Banach spaces and compact lines

Wiesław Kubiś

Czech Academy of Sciences, Prague and Jan Kochanowski University in Kielce

http://www.math.cas.cz/~kubis/

Spring Conference on Banach spaces Paseky nad Jizerou, 13 – 19 April 2008

A compact line is a compact space whose topology is induced by a linear order.

Banach spaces and compact lines

Banach spaces and compact lines

Wiesław Kubiś

Czech Academy of Sciences, Prague and Jan Kochanowski University in Kielce

http://www.math.cas.cz/~kubis/

Spring Conference on Banach spaces Paseky nad Jizerou, 13 – 19 April 2008

A compact line is a compact space whose topology is induced by a linear order.

Selected results

Theorem (Nakhmanson 1988)

Assume K is a compact line and $C_p(K)$ is Lindelöf. Then K is metrizable.

Theorem (Haydon, Jayne, Namioka, Rogers 2000)

For every compact line K, the space C (K) has a Kadec renorming.

▲ □ ▶ ▲ □ ▶

Selected results

Theorem (Nakhmanson 1988)

Assume K is a compact line and $C_p(K)$ is Lindelöf. Then K is metrizable.

Theorem (Haydon, Jayne, Namioka, Rogers 2000)

For every compact line K, the space C(K) has a Kadec renorming.

< 回 > < 回 > < 回 >

Theorem (Nakhmanson 1988)

Assume K is a compact line and $C_p(K)$ is Lindelöf. Then K is metrizable.

Theorem (Haydon, Jayne, Namioka, Rogers 2000)

For every compact line K, the space C(K) has a Kadec renorming.

Let *X*, *Y* be linearly ordered sets. A function $f: X \to Y$ is increasing if $x \leq y \implies f(x) \leq f(y)$ for every $x, y \in X$.

Claim

For every compact line K, increasing functions form a linearly dense subset of C(K).

Claim

Given a nontrivial interval [a, b] in a compact line K, there is an increasing continuous function $f \colon K \to \mathbb{R}$ such that f(a) = 0 and f(b) = 1.

< 回 > < 回 > < 回 >

Let X, Y be linearly ordered sets. A function $f: X \to Y$ is increasing if $x \leq y \implies f(x) \leq f(y)$ for every $x, y \in X$.

Claim

For every compact line K, increasing functions form a linearly dense subset of C(K).

Claim

Given a nontrivial interval [a, b] in a compact line K, there is an increasing continuous function $f \colon K \to \mathbb{R}$ such that f(a) = 0 and f(b) = 1.

Let *X*, *Y* be linearly ordered sets. A function $f: X \to Y$ is increasing if $x \leq y \implies f(x) \leq f(y)$ for every $x, y \in X$.

Claim

For every compact line K, increasing functions form a linearly dense subset of C(K).

Claim

Given a nontrivial interval [a, b] in a compact line K, there is an increasing continuous function $f : K \to \mathbb{R}$ such that f(a) = 0 and f(b) = 1.

Let X, Y be linearly ordered sets. A function $f: X \to Y$ is increasing if $x \leq y \implies f(x) \leq f(y)$ for every $x, y \in X$.

Claim

For every compact line K, increasing functions form a linearly dense subset of C(K).

Claim

Given a nontrivial interval [a, b] in a compact line K, there is an increasing continuous function $f: K \to \mathbb{R}$ such that f(a) = 0 and f(b) = 1.

Lemma

Let *K* be a compact line and let $f \in C(K)$. Then there exists a closed separable subspace $X \subseteq K$ such that *f* is constant on every interval whose interior is disjoint from *X*.

Lemma

Let *K* be a compact line, let $X \subseteq K$ be closed. Then there exists a regular extension operator $T : C(X) \rightarrow C(K)$.

Theorem

Assume K is a compact line in which all separable subsets are metrizable. Then C(K) has the separable complementation property.

Lemma

Let *K* be a compact line and let $f \in C(K)$. Then there exists a closed separable subspace $X \subseteq K$ such that *f* is constant on every interval whose interior is disjoint from *X*.

Lemma

Let *K* be a compact line, let $X \subseteq K$ be closed. Then there exists a regular extension operator $T : C(X) \rightarrow C(K)$.

Theorem

Assume K is a compact line in which all separable subsets are metrizable. Then C(K) has the separable complementation property.

Lemma

Let *K* be a compact line and let $f \in C(K)$. Then there exists a closed separable subspace $X \subseteq K$ such that *f* is constant on every interval whose interior is disjoint from *X*.

Lemma

Let *K* be a compact line, let $X \subseteq K$ be closed. Then there exists a regular extension operator $T : C(X) \rightarrow C(K)$.

Theorem

Assume K is a compact line in which all separable subsets are metrizable. Then C(K) has the separable complementation property.

Let K be a double arrow line, i.e. $K = \mathbb{K}(A)$, where $A \subseteq \mathbb{R}$ is uncountable. Then C(K) fails the SCP.

Given a linearly ordered set X, define

$$\mathbb{K}(X) = \Big\{ p \in \{0,1\}^X \colon p \text{ is increasing} \Big\}.$$

Given a compact 0-dimensional line K, define

 $\mathbb{X}(K) = \Big\{ p \in \mathcal{C}(K, \{0, 1\}) : p \text{ is increasing, } p(0_K) = 0, \ p(1_K) = 1 \Big\}.$

Claim

After suitable identifications, $\mathbb{X}(\mathbb{K}(X)) = X$ and $\mathbb{K}(\mathbb{K}(K)) = K$.

Let *K* be a double arrow line, i.e. $K = \mathbb{K}(A)$, where $A \subseteq \mathbb{R}$ is uncountable. Then C(K) fails the SCP.

Given a linearly ordered set X, define

$$\mathbb{K}(X) = \Big\{ p \in \{0,1\}^X \colon p \text{ is increasing} \Big\}.$$

Given a compact 0-dimensional line K, define

 $\mathbb{X}(K) = \Big\{ p \in \mathcal{C}(K, \{0, 1\}) : p \text{ is increasing, } p(0_K) = 0, \ p(1_K) = 1 \Big\}.$

Claim

After suitable identifications, $\mathbb{X}(\mathbb{K}(X)) = X$ and $\mathbb{K}(\mathbb{X}(K)) = K$.

Let *K* be a double arrow line, i.e. $K = \mathbb{K}(A)$, where $A \subseteq \mathbb{R}$ is uncountable. Then C(K) fails the SCP.

Given a linearly ordered set X, define

$$\mathbb{K}(X) = \Big\{ p \in \{0,1\}^X \colon p \text{ is increasing} \Big\}.$$

Given a compact 0-dimensional line K, define

 $\mathbb{X}(K) = \left\{ p \in \mathcal{C}(K, \{0, 1\}) : p \text{ is increasing, } p(0_K) = 0, \ p(1_K) = 1 \right\}.$

Claim

After suitable identifications, $\mathbb{X}(\mathbb{K}(X)) = X$ and $\mathbb{K}(\mathbb{X}(K)) = K$.

- 4 回 ト 4 回 ト

Let *K* be a double arrow line, i.e. $K = \mathbb{K}(A)$, where $A \subseteq \mathbb{R}$ is uncountable. Then C(K) fails the SCP.

Given a linearly ordered set X, define

$$\mathbb{K}(X) = \Big\{ p \in \{0,1\}^X \colon p \text{ is increasing} \Big\}.$$

Given a compact 0-dimensional line K, define

$$\mathbb{X}\left(\mathcal{K}\right) = \Big\{ p \in \mathcal{C}\left(\mathcal{K}, \{0, 1\}\right) : p \text{ is increasing, } p(0_{\mathcal{K}}) = 0, \ p(1_{\mathcal{K}}) = 1 \Big\}.$$

Claim

After suitable identifications, $\mathbb{X}(\mathbb{K}(X)) = X$ and $\mathbb{K}(\mathbb{X}(K)) = K$.

Let *K* be a double arrow line, i.e. $K = \mathbb{K}(A)$, where $A \subseteq \mathbb{R}$ is uncountable. Then C(K) fails the SCP.

Given a linearly ordered set X, define

$$\mathbb{K}(X) = \Big\{ p \in \{0,1\}^X \colon p \text{ is increasing} \Big\}.$$

Given a compact 0-dimensional line K, define

$$\mathbb{X}\left(\mathcal{K}\right) = \Big\{ p \in \mathcal{C}\left(\mathcal{K}, \{0,1\}\right) : p \text{ is increasing, } p(0_{\mathcal{K}}) = 0, \ p(1_{\mathcal{K}}) = 1 \Big\}.$$

Claim

After suitable identifications, $\mathbb{X}(\mathbb{K}(X)) = X$ and $\mathbb{K}(\mathbb{X}(K)) = K$.

▲ □ ▶ ▲ □ ▶

A Markushevich basis in a Banach space X is a bi-orthogonal system $\mathfrak{m} = \{\langle x_{\alpha}, y_{\alpha} \rangle\}_{\alpha \in \kappa}$ such that

- $\{x_{\alpha}: \alpha \in \kappa\}$ is linearly dense in X,
- { y_{α} : $\alpha \in \kappa$ } is total.
- m is countably norming if the space

$$\{y \in X^* \colon |\{\alpha \colon y(x_\alpha) \neq 0\}| \leqslant \aleph_0\}$$

is norming.

A Banach space with a countably norming Markushevich basis is called a Plichko space.

A D A D A D A

A Markushevich basis in a Banach space X is a bi-orthogonal system $\mathfrak{m} = \{\langle x_{\alpha}, y_{\alpha} \rangle\}_{\alpha \in \kappa}$ such that

- $\{x_{\alpha} : \alpha \in \kappa\}$ is linearly dense in X,
- { y_{α} : $\alpha \in \kappa$ } is total.
- m is countably norming if the space

$$\{y \in X^* \colon |\{\alpha \colon y(x_\alpha) \neq \mathbf{0}\}| \leqslant \aleph_0\}$$

is norming.

A Banach space with a countably norming Markushevich basis is called a Plichko space.

A D A D A D A

A Markushevich basis in a Banach space X is a bi-orthogonal system $\mathfrak{m} = \{\langle x_{\alpha}, y_{\alpha} \rangle\}_{\alpha \in \kappa}$ such that

- $\{x_{\alpha} : \alpha \in \kappa\}$ is linearly dense in X,
- $\{y_{\alpha} : \alpha \in \kappa\}$ is total.
- m is countably norming if the space

$$\{\boldsymbol{y} \in \boldsymbol{X}^* \colon |\{\alpha \colon \boldsymbol{y}(\boldsymbol{x}_\alpha) \neq \boldsymbol{0}\}| \leqslant \aleph_{\boldsymbol{0}}\}$$

is norming.

A Banach space with a countably norming Markushevich basis is called a Plichko space.

4 E 5

A Markushevich basis in a Banach space X is a bi-orthogonal system $\mathfrak{m} = \{\langle x_{\alpha}, y_{\alpha} \rangle\}_{\alpha \in \kappa}$ such that

- $\{x_{\alpha} : \alpha \in \kappa\}$ is linearly dense in X,
- $\{y_{\alpha} : \alpha \in \kappa\}$ is total.
- m is countably norming if the space

$$\{\mathbf{y} \in \mathbf{X}^* \colon |\{\alpha \colon \mathbf{y}(\mathbf{x}_{\alpha}) \neq \mathbf{0}\}| \leq \aleph_{\mathbf{0}}\}$$

is norming.

A Banach space with a countably norming Markushevich basis is called a Plichko space.

• WCG \implies WLD \implies Plichko \implies SCP.

• If *K* is a compact line and C(K) is WLD then $w(K) \leq \aleph_0$.

Theorem (Kalenda 2002)

 $C(\omega_2 + 1)$ is not a Plichko space.

Remark

 $C(\omega_1 + 1)$ is Plichko.

Conjecture

 $C(\omega_2 + 1)$ is not embeddable into any Plichko space.

$\bullet \ \mathsf{WCG} \implies \mathsf{WLD} \implies \mathsf{Plichko} \implies \mathsf{SCP}.$

• If *K* is a compact line and C(K) is WLD then $w(K) \leq \aleph_0$.

Theorem (Kalenda 2002)

 $C(\omega_2 + 1)$ is not a Plichko space.

Remark

 $C(\omega_1 + 1)$ is Plichko.

Conjecture

 $C(\omega_2 + 1)$ is not embeddable into any Plichko space.

(人間) トイヨト イヨト 三日

- WCG \implies WLD \implies Plichko \implies SCP.
- If *K* is a compact line and C(K) is WLD then $w(K) \leq \aleph_0$.

Theorem (Kalenda 2002)

 $C(\omega_2 + 1)$ is not a Plichko space.

Remark

 $C(\omega_1 + 1)$ is Plichko.

Conjecture

 $C(\omega_2 + 1)$ is not embeddable into any Plichko space.

- 4 周 ト 4 日 ト 4 日 ト - 日

- WCG \implies WLD \implies Plichko \implies SCP.
- If *K* is a compact line and C(K) is WLD then $w(K) \leq \aleph_0$.

Theorem (Kalenda 2002)

 $C(\omega_2 + 1)$ is not a Plichko space.

Remark

 $\mathcal{C}(\omega_1 + 1)$ is Plichko.

Conjecture

 $C(\omega_2 + 1)$ is not embeddable into any Plichko space.

イロン イロン イヨン イヨン 二年

- WCG \implies WLD \implies Plichko \implies SCP.
- If *K* is a compact line and C(K) is WLD then $w(K) \leq \aleph_0$.

Theorem (Kalenda 2002)

 $C(\omega_2 + 1)$ is not a Plichko space.

Remark

 $\mathcal{C}(\omega_1 + 1)$ is Plichko.

Conjecture

 $\mathcal{C}(\omega_2 + 1)$ is not embeddable into any Plichko space.

A (10) A (10) A (10) A

Theorem (O. Kalenda & W.K.)

Assume K is a first countable compact line. If C(K) embeds into a Plichko space then K is metrizable.

Theorem

Assume K is a compact line of character $\leq \aleph_1$. If C(K) embeds into a Plichko space then $w(K) \leq \aleph_1$.

< 回 > < 三 > < 三 >

Theorem (O. Kalenda & W.K.)

Assume K is a first countable compact line. If C(K) embeds into a Plichko space then K is metrizable.

Theorem

Assume K is a compact line of character $\leq \aleph_1$. If C(K) embeds into a Plichko space then $w(K) \leq \aleph_1$.

- A generalized PRI in a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha<\kappa}$ satisfying
 - $X = \operatorname{cl}\left(\bigcup_{\alpha < \kappa} P_{\alpha}X\right)$,
 - $P_{\xi} \circ P_{\eta} = P_{\eta} \circ P_{\xi} = P_{\min\{\xi,\eta\}}$ for every $\xi, \eta < \kappa$,
 - $P_{\delta}X = \operatorname{cl}\left(\bigcup_{\xi < \delta} P_{\xi}X\right)$ for every limit ordinal $\delta < \kappa$,
 - dens($P\alpha X$) < $|\alpha| + \aleph_0$ for every $\alpha < \kappa$.

- A generalized PRI in a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha<\kappa}$ satisfying
 - $X = \operatorname{cl} \left(\bigcup_{\alpha < \kappa} P_{\alpha} X \right),$
 - $P_{\xi} \circ P_{\eta} = P_{\eta} \circ P_{\xi} = P_{\min\{\xi,\eta\}}$ for every $\xi, \eta < \kappa$,
 - $P_{\delta}X = \operatorname{cl}\left(\bigcup_{\xi < \delta} P_{\xi}X\right)$ for every limit ordinal $\delta < \kappa$,
 - dens($P\alpha X$) < $|\alpha| + \aleph_0$ for every $\alpha < \kappa$.

4 E 5

A generalized PRI in a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha<\kappa}$ satisfying

•
$$X = \operatorname{cl} \left(\bigcup_{\alpha < \kappa} P_{\alpha} X \right),$$

- $P_{\xi} \circ P_{\eta} = P_{\eta} \circ P_{\xi} = P_{\min\{\xi,\eta\}}$ for every $\xi, \eta < \kappa$,
- $P_{\delta}X = \operatorname{cl}\left(\bigcup_{\xi < \delta} P_{\xi}X\right)$ for every limit ordinal $\delta < \kappa$,
- dens($P\alpha X$) < $|\alpha| + \aleph_0$ for every $\alpha < \kappa$.

A generalized PRI in a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha<\kappa}$ satisfying

•
$$X = \operatorname{cl} \left(\bigcup_{\alpha < \kappa} P_{\alpha} X \right),$$

•
$$P_{\xi} \circ P_{\eta} = P_{\eta} \circ P_{\xi} = P_{\min\{\xi,\eta\}}$$
 for every $\xi, \eta < \kappa$,

- $P_{\delta}X = \operatorname{cl}\left(\bigcup_{\xi < \delta} P_{\xi}X\right)$ for every limit ordinal $\delta < \kappa$,
- dens($P\alpha X$) < $|\alpha| + \aleph_0$ for every $\alpha < \kappa$.

- A generalized PRI in a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha<\kappa}$ satisfying
 - $X = \operatorname{cl} \left(\bigcup_{\alpha < \kappa} P_{\alpha} X \right),$
 - $P_{\xi} \circ P_{\eta} = P_{\eta} \circ P_{\xi} = P_{\min\{\xi,\eta\}}$ for every $\xi, \eta < \kappa$,
 - $P_{\delta}X = \operatorname{cl}\left(\bigcup_{\xi < \delta} P_{\xi}X\right)$ for every limit ordinal $\delta < \kappa$,
 - dens($P\alpha X$) < $|\alpha| + \aleph_0$ for every $\alpha < \kappa$.

A T >>

- A generalized PRI in a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha<\kappa}$ satisfying
 - $X = \operatorname{cl} \left(\bigcup_{\alpha < \kappa} P_{\alpha} X \right),$
 - $P_{\xi} \circ P_{\eta} = P_{\eta} \circ P_{\xi} = P_{\min\{\xi,\eta\}}$ for every $\xi, \eta < \kappa$,
 - $P_{\delta}X = \operatorname{cl}\left(\bigcup_{\xi < \delta} P_{\xi}X\right)$ for every limit ordinal $\delta < \kappa$,
 - dens($P\alpha X$) < $|\alpha| + \aleph_0$ for every $\alpha < \kappa$.

A characterization of Plichko spaces

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- Solution $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a continuous chain of separable subspaces such that, after some renorming,
 - ▶ for each α , the space X_{α} is 1-complemented in $X_{\alpha+1}$.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

A characterization of Plichko spaces

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- X = U_{α<ω1} X_α, where {X_α}_{α<ω1} is a continuous chain of separable subspaces such that, after some renorming, for each α, the space X_α is 1-complemented in X_{α+1}.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

A (10) × (10)

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- X = U_{α<ω1} X_α, where {X_α}_{α<ω1} is a continuous chain of separable subspaces such that, after some renorming,
 for each α, the space X_α is 1-complemented in X_{α+1}.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a continuous chain of separable subspaces such that, after some renorming,

for each α , the space X_{α} is 1-complemented in $X_{\alpha+1}$.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- 3 $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a continuous chain of separable subspaces such that, after some renorming,
 - for each α , the space X_{α} is 1-complemented in $X_{\alpha+1}$.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a continuous chain of separable subspaces such that, after some renorming,

for each α , the space X_{α} is 1-complemented in $X_{\alpha+1}$.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

< 回 > < 回 > < 回 > -

Theorem

Let X be a Banach space of density \aleph_1 . TFAE:

- X has a countably norming Markushevich basis.
- 2 X has a generalized PRI.
- $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a continuous chain of separable subspaces such that, after some renorming,

for each α , the space X_{α} is 1-complemented in $X_{\alpha+1}$.

Proposition

A Banach space of density \aleph_1 has the SCP iff $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$, where $\{X_{\alpha}\}_{\alpha < \omega_1}$ is a chain of complemented separable subspaces.

< 回 > < 回 > < 回 > -

There exist a compact line K and an increasing quotient $f\colon K\to L$ such that

- ① C(K) is a Plichko space.
- 2 C(L) is not a Plichko space.
- \bigcirc C (L) has the SCP.
 - $K = \mathbb{K}(Q)$, where

 $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$

• *L* is the "connectification" of *K*.

There exist a compact line K and an increasing quotient $f \colon K \to L$ such that

- $\mathcal{C}(K)$ is a Plichko space.
- 2 C(L) is not a Plichko space.
- C (L) has the SCP.

• $K = \mathbb{K}(Q)$, where

 $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$

• *L* is the "connectification" of *K*.

There exist a compact line K and an increasing quotient $f: K \to L$ such that

- $\mathcal{C}(K)$ is a Plichko space.
- **2** C(L) is not a Plichko space.
- \bigcirc C (L) has the SCP.

• $K = \mathbb{K}(Q)$, where

 $Q = \{x \in \mathbb{Q}^{\omega_1} : \operatorname{suppt}(x) \text{ is finite } \}.$

• *L* is the "connectification" of *K*.

There exist a compact line K and an increasing quotient $f\colon K\to L$ such that

- $\mathcal{C}(K)$ is a Plichko space.
- **2** C(L) is not a Plichko space.
- C (L) has the SCP.

• $K = \mathbb{K}(Q)$, where

 $Q = \{x \in \mathbb{Q}^{\omega_1} : \operatorname{suppt}(x) \text{ is finite } \}.$

• *L* is the "connectification" of *K*.

There exist a compact line K and an increasing quotient $f \colon K \to L$ such that

- $\mathcal{C}(K)$ is a Plichko space.
- **2** C(L) is not a Plichko space.
- C (L) has the SCP.

• $K = \mathbb{K}(Q)$, where

 $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$

• *L* is the "connectification" of *K*.

4 E 5

There exist a compact line K and an increasing quotient $f\colon K\to L$ such that

- $\mathcal{C}(K)$ is a Plichko space.
- **2** C(L) is not a Plichko space.
- C (L) has the SCP.

• $K = \mathbb{K}(Q)$, where

 $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$

• L is the "connectification" of K.

4 E 5

 $K = \operatorname{cl}(K \cap \Sigma(\kappa)).$

Proposition

- If K is a Valdivia compact then C(K) is a Plichko space.
- If X is a Plichko space then \overline{B}_{X^*} is Valdivia compact.

Theorem (W.K. 2005)

Valdivia compact lines have weight $\leq \aleph_1$.

Theorem (W.K. 2005)

The class of nonempty Valdivia compact lines has a universal order pre-image.

A (10) A (10) A (10)

$$K = \mathsf{cl}(K \cap \Sigma(\kappa)).$$

Proposition

- If K is a Valdivia compact then C(K) is a Plichko space.
- If X is a Plichko space then \overline{B}_{X^*} is Valdivia compact.

Theorem (W.K. 2005)

Valdivia compact lines have weight $\leq \aleph_1$.

Theorem (W.K. 2005)

The class of nonempty Valdivia compact lines has a universal order pre-image.

A (10) A (10)

17 April 2008

$$K = \mathsf{cl}(K \cap \Sigma(\kappa)).$$

Proposition

- If K is a Valdivia compact then C(K) is a Plichko space.
- If X is a Plichko space then \overline{B}_{X^*} is Valdivia compact.

Theorem (W.K. 2005)

Valdivia compact lines have weight $\leq \aleph_1$.

Theorem (W.K. 2005)

The class of nonempty Valdivia compact lines has a universal order pre-image.

A (10) A (10)

$$K = \mathsf{cl}(K \cap \Sigma(\kappa)).$$

Proposition

- If K is a Valdivia compact then C(K) is a Plichko space.
- If X is a Plichko space then \overline{B}_{X^*} is Valdivia compact.

Theorem (W.K. 2005)

Valdivia compact lines have weight $\leq \aleph_1$.

Theorem (W.K. 2005)

The class of nonempty Valdivia compact lines has a universal order pre-image.

Let X be a linearly ordered set. Then $\mathbb{K}(X)$ is Valdivia compact iff (1) $|X| \leq \aleph_1$.

- (2) Every bounded monotone ω_1 -sequence is convergent in *X*.
- (3) For every f: S → X defined on a stationary set S ⊆ ω₁ there exists a stationary set T ⊆ S such that f ↾ T is monotone.

Let X be a linearly ordered set. Then $\mathbb{K}(X)$ is Valdivia compact iff

(1) $|X| \leq \aleph_1$.

- (2) Every bounded monotone ω_1 -sequence is convergent in X.
- (3) For every f: S → X defined on a stationary set S ⊆ ω₁ there exists a stationary set T ⊆ S such that f ↾ T is monotone.

Let X be a linearly ordered set. Then $\mathbb{K}(X)$ is Valdivia compact iff (1) $|X| \leq \aleph_1$.

(2) Every bounded monotone ω_1 -sequence is convergent in X.

(3) For every f: S → X defined on a stationary set S ⊆ ω₁ there exists a stationary set T ⊆ S such that f ↾ T is monotone.

Let X be a linearly ordered set. Then $\mathbb{K}(X)$ is Valdivia compact iff (1) $|X| \leq \aleph_1$.

- (2) Every bounded monotone ω_1 -sequence is convergent in X.
- (3) For every f: S → X defined on a stationary set S ⊆ ω₁ there exists a stationary set T ⊆ S such that f ↾ T is monotone.

A (10) A (10)

Let X be a linearly ordered set. Then $\mathbb{K}(X)$ is Valdivia compact iff (1) $|X| \leq \aleph_1$.

- (2) Every bounded monotone ω_1 -sequence is convergent in X.
- (3) For every f: S → X defined on a stationary set S ⊆ ω₁ there exists a stationary set T ⊆ S such that f ↾ T is monotone.

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function $f: \omega_1 \to X_S$ there exists an uncountable $T \subseteq \omega_1$ such that $f \upharpoonright T$ is monotone.

Question

Is $\mathcal{C}(\mathbb{K}(X_S))$ a Plichko space?

• Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$

- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

Claim

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function *f* : $ω_1 → X_S$ there exists an uncountable *T* ⊆ $ω_1$ such that *f* ↾ *T* is monotone.

Question

Is $\mathcal{C}(\mathbb{K}(X_S))$ a Plichko space?

A (10) × A (10) × A (10) ×

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function *f* : $ω_1 → X_S$ there exists an uncountable *T* ⊆ $ω_1$ such that *f* ↾ *T* is monotone.

Question

Is $\mathcal{C}(\mathbb{K}(X_S))$ a Plichko space?

A (10) A (10) A (10) A

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function *f* : $ω_1 → X_S$ there exists an uncountable *T* ⊆ $ω_1$ such that *f* ↾ *T* is monotone.

Question

Is $\mathcal{C}(\mathbb{K}(X_S))$ a Plichko space?

A (10) A (10) A (10) A

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function *f* : $ω_1 → X_S$ there exists an uncountable *T* ⊆ $ω_1$ such that *f* ↾ *T* is monotone.

Question

Is $\mathcal{C}(\mathbb{K}(X_S))$ a Plichko space?

A (10) A (10)

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

2¹/₂) For every function *f* : $ω_1 → X_S$ there exists an uncountable *T* ⊆ $ω_1$ such that *f* ↾ *T* is monotone.

Question Is $C(\mathbb{K}(X_S))$ a Plichko space

A (10) A (10)

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function $f: \omega_1 \to X_S$ there exists an uncountable $T \subseteq \omega_1$ such that $f \upharpoonright T$ is monotone.

Question Is $C(\mathbb{K}(X_S))$ a Plichko space?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $Q = \{x \in \mathbb{Q}^{\omega_1} : \text{ suppt}(x) \text{ is finite } \}.$
- Fix a stationary set $S \subseteq \omega_1$ consisting of limit ordinals.
- Given $\delta \in S$, choose $C_{\delta} \nearrow \delta$.
- Let $Y = \{1_{C_{\delta}} : \delta \in S\}.$
- Finally, let $X_S = Q \cup Y$.

 X_S satisfies conditions (1), (2) and

(2¹/₂) For every function $f: \omega_1 \to X_S$ there exists an uncountable $T \subseteq \omega_1$ such that $f \upharpoonright T$ is monotone.

Question

Is $\mathcal{C}(\mathbb{K}(X_{\mathcal{S}}))$ a Plichko space?

A (10) A (10)

This page intentionally left blank.

W.Kubiś (http://www.pu.kielce.pl/~wkubis/) Banach spaces and compact lines

<ロン <回と < 回と < 回と < 回と

Conference

Set theory, Topology and Banach Spaces 7 - 11 July 2008 Kielce, Poland http://www.pu.kielce.pl/~topoconf

W.Kubiś (http://www.pu.kielce.pl/~wkubis/) Banach spaces and compact lines

17 April 2008 16 / 16

4 E 5

A .