties are equivalent:

(a) *X* is *HH*.

(b) X is a retract of a Fraïssé sequence of some subcategory of \Re satisfying (h1) – (h3).

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Definition (Cameron & Nešetřil 2006)

A countable relational structure X is homomorphism homogeneous (HH) if every homomorphism between its finite substructures extends to an endomorphism of X.

Theorem

Let $\Re \subseteq \mathfrak{L}$ be a pair of categories with the same objects, satisfying conditions (h1) – (h3) above. Let X be a sequence in \Re . The following properties are equivalent:

(a) X is HH.

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

Definition (Cameron & Nešetřil 2006)

A countable relational structure X is homomorphism homogeneous (HH) if every homomorphism between its finite substructures extends to an endomorphism of X.

Theorem

Let $\Re \subseteq \mathfrak{L}$ be a pair of categories with the same objects, satisfying conditions (h1) – (h3) above. Let X be a sequence in \Re . The following properties are equivalent:

(a) X is HH.

(b) X is a retract of a Fraïssé sequence of some subcategory of \Re satisfying (h1) – (h3).

The goal	Motivation	Injectivity	Pushouts	Main result	HH objects	The end

THE END

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- FRAÏSSÉ, R., *Sur quelques classifications des systèmes de relations*, Publ. Sci. Univ. Alger. Sér. A. **1** (1954) 35–182
- DOLINKA, I., A characterization of retracts in certain Fraïssé limits, to appear in MLQ. Mathematical Logic Quarterly (2011)
- CAMERON, P.; NEŠETŘIL, J., Homomorphism-homogeneous relational structures, Combin. Probab. Comput. 15 (2006) 91–103
- KUBIŚ, W., Fraïssé sequences: category-theoretic approach to universal homogeneous structures, preprint http://arxiv.org/abs/0711.1683