Automorphism groups of homogeneous structures

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences

Applications of Algebra XXIII

Zakopane, 11-17 March 2019

Joint work with S. Shelah

2

イロト イヨト イヨト イヨト

Mathematical structures

Definition

A structure is a set endowed with some relations and algebraic operations.

A .

Mathematical structures

Definition A structure is a set endowed with some relations and algebraic operations.

A structure is relational if it has no algebraic operations.

Mathematical structures

Definition

A structure is a set endowed with some relations and algebraic operations.

A structure is relational if it has no algebraic operations.

Examples:

Sets, graphs, partially ordered sets, tournaments, cyclically ordered sets.

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$.

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$.

Aut(M) will denote the group of all automorphisms of M.

< ロ > < 同 > < 回 > < 回 >

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$.

Aut(M) will denote the group of all automorphisms of M.

Examples of homogeneous structures:

< ロ > < 同 > < 回 > < 回 >

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$. Aut(*M*) will denote the group of all automorphisms of *M*.

Examples of homogeneous structures:

Any set.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$. Aut(*M*) will denote the group of all automorphisms of *M*.

Examples of homogeneous structures:

- Any set.
- Any complete or discrete graph.

< ロ > < 同 > < 回 > < 回 >

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$. Aut(*M*) will denote the group of all automorphisms of *M*.

Examples of homogeneous structures:

- Any set.
- Any complete or discrete graph.
- $\langle \mathbb{Q}, < \rangle$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$. Aut(*M*) will denote the group of all automorphisms of *M*.

Examples of homogeneous structures:

- Any set.
- Any complete or discrete graph.
- $\langle \mathbb{Q}, < \rangle$.
- The Rado graph.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Definition

A structure *M* is homogeneous if every isomorphism $f: A \rightarrow B$ between finite substructures *A*, *B* of *M* extends to an automorphism $h: M \rightarrow M$. Aut(*M*) will denote the group of all automorphisms of *M*.

Examples of homogeneous structures:

- Any set.
- Any complete or discrete graph.
- $\langle \mathbb{Q}, < \rangle$.
- The Rado graph.
- Any finite cyclic group.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Uniform homogeneity

Definition

A structure *M* is uniformly homogeneous if

M is homogeneous and

Uniform homogeneity

Definition

A structure *M* is uniformly homogeneous if

- M is homogeneous and
- ② for every finite substructure $A \subseteq M$ there exists an extension operator e_A : Aut(A) → Aut(M) such that

$$e_{\mathcal{A}}(g \circ h) = e_{\mathcal{A}}(g) \circ e_{\mathcal{A}}(h)$$

for every $g, h \in Aut(A)$.

A .

Question (E. Jaligot, 2007)

Let *M* be a countable homogeneous structure. Is it always true that the group Aut(M) contains isomorphic copies of all groups of the form Aut(X), where *X* is a substructure of *M*?

A D A D A D A

Katětov functors

Definition

Let \mathscr{F} be a class of finite structures of the same type and let M be a countable homogeneous structure such that every $A \in \mathscr{F}$ embeds into M and every finite substructure of M is isomorphic to some $A \in \mathscr{F}$.

4 6 1 1 4

Katětov functors

Definition

Let \mathscr{F} be a class of finite structures of the same type and let M be a countable homogeneous structure such that every $A \in \mathscr{F}$ embeds into M and every finite substructure of M is isomorphic to some $A \in \mathscr{F}$. A Katětov functor is a pair $\langle K, \eta \rangle$ such that K assigns to each embedding $e: A \to B$ with $A, B \in \mathscr{F}$ an embedding $K(e): M \to M, \eta$ assigns to each $A \in \mathscr{F}$ an embedding $\eta_A: A \to M$.

4 D N 4 B N 4 B N 4 B N

Katětov functors

Definition

Let \mathscr{F} be a class of finite structures of the same type and let M be a countable homogeneous structure such that every $A \in \mathscr{F}$ embeds into M and every finite substructure of M is isomorphic to some $A \in \mathscr{F}$. A Katětov functor is a pair $\langle K, \eta \rangle$ such that K assigns to each embedding $e: A \to B$ with $A, B \in \mathscr{F}$ an embedding $K(e): M \to M, \eta$ assigns to each $A \in \mathscr{F}$ an embedding $\eta_A: A \to M$. Furthermore, K is a functor, i.e., $K(\mathrm{id}_A) = \mathrm{id}_M, K(e \circ f) = K(e) \circ K(f)$, and the following diagram commutes

for every embedding $e \colon A \to B$ with $A, B \in \mathscr{F}$.

< ロ > < 同 > < 回 > < 回 >

Theorem (Mašulović & K.)

Assume $\langle \mathscr{F}, M \rangle$ admits a Katětov functor. Then for every substructure X of M there exists a topological group embedding

 e_X : Aut $(X) \rightarrow$ Aut(M).

< ロ > < 同 > < 回 > < 回 >

Theorem (Mašulović & K.)

Assume $\langle \mathscr{F}, M \rangle$ admits a Katětov functor. Then for every substructure X of M there exists a topological group embedding

 e_X : Aut $(X) \rightarrow$ Aut(M).

Theorem

All well known homogeneous relational structures admit a Katětov functor.

< 回 > < 三 > < 三 >

Definition

A class of finite structures \mathscr{F} is hereditary if for every $A \in \mathscr{F}$ it holds that

 $\{X: X \text{ is a substructure of } A\} \subseteq \mathscr{F}.$

Definition

A class of finite structures \mathscr{F} is hereditary if for every $A \in \mathscr{F}$ it holds that

 $\{X: X \text{ is a substructure of } A\} \subseteq \mathscr{F}.$

Definition

A class of structures \mathscr{F} has the amalgamation property if for every $C, A, B \in \mathscr{F}$, for every embeddings $f: C \to A, g: C \to B$ there exist $D \in \mathscr{F}$ and embeddings $f': A \to D, g': B \to D$ such that $f' \circ f = g' \circ g$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Theorem (Fraïssé 1954)

Let \mathscr{F} be a countable hereditary class of relational structures with the amalgamation property. Then there exists a unique countable homogeneous structure M such that:

- Every $A \in \mathscr{F}$ embeds into M.
- Every finite $B \subseteq M$ is isomorphic to some $B' \in \mathscr{F}$.

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure E such that:

3

< ロ > < 同 > < 回 > < 回 >

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure E such that:

• every finite group embeds into Aut(*E*),

The Sec. 74

4 A N

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure E such that:

- every finite group embeds into Aut(E),
- S_{∞} does not embed into Aut(*E*),

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure E such that:

- every finite group embeds into Aut(E),
- S_{∞} does not embed into Aut(*E*),
- $S_{\infty} \approx \operatorname{Aut}(X)$ for some $X \subseteq E$.

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure E such that:

- every finite group embeds into Aut(E),
- S_{∞} does not embed into Aut(*E*),
- $S_{\infty} \approx \operatorname{Aut}(X)$ for some $X \subseteq E$.

Furthermore, E is not uniformly homogeneous.

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure M such that:

∃ ► < ∃ ►</p>

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure M such that:

• Aut(M) is torsion-free,

E N 4 E N

A .

Theorem (Shelah & K.)

There exists a countable homogeneous relational structure M such that:

- Aut(M) is torsion-free,
- for every $n \in \mathbb{N}$ there is a finite $A \subseteq M$ with $S_n \approx \operatorname{Aut}(A)$.

The Sec. 74

- R. Fraïssé, Sur lextension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388
- E. Jaligot, On stabilizers of some moieties of the random tournament, Combinatorica 27 (2007) 129–133
- W. Kubiś, D. Mašulović, *Katětov functors*, Applied Categorical Structures 25 (2017) 569–602
- W. Kubiś, S. Shelah, Homogeneous structures with non-universal automorphism groups, preprint, https://arxiv.org/abs/1811.09650

3

- R. Fraïssé, Sur lextension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388
- E. Jaligot, On stabilizers of some moieties of the random tournament, Combinatorica 27 (2007) 129–133
- W. Kubiś, D. Mašulović, *Katětov functors*, Applied Categorical Structures 25 (2017) 569–602
- W. Kubiś, S. Shelah, Homogeneous structures with non-universal automorphism groups, preprint, https://arxiv.org/abs/1811.09650

Thank you for your attention!

3

BA 4 BA

4 A N