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Plichko spaces

A Banach space X is Plichko if there are a linearly dense set
G ⊆ X and a norming space D ⊆ X ∗ such that

|{x ∈ G : 〈x , x∗〉 6= 0}| 6 ℵ0

for every x∗ ∈ D.
〈X ,D〉 will be called a Plichko pair.

***

X is weakly Lindelöf determined (WLD) if 〈X ,X ∗〉 is a Plichko pair.
X is weakly compactly generated (WCG) if X = cl lin K for some
weakly compact set K .
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Projectional skeletons, II January 2008 2 / 19



Plichko spaces

A Banach space X is Plichko if there are a linearly dense set
G ⊆ X and a norming space D ⊆ X ∗ such that

|{x ∈ G : 〈x , x∗〉 6= 0}| 6 ℵ0

for every x∗ ∈ D.
〈X ,D〉 will be called a Plichko pair.

***
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Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family
{Ps}s∈Γ of projections on X such that

1 Γ is an up-directed partially ordered set.
2 PsX is separable for every s ∈ Γ.
3 X =

⋃
s∈Γ PsX .

4 If s0 < s1 < s2 < . . . then t = supn∈ω sn exists in Γ and
PtX = cl(

⋃
n∈ω PsnX ).
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Projectional skeletons, II January 2008 3 / 19



Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family
{Ps}s∈Γ of projections on X such that

1 Γ is an up-directed partially ordered set.
2 PsX is separable for every s ∈ Γ.
3 X =

⋃
s∈Γ PsX .

4 If s0 < s1 < s2 < . . . then t = supn∈ω sn exists in Γ and
PtX = cl(

⋃
n∈ω PsnX ).

W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Projectional skeletons, II January 2008 3 / 19



Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family
{Ps}s∈Γ of projections on X such that

1 Γ is an up-directed partially ordered set.
2 PsX is separable for every s ∈ Γ.
3 X =

⋃
s∈Γ PsX .

4 If s0 < s1 < s2 < . . . then t = supn∈ω sn exists in Γ and
PtX = cl(

⋃
n∈ω PsnX ).
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Claim
Let {Ps}s∈Γ be a projectional skeleton in X. Then there exists a closed
and cofinal subset Π of Γ such that

sup
s∈Π

‖Ps‖ < +∞.

***

Given a projectional skeleton s = {Ps}s∈Γ, we shall always assume
that ‖s‖ := sups∈Γ ‖Ps‖ < +∞.
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Projectional skeletons, II January 2008 4 / 19



Claim
Let X be a Banach space with a projectional skeleton. Then every
separable subspace is contained in a complemented separable space.

Lemma
Let s = {Ps}s∈Γ be a projectional skeleton in X and let S ⊆ Γ be an
up-directed set. Then the formula

PSx = lim
s∈S

Psx (x ∈ X )

well defines a projection on X whose range is

cl
(⋃

s∈S

PsX
)
.
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Projectional resolutions of the identity

Theorem
Let X be a Banach space with a 1-projectional skeleton {Ps}s∈Γ.
Then X has a projectional resolution of the identity {Pα}α6κ such that
Pα = PSα

for some up-directed set Sα ⊆ Γ (α 6 κ).

Recall that a PRI on a Banach space X is a sequence of projections
{Pα}α6κ, where κ = dens X and

1 ‖Pα‖ = 1, Pκ = idX and PαX has density 6 κ+ ℵ0,
2 α < β =⇒ PαPβ = PβPα = Pα,
3 PδX = cl(

⋃
ξ<δ PξX ) whenever δ 6 κ is a limit ordinal.
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Preservation Theorem

Theorem
Let {Pα}α<κ be a projectional sequence in a Banach space X and let
D ⊆ X ∗ be a norming space such that

D =
⋃
α<κ

P∗αD

and 〈PαX ,P∗αD〉 is a Plichko pair for each α < κ. Then 〈X ,D〉 is a
Plichko pair.

Corollary
Let X be a Banach space. The following properties are equivalent.
(a) X has a commutative projectional skeleton.
(b) X is a Plichko space.
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The hierarchy:
WCG spaces ⊆ WLD spaces ⊆ Plichko spaces
⊆ spaces with a projectional skeleton
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Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K
is a family of retractions {rs}s∈Γ satisfying

1 s 6 t =⇒ rs ◦ rt = rt ◦ rs = rs;
2 each rs[K ] is metrizable;
3 if s0 < s1 < . . . in Γ then t = supn∈ω sn exists and

rt(x) = lim
n→∞

rsn(x)

for every x ∈ K ;
4 x = lims∈Γ rs(x) for every x ∈ K .

Proposition
Let {rs}s∈Γ be an r-skeleton in a compact K . Then {r∗s }s∈Γ is a
projectional skeleton in C (K ).
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2 each rs[K ] is metrizable;
3 if s0 < s1 < . . . in Γ then t = supn∈ω sn exists and

rt(x) = lim
n→∞

rsn(x)

for every x ∈ K ;
4 x = lims∈Γ rs(x) for every x ∈ K .

Proposition
Let {rs}s∈Γ be an r-skeleton in a compact K . Then {r∗s }s∈Γ is a
projectional skeleton in C (K ).
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Example

Claim
Given an ordinal λ, the compact space λ+ 1 has an r-skeleton.

Theorem (O. Kalenda 2002)
The space C (ω2 + 1) is not Plichko.
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Elementary substructures

Reflection Principle
Let ϕ(x1, . . . , xn) be a formula and let a1, . . . ,an be fixed sets such that
ϕ(a1, . . . ,an) is true. Then there exists a regular cardinal χ such that

〈H(χ),∈〉 |= ϕ(a1, . . . ,an).

Löwenheim-Skolem Theorem
Assume A ⊆ H(χ). Then there exists M ⊆ H(χ) such that A ⊆ M,
|M| = |A|+ ℵ0 and 〈M,∈〉 � 〈H(χ),∈〉, i.e.

∀ ϕ(x1, . . . , xn) ∀ a1, . . . ,an ∈ M,

M |=ϕ(a1, . . . ,an) ⇐⇒ H(χ) |= ϕ(a1, . . . ,an).
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Lemma
Let X be a Banach space, let D ⊆ X ∗ be r-norming and let χ be a big
enough regular cardinal. Further, let M � H(χ) be such that D ∈ M.
Then

cl(X ∩M) ∩ ⊥(D ∩M) = {0}.

Moreover, the canonical projection
PM : cl(X ∩M)⊕ ⊥(D ∩M) → cl(X ∩M) has norm 6 r .
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Let D ⊆ X be a norming set. We say that 〈X ,D〉 generates projections
if for every sufficiently closed countable M � H(χ) we have that

X = cl(X ∩M)⊕ ⊥(D ∩M).

Theorem
Let X be a Banach space and let D ⊆ X ∗ be a norming set. TFAE:

1 〈X ,D〉 generates projections.
2 There exists a projectional skeleton {Ps}s∈Γ in X such that

D ⊆
⋃
s∈Γ

P∗s X ∗.
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Projectional skeletons, II January 2008 13 / 19



Let D ⊆ X be a norming set. We say that 〈X ,D〉 generates projections
if for every sufficiently closed countable M � H(χ) we have that

X = cl(X ∩M)⊕ ⊥(D ∩M).

Theorem
Let X be a Banach space and let D ⊆ X ∗ be a norming set. TFAE:

1 〈X ,D〉 generates projections.
2 There exists a projectional skeleton {Ps}s∈Γ in X such that

D ⊆
⋃
s∈Γ

P∗s X ∗.
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Bandlow’s Property Ω

Theorem (I. Bandlow 1994)
Let K be a compact. The following are properties are equivalent:

1 K is Corson compact.
2 Cp (K ) has Property Ω.

Property Ω:
Cp (K ) has Property Ω if for every sufficiently closed countable
M � H(χ) it holds that

∀ f ∈ C (K ) ∃ g ∈ cl(C (K ) ∩M), f − g ∈ ⊥(K ∩M).
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Projectional skeletons, II January 2008 14 / 19



Bandlow’s Property Ω

Theorem (I. Bandlow 1994)
Let K be a compact. The following are properties are equivalent:

1 K is Corson compact.
2 Cp (K ) has Property Ω.

Property Ω:
Cp (K ) has Property Ω if for every sufficiently closed countable
M � H(χ) it holds that

∀ f ∈ C (K ) ∃ g ∈ cl(C (K ) ∩M), f − g ∈ ⊥(K ∩M).
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Let D ⊆ X ∗ be a norming set. We say that 〈X ,D〉 has Property Ω if for
every sufficiently closed countable M � H(χ):

∀ f ∈ X ∃ g ∈ cl(X ∩M), f − g ∈ ⊥(D ∩M).

Claim
〈X ,D〉 has Property Ω ⇐⇒ 〈X ,D〉 generates projections.

Corollary
A Banach space X is weakly Lindelöf determined if and only if 〈X ,X ∗〉
has Property Ω.
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Theorem
Let X be a WCG space and let M � H(χ) be sufficiently closed. Then

X = cl(X ∩M)⊕ ⊥(X ∗ ∩M).
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Proof.
1 Suppose ϕ ∈ X ∗ \ {0} is such that (X ∩M) ⊆ ker(ϕ) and
⊥(X ∗ ∩M) ⊆ ker(ϕ).

2 ϕ ∈ cl∗(X ∗ ∩M).
3 Fix a weakly compact K which generates X .
4 Suppose p ∈ K is such that |ϕ(p)| > ε > 0.
5 For each x ∈ cl(K ∩M) choose ψx ∈ X ∗ ∩M so that |ψx(x)| < ε

and |ψx(p)| > ε.
6 By compactness, there are x1, . . . , xn ∈ cl(K ∩M) such that

∀ x ∈ cl(K ∩M) ∃ i 6 n |ψxi (x)| < ε.

7 Hence M |= ∀ x ∈ K ∃ i 6 n |ψxi (x)| < ε.
8 This contradicts the elementarity of M.
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