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Main result

There exists a Banach space U with the following
properties.

@ dens(U) = Ny.
@ Given two linear isometric embeddingsi: X — U andf: X — Y,

where X, Y are separable Banach spaces, there exists a linear
isometric embedding g: Y — U such thati = go f.

Moreover, the above properties determine the space U uniquely up to
a linear isometry. Further:

@ Every Banach space of density < Xy embeds isometrically into U.

@ Every linear isometry between separable subspaces of U extends
to a linear isometry of U.
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@ A category R has the amalgamation property if for every arrows
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with ffof=g' og.
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@ A sequence in R is a covariant functor from an ordinal into K.

2
X:
Xo 0 X1 ! Xo

@ Ris k-continuous if sequences of length < « have colimits in {.
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exact colimit of X if
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Let & C £ and let X be a sequence in &, V € £. We say that V is the
exact colimit of X if

@ V is the colimit of X, and

@ for every y € 8 and for every arrow f € £(y, V) there are
¢ <length(X) and ' € A(y, x¢) such that f = xg° o f'.
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Let & C £ and let X be a sequence in &, V € £. We say that V is the
exact colimit of X if

@ Vis the colimit of X, and
@ for every y € 8 and for every arrow f € £(y, V) there are
¢ <length(X) and ' € A(y, x¢) such that f = xg° o f'.
A sequence satisfying the assertion of the previous theorem will be
called Fraisseé.
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Letk = cfk = Ny and let & be a category with amalgamations and with
a Fraissé sequence u of length k.
Assume further that & C £ and U is the exact colimit of u. Then:

@ For every sequence X in & such thatlength(X) < x and X = lim(X)
exists in £, there is an arrow F: X — U.

@ U is unique up to isomorphism.

© Foreverya,be & andforevery f € R(a,b),ic £(a ),
j € £(b,U) there is an automorphism H: U — U such that the
following diagram commutes.
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Some history

@ 1954: Fraissé (countable model theory)
@ 1960: Jénsson (uncountable model theory)
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Some history

@ 1954: Fraissé (countable model theory)
@ 1960: Jénsson (uncountable model theory)
@ 1989: Droste & Gobel (category theory)
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Some natural categories

@ Sets with one-to-one maps.

@ Boolean algebras with injective homomorphisms.

@ Nonempty compact spaces with quotient maps.

@ Bounded distributive lattices with injective homomorphisms.
@ Banach spaces with isometric linear embeddings.
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Let Lat be the category of all countable bounded distributive lattices
with injective homomorphisms.
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Let £at be the category of all countable bounded distributive lattices
with injective homomorphisms.

Lemma
Lat has the amalgamation property.

Theorem

Assume CH. There exists a unique bounded distributive lattice 1. such
that |L| = Ry, every distributive lattice of cardinality < Ny is
embeddable into 1. and every partial isomorphism between countable
Sublattices of . extends to an automorphism of L.
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Let R be the category of all nonempty compact metric spaces with
quotient maps. We have a natural contravariant functor

Ult: Lat — Comp
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quotient maps. We have a natural contravariant functor
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Theorem
L = P(w)/fin @and U(L) = fw \ w.

Theorem
Letw* = fw \ w.
@ (Parovicenko) Every nonempty compact space of weight < R is a
quotient of w*.
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quotient maps. We have a natural contravariant functor

Ult: Lat — Comp

Theorem
L = P(w)/fin @and U(L) = fw \ w.

Theorem
Letw* = fw \ w.
@ (Parovicenko) Every nonempty compact space of weight < R is a
quotient of w*.

© (Btaszczyk & Szymarniski) For every quotient maps q: w* — X,
f: Y — X with Y compact metric, there exists a quotient map
g:w* — Ysuchthatqg=fog.
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Problem
Find a “concrete” Banach space U of density continuum such that

ZFCNCHEU=TU.
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Problem
Find a “concrete” Banach space U of density continuum such that

ZFCNCHEU=TU.

Remark
U # 4o/ cy-

Remark

The “continuous functions” functor is not so good as Ult.
Namely: not all linear isometries of Banach spaces come from
homeomorphisms of compact spaces.
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