Fraïssé-Jónsson limits Category-theoretic approach

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC)
and
Jan Kochanowski University, Kielce (POLAND)
http://www.ujk.edu.pl/~wkubis/

Eilat 19 – 24 June 2010

Outline

- Categories
 - Fraisse sequences
 - The existence
 - Cofinality, homogeneity and uniqueness
 - Back-and-forth argument
- Some history
- Projection-embedding pairs
 - Example 1
- The role of pushouts
 - Example 2
 - Stability of Fraïssé sequences
- Gurarii spaces
- Projection-embedding pairs II
 - Proper amalgamations
- Banach spaces

Amalgamations

Let \Re be a category.

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

Amalgamations

Let \Re be a category.

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

Amalgamations

Let \Re be a category.

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

Definition

- \vec{u} is cofinal in \Re , i.e. for every $x \in \Re$ there are $\alpha < \kappa$ and $f: x \to u_{\alpha}$ in \Re .
- ② For every $\xi < \kappa$, for every $f \colon u_{\xi} \to y$, there exist $\eta \geqslant \xi$ and $g \colon y \to u_{\eta}$ such that $u_{\xi}^{\eta} = g \circ f$.

Definition

- ① \vec{u} is cofinal in \Re , i.e. for every $x \in \Re$ there are $\alpha < \kappa$ and $f: x \to u_c$ in \Re .
- For every ξ < κ, for every f: u_ξ → y, there exist η ≥ ξ and g: y → u_η such that u^η_ξ = g ∘ f.

Definition

- **1** \vec{u} is cofinal in \Re , i.e. for every $x \in \Re$ there are $\alpha < \kappa$ and $f: x \to u_{\alpha}$ in \Re .
- For every ξ < κ, for every f: u_ξ → y, there exist η ≥ ξ and g: y → u_η such that u^η_ξ = g ∘ f.

Definition

- \vec{u} is cofinal in \mathfrak{K} , i.e. for every $x \in \mathfrak{K}$ there are $\alpha < \kappa$ and $f: x \to u_{\alpha}$ in \mathfrak{K} .
- ② For every $\xi < \kappa$, for every $f \colon u_{\xi} \to y$, there exist $\eta \geqslant \xi$ and $g \colon y \to u_{\eta}$ such that $u_{\xi}^{\eta} = g \circ f$.

Definition

- ① \vec{u} is cofinal in \mathfrak{K} , i.e. for every $x \in \mathfrak{K}$ there are $\alpha < \kappa$ and $f \colon x \to u_{\alpha}$ in \mathfrak{K} .
- ② For every $\xi < \kappa$, for every $f \colon u_{\xi} \to y$, there exist $\eta \geqslant \xi$ and $g \colon y \to u_{\eta}$ such that $u_{\xi}^{\eta} = g \circ f$.

 $\mathfrak{S}_{\leqslant \kappa}(\mathfrak{K}) = \text{the category of sequences of length} \leqslant \kappa \text{ in } \mathfrak{K}.$

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{<\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $\vec{t} : \vec{u} \to a$.

- lackloss $\mathcal F$ is cofinal in $\mathfrak K$, i.e. every object of $\mathfrak K$ has an arrow into an object of $\mathcal F$.
- ② For every $g \in \mathfrak{K}$ with $dom(g) \in Ob(\mathcal{F})$ there are $f \in \mathcal{F}$ and $h \in \mathfrak{K}$ such that $h \circ g = f$.

 $\mathfrak{S}_{\leqslant \kappa}(\mathfrak{K})=$ the category of sequences of length $\leqslant \kappa$ in \mathfrak{K} .

A category $\mathfrak K$ is κ -bounded if for every sequence $\vec u \in \mathfrak S_{<\kappa}(\mathfrak K)$ there are $a \in \mathfrak K$ and an arrow of sequences $\vec f \colon \vec u \to a$.

- ① \mathcal{F} is cofinal in \mathfrak{K} , i.e. every object of \mathfrak{K} has an arrow into an object of \mathcal{F} .
- ② For every $g \in \mathfrak{K}$ with $dom(g) \in Ob(\mathcal{F})$ there are $f \in \mathcal{F}$ and $h \in \mathfrak{K}$ such that $h \circ g = f$.

 $\mathfrak{S}_{\leqslant \kappa}(\mathfrak{K}) = \text{the category of sequences of length} \leqslant \kappa \text{ in } \mathfrak{K}.$

A category $\mathfrak K$ is κ -bounded if for every sequence $\vec u \in \mathfrak S_{<\kappa}(\mathfrak K)$ there are $a \in \mathfrak K$ and an arrow of sequences $\vec f \colon \vec u \to a$.

- lackloss \mathcal{F} is cofinal in \mathfrak{K} , i.e. every object of \mathfrak{K} has an arrow into an object of \mathcal{F} .
- ② For every $g \in \mathfrak{K}$ with $dom(g) \in Ob(\mathcal{F})$ there are $f \in \mathcal{F}$ and $h \in \mathfrak{K}$ such that $h \circ g = f$.

 $\mathfrak{S}_{\leqslant \kappa}(\mathfrak{K}) = \text{the category of sequences of length} \leqslant \kappa \text{ in } \mathfrak{K}.$

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{<\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $\vec{f} : \vec{u} \to a$.

- \mathcal{F} is cofinal in \mathfrak{K} , i.e. every object of \mathfrak{K} has an arrow into an object of \mathcal{F} .
- ② For every $g \in \mathfrak{K}$ with $dom(g) \in Ob(\mathcal{F})$ there are $f \in \mathcal{F}$ and $h \in \mathfrak{K}$ such that $h \circ g = f$.

 $\mathfrak{S}_{\leqslant \kappa}(\mathfrak{K}) = \text{the category of sequences of length} \leqslant \kappa \text{ in } \mathfrak{K}.$

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{u} \in \mathfrak{S}_{<\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $\vec{f} : \vec{u} \to a$.

- \mathcal{F} is cofinal in \mathfrak{K} , i.e. every object of \mathfrak{K} has an arrow into an object of \mathcal{F} .
- ② For every $g \in \mathfrak{K}$ with $dom(g) \in Ob(\mathcal{F})$ there are $f \in \mathcal{F}$ and $h \in \mathfrak{K}$ such that $h \circ g = f$.

The existence

Theorem

Let $\kappa>1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that \Re has a dominating subcategory of cardinality $\leqslant \kappa$.

Then there exists a Fraïssé sequence of length κ in \Re .

The existence

Theorem

Let $\kappa > 1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that \Re has a dominating subcategory of cardinality $\leqslant \kappa$.

Then there exists a Fraïssé sequence of length κ in \Re .

The existence

Theorem

Let $\kappa > 1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that \Re has a dominating subcategory of cardinality $\leqslant \kappa$.

Then there exists a Fraïssé sequence of length κ in \Re .

Theorem (Countable Cofinality)

Assume \vec{u} is a Fraïssé sequence in a category with amalgamation \mathfrak{K} . Then for every countable sequence \vec{x} in \mathfrak{K} there exists an arrow $\vec{t}: \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \Re . If \Re has the amalgamation property then \vec{u} is cofinal in $\mathfrak{S}_{\omega}(\Re)$.

Theorem (Countable Cofinality)

Assume \vec{u} is a Fraïssé sequence in a category with amalgamation \Re . Then for every countable sequence \vec{x} in \Re there exists an arrow \vec{t} : $\vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} has the amalgamation property then \vec{u} is cofinal in $\mathfrak{S}_{\omega}(\mathfrak{K})$.

Theorem

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a, b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ i = j \circ f$.

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v}$$

$$\downarrow_{i_k} \qquad \downarrow_{j_\ell} \qquad \downarrow_{i_\ell} \qquad \downarrow_{j_\ell} \qquad \downarrow_{j_\ell}$$

Theorem

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a, b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ i = j \circ f$.

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v} \\
\downarrow^{i_{k}} \qquad \uparrow^{j_{\ell}} \qquad \downarrow^{i_{\ell}} \qquad \downarrow^{j_{\ell}} \\
\downarrow^{i_{k}} \qquad \downarrow^{i_{\ell}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{i_{\ell}} \qquad \downarrow^{j_{\ell}} \\
\downarrow^{i_{k}} \qquad \downarrow^{i_{\ell}} \qquad \downarrow^{i_$$

Theorem

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a,b\in\Re$ and for every arrows $f\colon a\to b,\,i\colon a\to\vec{u},\,j\colon b\to\vec{v}$ there exists an isomorphism $F\colon\vec{u}\to\vec{v}$ such that $F\circ i=j\circ f$.

$$\vec{u} \xrightarrow{F} \vec{v}$$
 $\vec{u} \xrightarrow{F} \vec{v}$ $\vec{v} \downarrow \vec$

Theorem

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a,b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ i = j \circ f$.

Some history

- FRAÏSSÉ, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182
- JÓNSSON, B., *Homogeneous universal relational systems*, Math. Scand. 8 (1960) 137–142
- DROSTE, M.; GÖBEL, R., A categorical theorem on universal objects and its application in abelian group theory and computer science, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 49–74, Contemp. Math., 131, Part 3, Amer. Math. Soc., Providence, RI, 1992
- IRWIN, T.; SOLECKI, S., *Projective Fraïssé limits and the pseudo-arc*, Trans. Amer. Math. Soc. **358**, no. 7 (2006) 3077–3096

Fix a category \Re .

Define a new category $\mathfrak{K}^{\mathsf{PE}}$ as follows.

- The objects of \Re^{PE} are the objects of \Re .
- An arrow from $a \in \Re^{PE}$ to $b \in \Re^{PE}$ is a pair $\langle e, p \rangle$, where

$$a > \stackrel{e}{\longrightarrow} b$$
, $a \stackrel{p}{\longleftarrow} b$

are arrows in \Re satisfying $p \circ e = id_a$.

The composition is

$$\langle e, p
angle \circ \langle e', p'
angle = \langle e \circ e', p' \circ p
angle.$$

$$P(\langle e, p \rangle) = p,$$
 $E(\langle e, p \rangle) = e.$

Fix a category \Re .

Define a new category \mathfrak{K}^{PE} as follows.

- The objects of RPE are the objects of R.
- An arrow from $a \in \Re^{PE}$ to $b \in \Re^{PE}$ is a pair $\langle e, p \rangle$, where

$$a \rightarrow b$$
, $a \stackrel{p}{\Longleftrightarrow} b$

are arrows in \Re satisfying $p \circ e = id_a$.

The composition is

$$\langle e, p \rangle \circ \langle e', p' \rangle = \langle e \circ e', p' \circ p \rangle.$$

$$P(\langle e, p \rangle) = p,$$
 $E(\langle e, p \rangle) = e.$

Fix a category R.

Define a new category \mathfrak{K}^{PE} as follows.

- The objects of \Re^{PE} are the objects of \Re .
- An arrow from $a \in \mathfrak{K}^{PE}$ to $b \in \mathfrak{K}^{PE}$ is a pair $\langle e, p \rangle$, where

$$a \rightarrow b$$
, $a \stackrel{p}{\Longleftrightarrow} b$

are arrows in \Re satisfying $p \circ e = id_a$.

The composition is

$$\langle e, p \rangle \circ \langle e', p' \rangle = \langle e \circ e', p' \circ p \rangle.$$

$$P(\langle e, p \rangle) = p,$$
 $E(\langle e, p \rangle) = e.$

Fix a category R.

Define a new category \Re^{PE} as follows.

- The objects of \Re^{PE} are the objects of \Re .
- An arrow from $a \in \mathfrak{K}^{PE}$ to $b \in \mathfrak{K}^{PE}$ is a pair $\langle e, p \rangle$, where

$$a \rightarrow b$$
, $a \stackrel{p}{\Longleftrightarrow} b$

are arrows in \Re satisfying $p \circ e = id_a$.

The composition is

$$\langle e, p \rangle \circ \langle e', p' \rangle = \langle e \circ e', p' \circ p \rangle.$$

$$P(\langle e, p \rangle) = p,$$
 $E(\langle e, p \rangle) = e.$

Fix a category R.

Define a new category \Re^{PE} as follows.

- The objects of \Re^{PE} are the objects of \Re .
- An arrow from $a \in \mathfrak{K}^{PE}$ to $b \in \mathfrak{K}^{PE}$ is a pair $\langle e, p \rangle$, where

$$a \rightarrow b$$
, $a \stackrel{p}{\Longleftrightarrow} b$

are arrows in \Re satisfying $p \circ e = id_a$.

• The composition is

$$\langle e, p \rangle \circ \langle e', p' \rangle = \langle e \circ e', p' \circ p \rangle.$$

$$P(\langle e, p \rangle) = p,$$
 $E(\langle e, p \rangle) = e.$

$\mathfrak{Set} =$ the category of nonempty finite sets.

Let \vec{u} be a Fraïssé sequence in \mathfrak{Set}^{PE} . How to interpret its properties?

Let \vec{x} , \vec{y} be sequences in \mathfrak{Set}^{PE} and fix $\vec{f} : \vec{x} \to \vec{y}$. Let

$$X = \varprojlim P[\vec{x}], \quad Y = \varprojlim P[\vec{y}]$$

and

$$D = \lim E[\vec{x}], \quad G = \lim E[\vec{y}].$$

Claim

X and Y are totally disconnected compact metric spaces, D is dense in X, G is dense in Y and \vec{f} corresponds to a pair $\langle f, j \rangle$, where

- $f: Y \rightarrow X$ is a quotient map,
- j: X → Y is a topological embedding,
- $f \circ j = \operatorname{id}_X \text{ and } j[D] \subseteq G, f[G] = D.$

 $\mathfrak{Set} =$ the category of nonempty finite sets.

Let \vec{u} be a Fraïssé sequence in \mathfrak{Set}^{PE} .

How to interpret its properties?

Let \vec{x} , \vec{y} be sequences in $\mathfrak{Set}^{\mathsf{PE}}$ and fix $\vec{f} : \vec{x} \to \vec{y}$. Let

$$X = \varprojlim P[\vec{x}], \quad Y = \varprojlim P[\vec{y}]$$

and

$$D = \lim E[\vec{x}], \quad G = \lim E[\vec{y}].$$

Claim

X and Y are totally disconnected compact metric spaces, D is dense in X, G is dense in Y and \vec{f} corresponds to a pair $\langle f, j \rangle$, where

- $f: Y \rightarrow X$ is a quotient map,
- j: X → Y is a topological embedding,
- $f \circ j = \operatorname{id}_X \text{ and } j[D] \subseteq G, f[G] = D.$

 $\mathfrak{Set} =$ the category of nonempty finite sets.

Let \vec{u} be a Fraïssé sequence in \mathfrak{Set}^{PE} .

How to interpret its properties?

Let \vec{x} , \vec{y} be sequences in $\mathfrak{Set}^{\mathsf{PE}}$ and fix $\vec{f} \colon \vec{x} \to \vec{y}$. Let

$$X = \varprojlim P[\vec{x}], \quad Y = \varprojlim P[\vec{y}]$$

and

$$D = \lim E[\vec{x}], \quad G = \lim E[\vec{y}].$$

Claim

X and *Y* are totally disconnected compact metric spaces, *D* is dense in *X*, *G* is dense in *Y* and \vec{f} corresponds to a pair $\langle f, j \rangle$, where

- $f: Y \rightarrow X$ is a quotient map,
- j: X → Y is a topological embedding,
- $f \circ j = \operatorname{id}_X \text{ and } j[D] \subseteq G, f[G] = D.$

Claim

The Fraissé sequence in $\mathfrak{Set}^{\mathsf{PE}}$ corresponds to a pair $\langle 2^{\omega}, Q \rangle$, where Q is a countable dense subset of the Cantor set 2^{ω} .

Corollary

Let K be a totally disconnected compact metric space and let $D \subseteq K$ be dense. Then there exists a retraction $f: 2^{\omega} \to K$ such that $f \upharpoonright Q$ is a retraction onto D.

Corollary

Let K be a totally disconnected compact metric space wihout isolated points and let $D \subseteq K$ be countable and dense. Then

$$\langle K, D \rangle \approx \langle 2^{\omega}, Q \rangle.$$

Claim

The Fraïssé sequence in $\mathfrak{Set}^{\mathsf{PE}}$ corresponds to a pair $\langle 2^{\omega}, Q \rangle$, where Q is a countable dense subset of the Cantor set 2^{ω} .

Corollary

Let K be a totally disconnected compact metric space and let $D \subseteq K$ be dense. Then there exists a retraction $f: 2^{\omega} \to K$ such that $f \upharpoonright Q$ is a retraction onto D.

Corollary

Let K be a totally disconnected compact metric space without isolated points and let $D \subseteq K$ be countable and dense. Then

$$\langle K, D \rangle \approx \langle 2^{\omega}, Q \rangle.$$

Claim

The Fraïssé sequence in $\mathfrak{Set}^{\mathsf{PE}}$ corresponds to a pair $\langle 2^{\omega}, Q \rangle$, where Q is a countable dense subset of the Cantor set 2^{ω} .

Corollary

Let K be a totally disconnected compact metric space and let $D \subseteq K$ be dense. Then there exists a retraction $f: 2^{\omega} \to K$ such that $f \upharpoonright Q$ is a retraction onto D.

Corollary

Let K be a totally disconnected compact metric space without isolated points and let $D \subseteq K$ be countable and dense. Then

$$\langle K, D \rangle \approx \langle 2^{\omega}, Q \rangle.$$

Homogeneity translates to the following:

Fact

Let $\{U_0, \ldots, U_{n-1}\}$ and $\{V_0, \ldots, V_{n-1}\}$ be two partitions of 2^{ω} into clopen sets and let $a_i \in U_i$, $b_i \in V_i$ be fixed for each i < n. Then there exists a homeomorphism $h \colon 2^{\omega} \to 2^{\omega}$ satisfying

$$h(a_i) = b_i$$
 and $h^{-1}[V_i] = U_i$

for every i < n.

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every \overline{f} , \overline{g} satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow h such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

The pushout of $\langle f, g \rangle$

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every \overline{f} , \overline{g} satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow h such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

The pushout of $\langle f, g \rangle$

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every \overline{f} , \overline{g} satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow h such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

The pushout of $\langle f, g \rangle$

Fix a small category \mathbb{B} and fix a covariant functor $F \colon \mathfrak{K} \to \mathfrak{L}$. Define a new category $\mathfrak{fun}(\mathbb{B}, F)$ as follows.

• An object of $\operatorname{fun}(\mathbb{B}, F)$ is a map $x \colon \operatorname{Ob}(\mathbb{B}) \to \operatorname{Ob}(\mathfrak{K})$ which after moving to \mathfrak{L} via F "becomes" a covariant functor. That is, for each $b \in \operatorname{Ob}(\mathbb{B})$, $x(b) \in \operatorname{Ob}(\mathfrak{K})$ and for each arrow $f \colon a \to b$ in \mathbb{B} ,

$$x(f) \colon F(x(a)) \to F(x(b))$$

so that compositions are preserved.

Fix a small category \mathbb{B} and fix a covariant functor $F \colon \mathfrak{K} \to \mathfrak{L}$. Define a new category $\mathfrak{fun}(\mathbb{B}, F)$ as follows.

 An object of fun (B, F) is a map x: Ob(B) → Ob(R) which after moving to L via F "becomes" a covariant functor.

That is, for each $b \in \mathsf{Ob}(\mathbb{B})$, $x(b) \in \mathsf{Ob}(\mathfrak{K})$ and for each arrow $f \colon a \to b$ in \mathbb{B} ,

$$x(f) \colon F(x(a)) \to F(x(b))$$

so that compositions are preserved.

Fix a small category \mathbb{B} and fix a covariant functor $F \colon \mathfrak{K} \to \mathfrak{L}$. Define a new category $\mathfrak{fun}(\mathbb{B}, F)$ as follows.

• An object of $fun(\mathbb{B}, F)$ is a map $x : Ob(\mathbb{B}) \to Ob(\mathfrak{K})$ which after moving to \mathfrak{L} via F "becomes" a covariant functor. That is, for each $b \in Ob(\mathbb{B})$, $x(b) \in Ob(\mathfrak{K})$ and for each arrow $f : a \to b$ in \mathbb{B} ,

$$x(f) \colon F(x(a)) \to F(x(b))$$

so that compositions are preserved.

Fix a small category \mathbb{B} and fix a covariant functor $F \colon \mathfrak{K} \to \mathfrak{L}$. Define a new category $\mathfrak{fun}(\mathbb{B}, F)$ as follows.

An object of fun (B, F) is a map x: Ob(B) → Ob(R) which after moving to L via F "becomes" a covariant functor.
 That is, for each b ∈ Ob(B), x(b) ∈ Ob(R) and for each arrow f: a → b in B,

$$x(f) \colon F(x(a)) \to F(x(b))$$

so that compositions are preserved.

F has the pushout property if for every \mathfrak{K} -arrows $f: z \to x$, $g: z \to y$, there exist $k: x \to w$, $\ell: y \to w$ such that

$$\begin{array}{c|c}
y & \xrightarrow{\ell} & w \\
g & & & k \\
Z & \xrightarrow{f} & X
\end{array}$$

and

$$F(y) \xrightarrow{F(\ell)} F(w)$$

$$F(g) \uparrow \qquad \uparrow F(k)$$

$$F(z) \xrightarrow{F(f)} F(x)$$

is a pushout in \mathfrak{L} .

F has the pushout property if for every \Re -arrows $f: z \to x$, $g: z \to y$, there exist $k: x \to w$, $\ell: y \to w$ such that

$$\begin{array}{c|c}
y & \xrightarrow{\ell} & w \\
g & & & k \\
Z & \xrightarrow{f} & X
\end{array}$$

and

$$F(y) \xrightarrow{F(\ell)} F(w)$$

$$F(g) \downarrow \qquad \qquad \uparrow F(k)$$

$$F(z) \xrightarrow{F(f)} F(x)$$

is a pushout in \mathfrak{L} .

Lemma

Assume F has the pushout property. Then $fun(\mathbb{B}, F)$ has the amalgamation property.

Example

Let $\mathbb{B}=\mathbb{Z}$ or $\mathbb{B}=\mathbb{N},$ treated as a monoidal category.

Let $\mathfrak K$ be the category of monomorphisms of a fixed category $\mathfrak L$.

Let *F* be the "inclusion" functor.

Under suitable assumptions, $\mathfrak{fun}(\mathbb{B}, F)$ has a Fraïssé sequence.

Corollary

There exists a nonexpansive homeomorphism $h: 2^{\omega} \to 2^{\omega}$ such that for every totally disconnected compact metric space K and for every nonexpansive homeomorphism $f: K \to K$ there is a quotient $q: 2^{\omega} \to 2^{\omega}$ for which the diagram

$$\begin{array}{ccc}
2^{\omega} & \xrightarrow{h} & 2^{\omega} \\
q & & & \downarrow q \\
K & \xrightarrow{f} & K
\end{array}$$

commutes.

Example

Let $\mathbb{B}=\mathbb{Z}$ or $\mathbb{B}=\mathbb{N},$ treated as a monoidal category.

Let $\mathfrak K$ be the category of monomorphisms of a fixed category $\mathfrak L.$

Let *F* be the "inclusion" functor.

Under suitable assumptions, $\mathfrak{fun}(\mathbb{B}, F)$ has a Fraïssé sequence.

Corollary

There exists a nonexpansive homeomorphism $h\colon 2^\omega \to 2^\omega$ such that for every totally disconnected compact metric space K and for every nonexpansive homeomorphism $f\colon K \to K$ there is a quotient $q\colon 2^\omega \to 2^\omega$ for which the diagram

$$\begin{array}{ccc}
2^{\omega} & \xrightarrow{h} & 2^{\omega} \\
q & & & \downarrow q \\
K & \xrightarrow{f} & K
\end{array}$$

commutes.

Example

Let \mathbb{B} have two objects $0 \neq 1$ and two arrows $e: 0 \to 1$, $p: 1 \to 0$, satisfying $p \circ e = \mathrm{id}_0$.

In particular, $End(0) = \{id_0\}$ and $End(1) = \{id_1, e \circ p\}$.

Let *F* be as before.

- A has the initial object.
- Monomorphisms admit pushouts in A.

Let \mathfrak{K}^{mon} be the category of all monomorphisms of \mathfrak{K} .

Proposition

R^{mon} has a unique (countable) Fraïssé sequence ū. Further,

- $\vec{u} \oplus \vec{u} \approx \vec{u}$.
- The colimit of any countable sequence of monomorphisms

$$\vec{U} \longrightarrow \vec{U} \longrightarrow \vec{U} \longrightarrow \cdots$$

- A has the initial object.
- Monomorphisms admit pushouts in A.

Let \mathfrak{K}^{mon} be the category of all monomorphisms of \mathfrak{K} .

Proposition

R^{mon} has a unique (countable) Fraïssé sequence ū. Further,

- $\vec{u} \oplus \vec{u} \approx \vec{u}$.
- The colimit of any countable sequence of monomorphisms

$$\vec{u} \longrightarrow \vec{u} \longrightarrow \vec{u} \longrightarrow \cdots$$

- A has the initial object.
- Monomorphisms admit pushouts in \(\omega\).

Let \mathfrak{K}^{mon} be the category of all monomorphisms of \mathfrak{K} .

Proposition

R^{mon} has a unique (countable) Fraïssé sequence ū. Further,

- $\vec{u} \oplus \vec{u} \approx \vec{u}$.
- The colimit of any countable sequence of monomorphisms

$$\vec{u} \longrightarrow \vec{u} \longrightarrow \vec{u} \longrightarrow \cdots$$

- \(\mathbb{R} \) is a countable category.
- A has the initial object.
- Monomorphisms admit pushouts in \(\omega\).

Let \mathfrak{K}^{mon} be the category of all monomorphisms of \mathfrak{K} .

Proposition

R^{mon} has a unique (countable) Fraïssé sequence ū. Further,

- $\vec{u} \oplus \vec{u} \approx \vec{u}$.
- The colimit of any countable sequence of monomorphisms

$$\vec{u} \longrightarrow \vec{u} \longrightarrow \vec{u} \longrightarrow \cdots$$

- A has the initial object.
- Monomorphisms admit pushouts in \(\omega\).

Let \mathfrak{K}^{mon} be the category of all monomorphisms of \mathfrak{K} .

Proposition

я^{mon} has a unique (countable) Fraïssé sequence й. Further,

- $\vec{u} \oplus \vec{u} \approx \vec{u}$.
- The colimit of any countable sequence of monomorphisms

$$\vec{u} \longrightarrow \vec{u} \longrightarrow \vec{u} \longrightarrow \cdots$$

Theorem

There exists a PE-pair $\langle r,j \rangle \colon \vec{u} \to \vec{u}$ such that for every morphism $\langle p,e \rangle \colon \vec{x} \to \vec{y}$ in $\mathfrak{S}_{\omega}(\mathfrak{K})^{\mathsf{PE}}$ there are monomorphisms $k \colon \vec{x} \to \vec{u}$, $\ell \colon \vec{y} \to \vec{u}$ such that the diagrams

commute.

The Gurarii space

Theorem (Gurariĭ, 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(*) Given finite-dimensional spaces $Y\subseteq X$, $\varepsilon>0$ and an isometric embedding $i\colon Y\to \mathbb{G}$ there exists an embedding $j\colon X\to \mathbb{G}$ such that

$$j \upharpoonright Y = i$$
 and $\max\{||j||, ||j^{-1}||\} < 1 + \varepsilon$.

Theorem (Lusky, 1976)

The space G is unique up to isometry.

G will be called the Gurarii space.

The Gurarii space

Theorem (Gurariĭ, 1966)

There exists a separable Banach space $\mathbb G$ with the following property:

(*) Given finite-dimensional spaces $Y\subseteq X$, $\varepsilon>0$ and an isometric embedding $i\colon Y\to \mathbb{G}$ there exists an embedding $j\colon X\to \mathbb{G}$ such that

$$j \upharpoonright Y = i$$
 and $\max\{\|j\|, \|j^{-1}\|\} < 1 + \varepsilon$.

Theorem (Lusky, 1976)

The space \mathbb{G} is unique up to isometry.

G will be called the Gurarii space.

 $\mathbb{G} \oplus_1 \mathbb{G} \approx \mathbb{G}$.

Explanation:

 $X \oplus_1 Y$ is $X \times Y$ with the norm $\|\langle x, y \rangle\| = \|x\| + \|y\|$.

Corollary

The ℓ_1 -sum of \aleph_1 many copies of the Gurarii space is a Gurarii space.

Remark

From the general theory of Fraïssé-Jónsson limits it follows that, under CH, there exists a unique Banach space U of density \aleph_1 such that for every separable spaces $E \subseteq F$, every isometric embedding $T \colon E \to U$ extends to an isometric embedding $\overline{T} \colon F \to U$.

 $\mathbb{G} \oplus_1 \mathbb{G} \approx \mathbb{G}$.

Explanation:

 $X \oplus_1 Y$ is $X \times Y$ with the norm $\|\langle x, y \rangle\| = \|x\| + \|y\|$.

Corollary

The ℓ_1 -sum of \aleph_1 many copies of the Gurariĭ space is a Gurariĭ space.

Remark

From the general theory of Fraïssé-Jónsson limits it follows that, under CH, there exists a unique Banach space U of density \aleph_1 such that for every separable spaces $E \subseteq F$, every isometric embedding $T \colon E \to U$ extends to an isometric embedding $\overline{T} \colon F \to U$.

 $\mathbb{G} \oplus_1 \mathbb{G} \approx \mathbb{G}$.

Explanation:

 $X \oplus_1 Y$ is $X \times Y$ with the norm $\|\langle x, y \rangle\| = \|x\| + \|y\|$.

Corollary

The ℓ_1 -sum of \aleph_1 many copies of the Gurarii space is a Gurarii space.

Remark

From the general theory of Fraïssé-Jónsson limits it follows that, under CH, there exists a unique Banach space U of density \aleph_1 such that for every separable spaces $E \subseteq F$, every isometric embedding $T \colon E \to U$ extends to an isometric embedding $\overline{T} \colon F \to U$.

A sequence \vec{x} in \mathfrak{K}^{PE} will be called semicontinuous if $E[\vec{x}]$ is continuous in \mathfrak{K} .

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in \Re^{PE} of the same regular length κ . Then for every arrow $f: u_0 \to \vec{v}$ in \Re^{PE} there exists an isomorphism of sequences $\vec{f}: \vec{u} \to \vec{v}$ such that $\vec{f} \circ u_0^\infty = f$.

A sequence \vec{x} in \mathfrak{K}^{PE} will be called semicontinuous if $E[\vec{x}]$ is continuous in \mathfrak{K} .

Theorem

Let \mathfrak{K} be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\mathfrak{K}^{\mathsf{PE}}$ of the same regular length κ . Then for every arrow $f\colon u_0\to \vec{v}$ in $\mathfrak{K}^{\mathsf{PE}}$ there exists an isomorphism of sequences $\vec{f}\colon \vec{u}\to \vec{v}$ such that $\vec{f}\circ u_0^\infty=f$.

$$\vec{u} \xrightarrow{\vec{f}} \vec{v}$$

$$u_0^{\infty} \downarrow \qquad \qquad f$$

A sequence \vec{x} in \mathfrak{K}^{PE} will be called semicontinuous if $E[\vec{x}]$ is continuous in \mathfrak{K} .

Theorem

Let \mathfrak{K} be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\mathfrak{K}^{\mathsf{PE}}$ of the same regular length κ . Then for every arrow $f\colon u_0\to \vec{v}$ in $\mathfrak{K}^{\mathsf{PE}}$ there exists an isomorphism of sequences $\vec{f}\colon \vec{u}\to \vec{v}$ such that $\vec{f}\circ u_0^\infty=f$.

A sequence \vec{x} in \mathfrak{K}^{PE} will be called semicontinuous if $E[\vec{x}]$ is continuous in \mathfrak{K} .

Theorem

Let \mathfrak{K} be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\mathfrak{K}^{\mathsf{PE}}$ of the same regular length κ . Then for every arrow $f\colon u_0\to \vec{v}$ in $\mathfrak{K}^{\mathsf{PE}}$ there exists an isomorphism of sequences $\vec{f}\colon \vec{u}\to \vec{v}$ such that $\vec{f}\circ u_0^\infty=f$.

Proposition

Let $f: z \to x$, $g: z \to y$ be arrows in $\mathfrak{R}^{\mathsf{PE}}$. If $\langle E(f), E(g) \rangle$ has a pushout in \mathfrak{R} , then $\langle f, g \rangle$ has a proper amalgamation in $\mathfrak{R}^{\mathsf{PE}}$. That is, there exist arrows $h: x \to w$, $k: y \to w$ in $\mathfrak{R}^{\mathsf{PE}}$ such that the following diagrams commute in \mathfrak{R} .

Proposition

Let $f: z \to x$, $g: z \to y$ be arrows in $\mathfrak{R}^{\mathsf{PE}}$. If $\langle E(f), E(g) \rangle$ has a pushout in \mathfrak{R} , then $\langle f, g \rangle$ has a proper amalgamation in $\mathfrak{R}^{\mathsf{PE}}$. That is, there exist arrows $h: x \to w$, $k: y \to w$ in $\mathfrak{R}^{\mathsf{PE}}$ such that the following diagrams commute in \mathfrak{R} .

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

If \Re has pullbacks or pushouts then \Re^{PE} has proper amalgamations.

Let \Re be a category such that \Re^{PE} has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in \Re^{PE} .

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\leqslant \kappa}(\mathfrak{K}^{\mathsf{PE}})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\mathfrak{K}^{\mathsf{PE}}$.

Let \mathfrak{K} be a category such that $\mathfrak{K}^{\mathsf{PE}}$ has proper amalgamations. Assume $\vec{\mathsf{u}}$ is a semi-continuous κ -Fraïssé sequence in $\mathfrak{K}^{\mathsf{PE}}$. Then for every semi-continuous sequence $\vec{\mathsf{x}} \in \mathfrak{S}_{\leqslant \kappa}(\mathfrak{K}^{\mathsf{PE}})$ there exists an arrow of sequences $\vec{\mathsf{f}} : \vec{\mathsf{x}} \to \vec{\mathsf{u}}$ in $\mathfrak{K}^{\mathsf{PE}}$.

Claim

Left-invertible arrows have pushouts in B_{sep}.

Claim

The category $\mathfrak{B}_{\mathsf{sep}}$ has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\mathfrak{B}_{\mathsf{sep}}^{\mathsf{PE}}$.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category $\mathfrak{B}_{\mathsf{sep}}$ has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\mathfrak{B}_{\text{sep}}^{\text{PE}}$.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\mathfrak{B}_{\mathsf{sep}}^{\mathsf{PE}}$.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\mathfrak{B}_{\text{sep}}^{\text{PE}}$.

- ③ im $P_{\delta} = \overline{\bigcup_{\alpha < \delta} \text{ im } P_{\alpha}}$ for every limit ordinal $\delta < \omega_1$.

- ③ im $P_{\delta} = \bigcup_{\alpha < \delta} \text{im } P_{\alpha}$ for every limit ordinal $\delta < \omega_1$.

- ③ im $P_{\delta} = \bigcup_{\alpha < \delta} \text{im } P_{\alpha} \text{ for every limit ordinal } \delta < \omega_1.$

- $2 X = \bigcup_{\alpha < \omega_1} \operatorname{im} P_{\alpha}$
- \bullet im $P_{\delta} = \overline{\bigcup_{\alpha < \delta} \text{ im } P_{\alpha}}$ for every limit ordinal $\delta < \omega_1$.

Assume $2^{\aleph_0} = \aleph_1$.

There exists a Banach space E with a PRI $\{P_{\alpha}\}_{\alpha<\omega_1}$ and of density \aleph_1 , which has the following properties:

- (a) The family $\{X \subseteq E : X \text{ is } 1\text{-complemented in } E\}$ is, modulo linear isometries, the class of all Banach spaces of density $\leqslant \aleph_1$ with a PRI.
- (b) Given separable subspaces X, Y ⊆ E, norm one projections
 P: E → X, Q: E → Y, both compatible with {P_α}_{α<ω1}, and given a linear isometry T: X → Y, there exist a linear isometry
 H: E → E extending T and satisfying H ∘ P = Q ∘ H.

Assume $2^{\aleph_0} = \aleph_1$.

There exists a Banach space E with a PRI $\{P_{\alpha}\}_{{\alpha}<\omega_1}$ and of density \aleph_1 , which has the following properties:

- (a) The family $\{X \subseteq E : X \text{ is 1-complemented in } E\}$ is, modulo linear isometries, the class of all Banach spaces of density $\leqslant \aleph_1$ with a PRI.
- (b) Given separable subspaces $X, Y \subseteq E$, norm one projections $P \colon E \to X$, $Q \colon E \to Y$, both compatible with $\{P_{\alpha}\}_{\alpha < \omega_1}$, and given a linear isometry $T \colon X \to Y$, there exist a linear isometry $H \colon E \to E$ extending T and satisfying $H \circ P = Q \circ H$.

Assume $2^{\aleph_0} = \aleph_1$.

There exists a Banach space E with a PRI $\{P_{\alpha}\}_{{\alpha}<\omega_1}$ and of density \aleph_1 , which has the following properties:

- (a) The family $\{X \subseteq E \colon X \text{ is } 1\text{-complemented in } E\}$ is, modulo linear isometries, the class of all Banach spaces of density $\leqslant \aleph_1$ with a PRI.
- (b) Given separable subspaces X, Y ⊆ E, norm one projections P: E → X, Q: E → Y, both compatible with {P_α}_{α<ω1}, and given a linear isometry T: X → Y, there exist a linear isometry H: E → E extending T and satisfying H ∘ P = Q ∘ H.

Assume $2^{\aleph_0} = \aleph_1$.

There exists a Banach space E with a PRI $\{P_{\alpha}\}_{{\alpha}<\omega_1}$ and of density \aleph_1 , which has the following properties:

- (a) The family $\{X \subseteq E \colon X \text{ is } 1\text{-complemented in } E\}$ is, modulo linear isometries, the class of all Banach spaces of density $\leqslant \aleph_1$ with a PRI.
- (b) Given separable subspaces X, Y ⊆ E, norm one projections P: E → X, Q: E → Y, both compatible with {P_α}_{α<ω1}, and given a linear isometry T: X → Y, there exist a linear isometry H: E → E extending T and satisfying H ∘ P = Q ∘ H.

THE END
