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Mathematical structures

Definition
A structure is a set endowed with some relations and algebraic
operations.

A structure is relational if it has no algebraic operations.

Examples:
Sets, graphs, partially ordered sets, tournaments, cyclically ordered
sets.
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Homogeneity

Definition
A structure M is homogeneous if every isomorphism f : A→ B
between finite substructures A,B of M extends to an automorphism
h : M → M.

Aut(M) will denote the group of all automorphisms of M.

Examples of homogeneous structures:
Any set.
Any complete or discrete graph.
〈Q, <〉.
The Rado graph.
Any finite cyclic group.

W.Kubiś (http://www.math.cas.cz/kubis/) Uniform homogeneity 13 March 2019 4 / 13



Homogeneity

Definition
A structure M is homogeneous if every isomorphism f : A→ B
between finite substructures A,B of M extends to an automorphism
h : M → M.
Aut(M) will denote the group of all automorphisms of M.

Examples of homogeneous structures:
Any set.
Any complete or discrete graph.
〈Q, <〉.
The Rado graph.
Any finite cyclic group.
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Uniform homogeneity

Definition
A structure M is uniformly homogeneous if

1 M is homogeneous and

2 for every finite substructure A ⊆ M there exists an extension
operator eA : Aut(A)→ Aut(M) such that

eA(g ◦ h) = eA(g) ◦ eA(h)

for every g,h ∈ Aut(A).
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Question (E. Jaligot, 2007)
Let M be a countable homogeneous structure. Is it always true that the
group Aut(M) contains isomorphic copies of all groups of the form
Aut(X ), where X is a substructure of M?
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Katětov functors

Definition
Let F be a class of finite structures of the same type and let M be a
countable homogeneous structure such that every A ∈ F embeds into
M and every finite substructure of M is isomorphic to some A ∈ F .

A
Katětov functor is a pair 〈K , η〉 such that K assigns to each embedding
e : A→ B with A,B ∈ F an embedding K (e) : M → M, η assigns to
each A ∈ F an embedding ηA : A→ M. Furthermore, K is a functor,
i.e., K (idA) = idM , K (e ◦ f ) = K (e) ◦ K (f ), and the following diagram
commutes

A M

B M

e

ηA

K (e)

ηB

for every embedding e : A→ B with A,B ∈ F .
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Theorem (Mašulović & K.)
Assume 〈F ,M〉 admits a Katětov functor. Then for every substructure
X of M there exists a topological group embedding

eX : Aut(X )→ Aut(M).

Theorem
All well known homogeneous relational structures admit a Katětov
functor.
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Definition
A class of finite structures F is hereditary if for every A ∈ F it holds
that

{X : X is a substructure of A} ⊆ F .

Definition
A class of structures F has the amalgamation property if for every
C,A,B ∈ F , for every embeddings f : C → A, g : C → B there exist
D ∈ F and embeddings f ′ : A→ D, g′ : B → D such that f ′ ◦ f = g′ ◦ g.

C A

B D

f

g f ′

g′
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Theorem (Fraı̈ssé 1954)
Let F be a countable hereditary class of relational structures with the
amalgamation property. Then there exists a unique countable
homogeneous structure M such that:

Every A ∈ F embeds into M.
Every finite B ⊆ M is isomorphic to some B′ ∈ F .
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Main results

Theorem (Shelah & K.)
There exists a countable homogeneous relational structure E such
that:

every finite group embeds into Aut(E),
S∞ does not embed into Aut(E),
S∞ ≈ Aut(X ) for some X ⊆ E.

Furthermore, E is not uniformly homogeneous.
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Theorem (Shelah & K.)
There exists a countable homogeneous relational structure M such
that:

Aut(M) is torsion-free,
for every n ∈ N there is a finite A ⊆ M with Sn ≈ Aut(A).
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Thank you for your attention!
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