A universal homogeneous Banach space of density continuum

Wiesław Kubiś

Czech Academy of Sciences, Prague and Jan Kochanowski University in Kielce

http://www.math.cas.cz/~kubis/

Set Theory, Topology and Banach Spaces Kielce, 7 – 11 July 2008

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- Every Banach space of density $\leqslant \aleph_1$ embeds isometrically into \mathbb{U} .
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- $\bullet \ \ \textit{Every Banach space of density} \leqslant \aleph_1 \ \textit{embeds isometrically into} \ \mathbb{U}.$
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- Every Banach space of density $\leqslant \aleph_1$ embeds isometrically into \mathbb{U} .
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0}=\aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- Every Banach space of density $\leqslant \aleph_1$ embeds isometrically into \mathbb{U} .
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- Every Banach space of density $\leqslant \aleph_1$ embeds isometrically into \mathbb{U} .
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- Every Banach space of density $\leqslant \aleph_1$ embeds isometrically into $\mathbb U$.
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- $\bullet \ \ \textit{Every Banach space of density} \leqslant \aleph_1 \ \textit{embeds isometrically into} \ \mathbb{U}.$
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

- $\bullet \ \ \textit{Every Banach space of density} \leqslant \aleph_1 \ \textit{embeds isometrically into} \ \mathbb{U}.$
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Some definitions

• A category \Re has the amalgamation property if for every arrows $f: x \to y$, $g: x \to z$ there are arrows $f': y \to w$ and $g': z \to w$ with $f' \circ f = g' \circ g$.

• A sequence in R is a covariant functor from an ordinal into R.

$$X_0 \xrightarrow{X_0^1} X_1 \xrightarrow{X_1^2} X_2 \longrightarrow \cdots$$

Some definitions

A category ℜ has the amalgamation property if for every arrows
 f: x → y, g: x → z there are arrows f': y → w and g': z → w
 with f' ∘ f = g' ∘ g.

$$Z \xrightarrow{g'} W$$

$$g \downarrow \qquad \qquad \downarrow f'$$

$$X \xrightarrow{f} Y$$

• A sequence in £ is a covariant functor from an ordinal into £.

$$X_0 \xrightarrow{X_0^1} X_1 \xrightarrow{X_1^2} X_2 \longrightarrow \cdots$$

Some definitions

A category ℜ has the amalgamation property if for every arrows
 f: x → y, g: x → z there are arrows f': y → w and g': z → w
 with f' ∘ f = g' ∘ g.

• A sequence in £ is a covariant functor from an ordinal into £.

$$X_0 \xrightarrow{X_0^1} X_1 \xrightarrow{X_1^2} X_2 \longrightarrow \cdots$$

Some definitions

A category ℜ has the amalgamation property if for every arrows
 f: x → y, g: x → z there are arrows f': y → w and g': z → w
 with f' ∘ f = g' ∘ g.

• A sequence in \Re is a covariant functor from an ordinal into \Re .

$$X_0 \xrightarrow{X_0^1} X_1 \xrightarrow{X_1^2} X_2 \longrightarrow \cdots$$

Some definitions

A category ℜ has the amalgamation property if for every arrows
 f: x → y, g: x → z there are arrows f': y → w and g': z → w
 with f' ∘ f = g' ∘ g.

• A sequence in £ is a covariant functor from an ordinal into £.

$$X_0 \xrightarrow{X_0^1} X_1 \xrightarrow{X_1^2} X_2 \longrightarrow \cdots$$

Some definitions

A category ℜ has the amalgamation property if for every arrows
 f: x → y, g: x → z there are arrows f': y → w and g': z → w
 with f' ∘ f = g' ∘ g.

• A sequence in \Re is a covariant functor from an ordinal into \Re .

$$X_0 \xrightarrow{x_0^1} X_1 \xrightarrow{x_1^2} X_2 \longrightarrow \cdots$$

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \Re has amalgamations and $0 \in \Re$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f: u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g: x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \Re has amalgamations and $0 \in \Re$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

Then there exists a continuous sequence \vec{u} in \Re such that

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f: u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g: x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.

11 July 2008

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \mathfrak{K} has amalgamations and $0 \in \mathfrak{K}$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f: u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g: x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.

Let $\kappa=\operatorname{cf} \kappa\geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \mathfrak{K} has amalgamations and $0 \in \mathfrak{K}$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f: u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g: x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \mathfrak{K} has amalgamations and $0 \in \mathfrak{K}$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f: u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g: x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \mathfrak{K} has amalgamations and $0 \in \mathfrak{K}$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f: u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g: x \to u_{\eta}$ satisfying $g \circ f = u_{\varepsilon}^{\eta}$.

Let $\kappa=$ cf $\kappa\geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

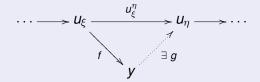
- \mathfrak{K} has amalgamations and $0 \in \mathfrak{K}$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f \colon u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g \colon x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ be a cardinal and let $\mathfrak R$ be a category with at most κ arrows. Assume

- \mathfrak{K} has amalgamations and $0 \in \mathfrak{K}$.
- \Re is κ -continuous.
- \Re has $\leqslant \kappa$ types of arrows.

- length(\vec{u}) = κ ,
- for every $\xi < \kappa$ and for every arrow $f \colon u_{\xi} \to x$ there are $\eta \geqslant \xi$ and an arrow $g \colon x \to u_{\eta}$ satisfying $g \circ f = u_{\xi}^{\eta}$.



- V is the colimit of \vec{x} , and
- for every $y \in \Re$ and for every arrow $f \in \mathfrak{L}(y, V)$ there are $\xi < \operatorname{length}(\vec{x})$ and $f' \in \Re(y, x_{\xi})$ such that $f = x_{\xi}^{\infty} \circ f'$.

- V is the colimit of \vec{x} , and
- for every $y \in \mathfrak{K}$ and for every arrow $f \in \mathfrak{L}(y, V)$ there are $\xi < \operatorname{length}(\vec{x})$ and $f' \in \mathfrak{K}(y, x_{\xi})$ such that $f = x_{\xi}^{\infty} \circ f'$.

- V is the colimit of \vec{x} , and
- for every $y \in \mathfrak{K}$ and for every arrow $f \in \mathfrak{L}(y, V)$ there are $\xi < \operatorname{length}(\vec{x})$ and $f' \in \mathfrak{K}(y, x_{\xi})$ such that $f = x_{\xi}^{\infty} \circ f'$.

- V is the colimit of \vec{x} , and
- for every $y \in \mathfrak{K}$ and for every arrow $f \in \mathfrak{L}(y, V)$ there are $\xi < \operatorname{length}(\vec{x})$ and $f' \in \mathfrak{K}(y, x_{\xi})$ such that $f = x_{\xi}^{\infty} \circ f'$.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ and let \mathfrak{R} be a category with amalgamations and with a Fraïssé sequence \vec{u} of length κ .

- For every sequence \vec{x} in \Re such that length(\vec{x}) $\leqslant \kappa$ and $X = \lim(\vec{x})$ exists in \Re , there is an arrow $F: X \to \mathbb{U}$.
- ⑤ For every $a, b \in \Re$ and for every $f \in \Re(a, b)$, $i \in \pounds(a, \mathbb{U})$, $j \in \pounds(b, \mathbb{U})$ there is an automorphism $H : \mathbb{U} \to \mathbb{U}$ such that the following diagram commutes.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ and let \mathfrak{K} be a category with amalgamations and with a Fraïssé sequence \vec{u} of length κ .

Assume further that $\Re \subseteq \mathfrak{L}$ and \mathbb{U} is the exact colimit of $\vec{\mathsf{u}}$. Then:

- For every sequence \vec{x} in \Re such that length(\vec{x}) $\leqslant \kappa$ and $X = \lim(\vec{x})$ exists in \Re , there is an arrow $F: X \to \mathbb{U}$.
- $ext{ } ext{ } ext$
- ③ For every $a, b \in \Re$ and for every $f \in \Re(a, b)$, $i \in \pounds(a, \mathbb{U})$, $j \in \pounds(b, \mathbb{U})$ there is an automorphism $H : \mathbb{U} \to \mathbb{U}$ such that the following diagram commutes.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ and let \mathfrak{K} be a category with amalgamations and with a Fraïssé sequence \vec{u} of length κ .

- For every sequence \vec{x} in \Re such that length(\vec{x}) $\leqslant \kappa$ and $X = \lim(\vec{x})$ exists in \Re , there is an arrow $F: X \to \mathbb{U}$.
- $ext{ } ext{ } ext$
- ⑤ For every $a, b \in \Re$ and for every $f \in \Re(a, b)$, $i \in \pounds(a, \mathbb{U})$, $j \in \pounds(b, \mathbb{U})$ there is an automorphism $H : \mathbb{U} \to \mathbb{U}$ such that the following diagram commutes.

Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ and let \mathfrak{K} be a category with amalgamations and with a Fraïssé sequence \vec{u} of length κ .

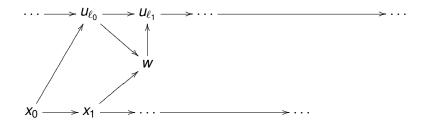
- For every sequence \vec{x} in \Re such that length(\vec{x}) $\leqslant \kappa$ and $X = \lim(\vec{x})$ exists in \Re , there is an arrow $F: X \to \mathbb{U}$.
- ② U is unique up to isomorphism.
- ⓐ For every $a, b \in \Re$ and for every $f \in \Re(a, b)$, $i \in \pounds(a, \mathbb{U})$, $j \in \pounds(b, \mathbb{U})$ there is an automorphism $H : \mathbb{U} \to \mathbb{U}$ such that the following diagram commutes.

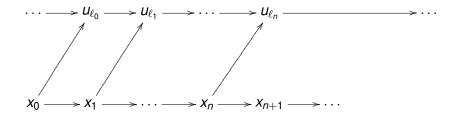
Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ and let $\mathfrak R$ be a category with amalgamations and with a Fraïssé sequence $\vec u$ of length κ .

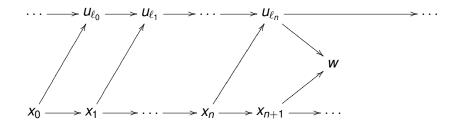
- For every sequence \vec{x} in \mathfrak{R} such that length(\vec{x}) $\leqslant \kappa$ and $X = \lim(\vec{x})$ exists in \mathfrak{L} , there is an arrow $F: X \to \mathbb{U}$.
- $oldsymbol{0}$ \mathbb{U} is unique up to isomorphism.
- ⑤ For every $a, b \in \Re$ and for every $f \in \Re(a, b)$, $i \in \pounds(a, \mathbb{U})$, $j \in \pounds(b, \mathbb{U})$ there is an automorphism $H : \mathbb{U} \to \mathbb{U}$ such that the following diagram commutes.

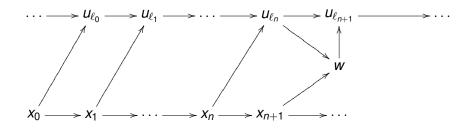
Let $\kappa = \operatorname{cf} \kappa \geqslant \aleph_0$ and let $\mathfrak R$ be a category with amalgamations and with a Fraïssé sequence $\vec u$ of length κ .

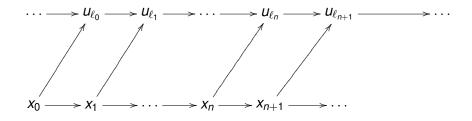
- For every sequence \vec{x} in \Re such that length(\vec{x}) $\leqslant \kappa$ and $X = \lim(\vec{x})$ exists in \Re , there is an arrow $F: X \to \mathbb{U}$.
- $oldsymbol{2}$ $\oldsymbol{\mathbb{U}}$ is unique up to isomorphism.
- ③ For every $a, b \in \Re$ and for every $f \in \Re(a, b)$, $i \in \mathcal{L}(a, \mathbb{U})$, $j \in \mathcal{L}(b, \mathbb{U})$ there is an automorphism $H \colon \mathbb{U} \to \mathbb{U}$ such that the following diagram commutes.

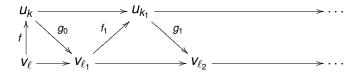


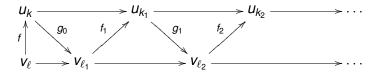


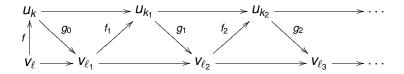


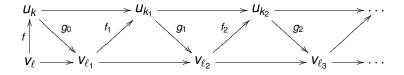












- 1954: Fraïssé (countable model theory)
- 1960: Jónsson (uncountable model theory)
- 1989: Droste & Göbel (category theory)

- 1954: Fraïssé (countable model theory)
- 1960: Jónsson (uncountable model theory)
- 1989: Droste & Göbel (category theory)

- 1954: Fraïssé (countable model theory)
- 1960: Jónsson (uncountable model theory)
- 1989: Droste & Göbel (category theory)

- 1954: Fraïssé (countable model theory)
- 1960: Jónsson (uncountable model theory)
- 1989: Droste & Göbel (category theory)

- Sets with one-to-one maps.
- Boolean algebras with injective homomorphisms
- Nonempty compact spaces with quotient maps.
- Bounded distributive lattices with injective homomorphisms.
- Banach spaces with isometric linear embeddings.

- Sets with one-to-one maps.
- Boolean algebras with injective homomorphisms
- Nonempty compact spaces with quotient maps.
- Bounded distributive lattices with injective homomorphisms.
- Banach spaces with isometric linear embeddings.

- Sets with one-to-one maps.
- Boolean algebras with injective homomorphisms.
- Nonempty compact spaces with quotient maps.
- Bounded distributive lattices with injective homomorphisms.
- Banach spaces with isometric linear embeddings.

- Sets with one-to-one maps.
- Boolean algebras with injective homomorphisms.
- Nonempty compact spaces with quotient maps.
- Bounded distributive lattices with injective homomorphisms.
- Banach spaces with isometric linear embeddings.

- Sets with one-to-one maps.
- Boolean algebras with injective homomorphisms.
- Nonempty compact spaces with quotient maps.
- Bounded distributive lattices with injective homomorphisms.
- Banach spaces with isometric linear embeddings.

- Sets with one-to-one maps.
- Boolean algebras with injective homomorphisms.
- Nonempty compact spaces with quotient maps.
- Bounded distributive lattices with injective homomorphisms.
- Banach spaces with isometric linear embeddings.

Let \mathfrak{Lat} be the category of all countable bounded distributive lattices with injective homomorphisms.

Lemma

£at has the amalgamation property.

Theorem

Assume CH. There exists a unique bounded distributive lattice \mathbb{L} such that $|\mathbb{L}| = \aleph_1$, every distributive lattice of cardinality $\leqslant \aleph_1$ is embeddable into \mathbb{L} and every partial isomorphism between countable sublattices of \mathbb{L} extends to an automorphism of \mathbb{L} .

Let £at be the category of all countable bounded distributive lattices with injective homomorphisms.

Lemma

Lat has the amalgamation property.

Theorem

Assume CH. There exists a unique bounded distributive lattice \mathbb{L} such that $|\mathbb{L}| = \aleph_1$, every distributive lattice of cardinality $\leqslant \aleph_1$ is embeddable into \mathbb{L} and every partial isomorphism between countable sublattices of \mathbb{L} extends to an automorphism of \mathbb{L} .

Let \mathfrak{Lat} be the category of all countable bounded distributive lattices with injective homomorphisms.

Lemma

Lat has the amalgamation property.

Theorem

Assume CH. There exists a unique bounded distributive lattice $\mathbb L$ such that $|\mathbb L|=\aleph_1$, every distributive lattice of cardinality $\leqslant \aleph_1$ is embeddable into $\mathbb L$ and every partial isomorphism between countable sublattices of $\mathbb L$ extends to an automorphism of $\mathbb L$.

 $Ult\colon \mathfrak{Lat} \to \mathfrak{Comp}$

Theorem

 $\mathbb{L} = \mathcal{P}(\omega)/_{\mathsf{fin}}$ and $\mathsf{Ult}(\mathbb{L}) = \beta\omega\setminus\omega$

Theorem

Let $\omega^* = \beta \omega \setminus \omega$

- (Parovičenko) Every nonempty compact space of weight $\leqslant \aleph_1$ is a quotient of ω^* .
- ② (Błaszczyk & Szymański) For every quotient maps $q: \omega^* \to X$, $f: Y \to X$ with Y compact metric, there exists a quotient map $g: \omega^* \to Y$ such that $q = f \circ g$.

 $Ult\colon \mathfrak{Lat} \to \mathfrak{Comp}$

Theorem

 $\mathbb{L} = \mathcal{P}(\omega)/_{\mathsf{fin}}$ and $\mathsf{Ult}(\mathbb{L}) = \beta\omega \setminus \omega$.

Theorem

Let $\omega^* = \beta \omega \setminus \omega$

- (Parovičenko) Every nonempty compact space of weight $\leqslant \aleph_1$ is a quotient of ω^* .
- ② (Błaszczyk & Szymański) For every quotient maps $q: \omega^* \to X$, $f: Y \to X$ with Y compact metric, there exists a quotient map $g: \omega^* \to Y$ such that $q = f \circ g$.

 $Ult\colon \mathfrak{Lat} \to \mathfrak{Comp}$

Theorem

 $\mathbb{L} = \mathcal{P}(\omega)/_{\mathsf{fin}}$ and $\mathsf{Ult}(\mathbb{L}) = \beta\omega \setminus \omega$.

Theorem

Let $\omega^* = \beta \omega \setminus \omega$.

- (Parovičenko) Every nonempty compact space of weight $\leqslant \aleph_1$ is a quotient of ω^* .
- ② (Błaszczyk & Szymański) For every quotient maps $q: \omega^* \to X$, $f: Y \to X$ with Y compact metric, there exists a quotient map $g: \omega^* \to Y$ such that $q = f \circ g$.

 $Ult\colon \mathfrak{Lat} \to \mathfrak{Comp}$

Theorem

 $\mathbb{L} = \mathcal{P}(\omega)/_{\mathsf{fin}}$ and $\mathsf{Ult}(\mathbb{L}) = \beta\omega \setminus \omega$.

Theorem

Let $\omega^* = \beta \omega \setminus \omega$.

- (Parovičenko) Every nonempty compact space of weight $\leqslant \aleph_1$ is a quotient of ω^* .
- ② (Błaszczyk & Szymański) For every quotient maps $q: \omega^* \to X$, $f: Y \to X$ with Y compact metric, there exists a quotient map $g: \omega^* \to Y$ such that $q = f \circ g$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. There exists a Banach space $\mathbb U$ with the following properties.

- dens(\mathbb{U}) = \aleph_1 .
- Given two linear isometric embeddings i: X → U and f: X → Y, where X, Y are separable Banach spaces, there exists a linear isometric embedding g: Y → U such that i = g ∘ f.

Moreover, the above properties determine the space \mathbb{U} uniquely up to a linear isometry. Further:

- Every Banach space of density $\leqslant \aleph_1$ embeds isometrically into \mathbb{U} .
- Every linear isometry between separable subspaces of $\mathbb U$ extends to a linear isometry of $\mathbb U$.

Find a "concrete" Banach space U of density continuum such that

$$ZFC \wedge CH \vdash U = \mathbb{U}$$
.

Remark

$$\mathbb{U}\neq\ell_{\infty}/c_{0}$$
.

Remark

The "continuous functions" functor is not so good as Ult. Namely: not all linear isometries of Banach spaces come from homeomorphisms of compact spaces.

Find a "concrete" Banach space U of density continuum such that

$$ZFC \wedge CH \vdash U = \mathbb{U}$$
.

Remark

$$\mathbb{U} \neq \ell_{\infty}/c_0$$
.

Remark

The "continuous functions" functor is not so good as Ult. Namely: not all linear isometries of Banach spaces come from homeomorphisms of compact spaces.

Find a "concrete" Banach space U of density continuum such that

$$ZFC \wedge CH \vdash U = \mathbb{U}$$
.

Remark

$$\mathbb{U} \neq \ell_{\infty}/c_0$$
.

Remark

The "continuous functions" functor is not so good as Ult.

Namely: not all linear isometries of Banach spaces come from homeomorphisms of compact spaces.

Find a "concrete" Banach space U of density continuum such that

$$ZFC \wedge CH \vdash U = \mathbb{U}$$
.

Remark

$$\mathbb{U}\neq\ell_{\infty}/c_{0}$$
.

Remark

The "continuous functions" functor is not so good as Ult. Namely: not all linear isometries of Banach spaces come from homeomorphisms of compact spaces.

**

THE END

