Banach spaces with projectional skeletons, II

Wiesław Kubiś

Instytut Matematyki
Akademia Świȩtokrzyska
Kielce, POLAND
http://www.pu.kielce.pl/~wkubis/

$36^{\text {th }}$ Winter School in Abstract Analysis, Lhota nad Rohanovem, January 2008

Plichko spaces

- A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^{*}$ such that

$$
\left|\left\{x \in G:\left\langle x, x^{*}\right\rangle \neq 0\right\}\right| \leqslant \aleph_{0}
$$

for every $x^{*} \in D$.

- $\langle X, D\rangle$ will be called a Plichko pair.
- X is weakly Lindelöf determined (WLD) if $\left\langle X, X^{*}\right\rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if $X=\mathrm{cl}$ lin K for some weakly compact set K.

Plichko spaces

- A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^{*}$ such that
for every $x^{*} \in D$.
- $\langle X, D\rangle$ will be called a Plichko pair.
- X is weakly Lindelöf determined (WLD) if $\left\langle X, X^{*}\right\rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if $X=\mathrm{cl}$ lin K for some weakly compact set K.

Plichko spaces

- A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^{*}$ such that

$$
\left|\left\{x \in G:\left\langle x, x^{*}\right\rangle \neq 0\right\}\right| \leqslant \aleph_{0}
$$ for every $x^{*} \in D$.

- $\langle X, D\rangle$ will be called a Plichko pair.
- X is weakly Lindelöf determined (WLD) if $\left\langle X, X^{*}\right\rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if $X=\mathrm{cl}$ lin K for some weakly compact set K.

Plichko spaces

- A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^{*}$ such that

$$
\left|\left\{x \in G:\left\langle x, x^{*}\right\rangle \neq 0\right\}\right| \leqslant \aleph_{0}
$$

for every $x^{*} \in D$.

- $\langle X, D\rangle$ will be called a Plichko pair.
- X is weakly Lindelöf determined (WLD) if $\left\langle X, X^{*}\right\rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if $X=\mathrm{cl}$ lin K for some weakly compact set K.

Plichko spaces

- A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^{*}$ such that

$$
\left|\left\{x \in G:\left\langle x, x^{*}\right\rangle \neq 0\right\}\right| \leqslant \aleph_{0}
$$

for every $x^{*} \in D$.

- $\langle X, D\rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\left\langle X, X^{*}\right\rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if $X=$ cl lin K for some weakly compact set K.

Plichko spaces

- A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^{*}$ such that

$$
\left|\left\{x \in G:\left\langle x, x^{*}\right\rangle \neq 0\right\}\right| \leqslant \aleph_{0}
$$

for every $x^{*} \in D$.

- $\langle X, D\rangle$ will be called a Plichko pair.
- X is weakly Lindelöf determined (WLD) if $\left\langle X, X^{*}\right\rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if $X=\mathrm{cl}$ lin K for some weakly compact set K.

Projectional skeletons

```
Let X be a Banach space. A projectional skeleton in X is a family
{Ps}\mp@subsup{}}{s\in\Gamma}{}\mathrm{ of projections on }X\mathrm{ such that
    (T Is an up-directed partially ordered set.
    (2) }\mp@subsup{P}{s}{}X\mathrm{ is separable for every }s\in\Gamma\mathrm{ .
    (3) }X=\mp@subsup{U}{SCT}{}\mp@subsup{P}{S}{}X\mathrm{ .
    (9) If so< < s1< s 
    P}\mp@subsup{t}{t}{}X=\textrm{cl}(\mp@subsup{\bigcup}{n\in\omega}{}\mp@subsup{P}{\mp@subsup{S}{n}{}}{}X)
```


Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family
$\left\{P_{s}\right\}_{s \in \Gamma}$ of projections on X such that
(1) Γ is an up-directed partially ordered set.
(2) $P_{s} X$ is separable for every $s \in \Gamma$.
(8) $X=\bigcup_{s \in \Gamma} P_{S} X$.
(9) If $s_{0}<s_{1}<s_{2}<\ldots$ then $t=\sup _{n \in \omega} s_{n}$ exists in Γ and
$P_{t} X=\mathrm{cl}\left(\bigcup_{n \in \omega} P_{s_{n}} X\right)$.

Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family $\left\{P_{s}\right\}_{s \in \Gamma}$ of projections on X such that

Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family $\left\{P_{s}\right\}_{s \in \Gamma}$ of projections on X such that
(1) Γ is an up-directed partially ordered set.

Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family $\left\{P_{s}\right\}_{s \in \Gamma}$ of projections on X such that
(1) Γ is an up-directed partially ordered set.
(2) $P_{s} X$ is separable for every $s \in \Gamma$.

Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family $\left\{P_{s}\right\}_{s \in \Gamma}$ of projections on X such that
(1) Γ is an up-directed partially ordered set.
(2) $P_{s} X$ is separable for every $s \in \Gamma$.
(3) $X=\bigcup_{s \in \Gamma} P_{s} X$.

Projectional skeletons

Let X be a Banach space. A projectional skeleton in X is a family $\left\{P_{s}\right\}_{s \in \Gamma}$ of projections on X such that
(1) Γ is an up-directed partially ordered set.
(2) $P_{s} X$ is separable for every $s \in \Gamma$.
(3) $X=\bigcup_{s \in \Gamma} P_{s} X$.
(1) If $s_{0}<s_{1}<s_{2}<\ldots$ then $t=\sup _{n \in \omega} s_{n}$ exists in Γ and $P_{t} X=\mathrm{cl}\left(\bigcup_{n \in \omega} P_{s_{n}} X\right)$.

Claim

Let $\left\{P_{s}\right\}_{\text {ser }}$ be a projectional skeleton in X. Then there exists a closed and cofinal subset Π of Γ such that

Given a projectional skeleton $\mathfrak{s}=\left\{P_{s}\right\}_{s \in \Gamma}$, we shall always assume that $\|\mathfrak{s}\|:=\sup _{s \in \Gamma}\left\|P_{s}\right\|<+\infty$.

Claim
Let $\left\{P_{s}\right\}_{s \in \Gamma}$ be a projectional skeleton in X. Then there exists a closed and cofinal subset Π of Γ such that

$$
\sup _{s \in \Pi}\left\|P_{s}\right\|<+\infty
$$

Given a projectional skeleton $\mathfrak{s}=\left\{P_{s}\right\}_{s \in \Gamma}$, we shall always assume that $\|\mathfrak{s}\|:=\sup _{s \in \Gamma}\left\|P_{s}\right\|<+\infty$.

Claim

Let $\left\{P_{s}\right\}_{s \in \Gamma}$ be a projectional skeleton in X. Then there exists a closed and cofinal subset Π of Γ such that

$$
\sup _{s \in \Pi}\left\|P_{s}\right\|<+\infty
$$

Given a projectional skeleton $\mathfrak{s}=\left\{P_{s}\right\}_{s \in \Gamma}$, we shall always assume that $\|\mathfrak{s}\|:=\sup _{s \in \Gamma}\left\|P_{s}\right\|<+\infty$.

Claim

Let X be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma
Let $\mathfrak{s}=\left\{P_{s}\right\}_{s \in r}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an
up-directed set. Then the formula

$$
P_{S} X=\lim _{s \in S} P_{S} X \quad(x \in X)
$$

well defines a projection on X whose range is

$$
c l\left(\bigcup_{S \in S} P_{S} X\right)
$$

Claim

Let X be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

```
Lemma
Let s}={\mp@subsup{P}{S}{}\mp@subsup{}}{s\in\Gamma}{}\mathrm{ be a projectional skeleton in X and let S}\subseteq\Gamma\mathrm{ be an
up-directed set. Then the formula
```

well defines a projection on X whose range is

Claim

Let X be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma

Let $\mathfrak{s}=\left\{P_{s}\right\}_{s \in \Gamma}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an up-directed set. Then the formula

$$
P_{S} x=\lim _{s \in S} P_{s} x \quad(x \in X)
$$

well defines a projection on X whose range is

Claim

Let X be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma

Let $\mathfrak{s}=\left\{P_{s}\right\}_{s \in \Gamma}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an up-directed set. Then the formula

$$
P_{S} x=\lim _{s \in S} P_{s} x \quad(x \in X)
$$

well defines a projection on X whose range is

```
cl}(\mp@subsup{\bigcup}{s\inS}{}\mp@subsup{P}{s}{}X)
```


Projectional resolutions of the identity

```
Theorem
Let X be a Banach space with a 1-projectional skeleton {P P
Then X has a projectional resolution of the identity {P (P } } <\leqslant\kappa
P
```

Recall that a PRI on a Banach space X is a sequence of projections
$\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$, where $\kappa=$ dens X and
(1) $\left\|P_{\alpha}\right\|=1, P_{\kappa}=\mathrm{id} X$ and $P_{\alpha} X$ has density $\leqslant \kappa+\aleph_{0}$,
(2) $\alpha<\beta \Longrightarrow P_{\alpha} P_{\beta}=P_{\beta} P_{\alpha}=P_{\alpha}$,
(3) $P_{\delta} X=\mathrm{cl}\left(\bigcup_{\xi<\delta} P_{\xi} X\right)$ whenever $\delta \leqslant \kappa$ is a limit ordinal.

Projectional resolutions of the identity

Theorem
Let X be a Banach space with a 1-projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$. Then X has a projectional resolution of the identity $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$ such that $P_{\alpha}=P_{S_{\alpha}}$ for some up-directed set $S_{\alpha} \subseteq \Gamma(\alpha \leqslant \kappa)$.

Projectional resolutions of the identity

Theorem
Let X be a Banach space with a 1-projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$. Then X has a projectional resolution of the identity $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$ such that $P_{\alpha}=P_{S_{\alpha}}$ for some up-directed set $S_{\alpha} \subseteq \Gamma(\alpha \leqslant \kappa)$.

Projectional resolutions of the identity

Theorem
Let X be a Banach space with a 1-projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$. Then X has a projectional resolution of the identity $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$ such that $P_{\alpha}=P_{S_{\alpha}}$ for some up-directed set $S_{\alpha} \subseteq \Gamma(\alpha \leqslant \kappa)$.

Recall that a PRI on a Banach space X is a sequence of projections $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$, where $\kappa=\operatorname{dens} X$ and

Projectional resolutions of the identity

Theorem
Let X be a Banach space with a 1-projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$. Then X has a projectional resolution of the identity $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$ such that $P_{\alpha}=P_{S_{\alpha}}$ for some up-directed set $S_{\alpha} \subseteq \Gamma(\alpha \leqslant \kappa)$.

Recall that a PRI on a Banach space X is a sequence of projections $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$, where $\kappa=\operatorname{dens} X$ and
(1) $\left\|P_{\alpha}\right\|=1, P_{\kappa}=\operatorname{id}_{X}$ and $P_{\alpha} X$ has density $\leqslant \kappa+\aleph_{0}$,
(0) $P_{\delta} X=\mathrm{cl}\left(\bigcup_{\xi<\delta} P_{\xi} X\right)$ whenever $\delta \leqslant \kappa$ is a limit ordinal.

Projectional resolutions of the identity

Theorem
Let X be a Banach space with a 1-projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$. Then X has a projectional resolution of the identity $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$ such that $P_{\alpha}=P_{S_{\alpha}}$ for some up-directed set $S_{\alpha} \subseteq \Gamma(\alpha \leqslant \kappa)$.

Recall that a PRI on a Banach space X is a sequence of projections $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$, where $\kappa=\operatorname{dens} X$ and
(1) $\left\|P_{\alpha}\right\|=1, P_{\kappa}=\operatorname{id}_{X}$ and $P_{\alpha} X$ has density $\leqslant \kappa+\aleph_{0}$,
(2) $\alpha<\beta \Longrightarrow P_{\alpha} P_{\beta}=P_{\beta} P_{\alpha}=P_{\alpha}$,
(0) $P_{\delta} X=\mathrm{cl}\left(\bigcup_{\xi<\delta} P_{\xi} X\right)$ whenever $\delta \leqslant \kappa$ is a limit ordinal.

Projectional resolutions of the identity

Theorem

Let X be a Banach space with a 1-projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$. Then X has a projectional resolution of the identity $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$ such that $P_{\alpha}=P_{S_{\alpha}}$ for some up-directed set $S_{\alpha} \subseteq \Gamma(\alpha \leqslant \kappa)$.

Recall that a PRI on a Banach space X is a sequence of projections $\left\{P_{\alpha}\right\}_{\alpha \leqslant \kappa}$, where $\kappa=\operatorname{dens} X$ and
(1) $\left\|P_{\alpha}\right\|=1, P_{\kappa}=\mathrm{id}_{X}$ and $P_{\alpha} X$ has density $\leqslant \kappa+\aleph_{0}$,
(2) $\alpha<\beta \Longrightarrow P_{\alpha} P_{\beta}=P_{\beta} P_{\alpha}=P_{\alpha}$,
(3) $P_{\delta} X=\mathrm{cl}\left(\bigcup_{\xi<\delta} P_{\xi} X\right)$ whenever $\delta \leqslant \kappa$ is a limit ordinal.

Preservation Theorem

```
Theorem
Let {P}\mp@subsup{P}{c}{}\mp@subsup{}}{0<r}{}\mathrm{ be a projectional sequence in a Banach space X and let
D\subseteqX* be a norming space such that
```

 Plichko pair.

Let X be a Banach space. The following properties are equivalent.
(a) X has a commutative projectional skeleton.
(b) X is a Plichko space.

Preservation Theorem

Theorem

Let $\left\{P_{\alpha}\right\}_{\alpha<\kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^{*}$ be a norming space such that

$$
D=\bigcup_{\alpha<\kappa} P_{\alpha}^{*} D
$$

and $\left\langle P_{\alpha} X, P_{\alpha}^{*} D\right\rangle$ is a Plichko pair for each $\alpha<\kappa$. Then $\langle X, D\rangle$ is a
Plichko pair.

Corollary
Let X be a Banach space. The following properties are equivalent.
(a) X has a commutative projectional skeleton.
(b) X is a Plichko space.

Preservation Theorem

Theorem

Let $\left\{P_{\alpha}\right\}_{\alpha<\kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^{*}$ be a norming space such that

$$
D=\bigcup_{\alpha<\kappa} P_{\alpha}^{*} D
$$

and $\left\langle P_{\alpha} X, P_{\alpha}^{*} D\right\rangle$ is a Plichko pair for each $\alpha<\kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

> Corollary
> Let X be a Banach space. The following properties are equivalent.
> (a) X has a commutative projectional skeleton.
> (b) X is a Plichko space.

Preservation Theorem

Theorem

Let $\left\{P_{\alpha}\right\}_{\alpha<\kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^{*}$ be a norming space such that

$$
D=\bigcup_{\alpha<\kappa} P_{\alpha}^{*} D
$$

and $\left\langle P_{\alpha} X, P_{\alpha}^{*} D\right\rangle$ is a Plichko pair for each $\alpha<\kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.
a) X has a commutative projectional skeleton.
\square

Preservation Theorem

Theorem

Let $\left\{P_{\alpha}\right\}_{\alpha<\kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^{*}$ be a norming space such that

$$
D=\bigcup_{\alpha<\kappa} P_{\alpha}^{*} D
$$

and $\left\langle P_{\alpha} X, P_{\alpha}^{*} D\right\rangle$ is a Plichko pair for each $\alpha<\kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.
(a) X has a commutative projectional skeleton.
(b) X is a Plichko space.

Preservation Theorem

Theorem

Let $\left\{P_{\alpha}\right\}_{\alpha<\kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^{*}$ be a norming space such that

$$
D=\bigcup_{\alpha<\kappa} P_{\alpha}^{*} D
$$

and $\left\langle P_{\alpha} X, P_{\alpha}^{*} D\right\rangle$ is a Plichko pair for each $\alpha<\kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.
(a) X has a commutative projectional skeleton.
(b) X is a Plichko space.

The hierarchy: WCG spaces \subseteq WLD spaces \subseteq Plichko spaces \subseteq spaces with a projectional skeleton

The hierarchy:
 WCG spaces \subseteq WLD spaces \subseteq Plichko spaces
 \subseteq spaces with a projectional skeleton

Retractional skeletons

```
Let \(K\) be a compact, let \(\Gamma\) be an up-directed poset. An r-skeleton in \(K\)
is a family of retractions \(\left\{r_{s}\right\}_{s \in \Gamma}\) satisfying
    (1) \(s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}\);
    (2) each \(r_{s}[K]\) is metrizable;
    (3) if \(s_{0}<s_{1}<\ldots\) in \(\Gamma\) then \(t=\sup _{n \in w} s_{n}\) exists and
                        \(r_{t}(x)=\lim _{n \rightarrow \infty} r_{s_{n}}(x)\)
    for every \(x \in K\);
    (4) \(x=\lim _{s \in-} r_{S}(x)\) for every \(x \in K\).
```

Proposition
Let $\left\{r_{s}\right\}_{s \in r}$ be an r-skeleton in a compact K. Then $\left\{r_{s}^{*}\right\}_{s \in \Gamma}$ is a
projectional skeleton in C (K).

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset.
is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying
(1) $s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}$;
(2) each $r_{s}\lceil K\rceil$ is metrizable;
(0) if $s_{0}<s_{1}<\ldots$ in Γ then $t=\sup _{n \in \omega} s_{n}$ exists and

for every $x \in K$;
(4) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Proposition
Iet $\left\{r_{s}\right\}_{s-r}$ be an r-skeleton in a compact K. Then $\left\{r_{s}^{*}\right\}_{s \in \Gamma}$ is a projectional skeleton in C (K).

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying

for every $x \in K$;
(4) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Proposition
Let $\left\{r_{s}\right\}_{s \in \Gamma}$ be an r-skeleton in a compact K. Then $\left\{r_{s}^{*}\right\}_{s \in \Gamma}$ is a projectional skeleton in $\mathcal{C}(K)$.

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying
(1) $s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}$;
(2) each $r_{s}[K]$ is metrizable;
(8) if $s_{0}<s_{1}<\ldots$ in Γ then $t=\sup _{n \in \omega} s_{n}$ exists and

for every $x \in K$;
(a) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Proposition
Let $\left\{r_{s}\right\}_{s \in \Gamma}$ be an r-skeleton in a compact K. Then $\left\{r_{s}^{*}\right\}_{s \in \Gamma}$ is a projectional skeleton in $\mathcal{C}(K)$.

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying
(1) $s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}$;
(2) each $r_{s}[K]$ is metrizable;
(8) if $s_{0}<s_{1}<\ldots$ in Γ then $t=\sup _{n \in \omega} s_{n}$ exists and

for every $x \in K$;
(a) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Proposition
Let $\left\{r_{s}\right\}_{s \in \Gamma}$ be an r-skeleton in a compact K. Then $\left\{r_{s}^{*}\right\}_{s \in \Gamma}$ is a projectional skeleton in $\mathcal{C}(K)$.

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying
(1) $s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}$;
(2) each $r_{s}[K]$ is metrizable;
(3) if $s_{0}<s_{1}<\ldots$ in Γ then $t=\sup _{n \in \omega} s_{n}$ exists and

$$
r_{t}(x)=\lim _{n \rightarrow \infty} r_{s_{n}}(x)
$$

for every $x \in K$;
(4) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying
(1) $s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}$;
(2) each $r_{s}[K]$ is metrizable;
(3) if $s_{0}<s_{1}<\ldots$ in Γ then $t=\sup _{n \in \omega} s_{n}$ exists and

$$
r_{t}(x)=\lim _{n \rightarrow \infty} r_{s_{n}}(x)
$$

for every $x \in K$;
(4) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Retractional skeletons

Let K be a compact, let Γ be an up-directed poset. An r-skeleton in K is a family of retractions $\left\{r_{s}\right\}_{s \in \Gamma}$ satisfying
(1) $s \leqslant t \Longrightarrow r_{s} \circ r_{t}=r_{t} \circ r_{s}=r_{s}$;
(2) each $r_{s}[K]$ is metrizable;
(3) if $s_{0}<s_{1}<\ldots$ in Γ then $t=\sup _{n \in \omega} s_{n}$ exists and

$$
r_{t}(x)=\lim _{n \rightarrow \infty} r_{s_{n}}(x)
$$

for every $x \in K$;
(4) $x=\lim _{s \in \Gamma} r_{s}(x)$ for every $x \in K$.

Proposition

Let $\left\{r_{s}\right\}_{s \in \Gamma}$ be an r-skeleton in a compact K. Then $\left\{r_{s}^{*}\right\}_{s \in \Gamma}$ is a projectional skeleton in $\mathcal{C}(K)$.

Example

```
Claim
Given an ordinal }\lambda\mathrm{ , the compact space }\lambda+1\mathrm{ has an r-skeleton.
```


Theorem (O. Kalenda 2002)

The snace $C\left(\omega_{2}+1\right)$ is not Plichko.

Example

Claim
Given an ordinal λ, the compact space $\lambda+1$ has an r-skeleton.

Theorem (O. Kalenda 2002)
 The space $\mathcal{C}\left(\omega_{2}+1\right)$ is not Plichko.

Example

Claim
Given an ordinal λ, the compact space $\lambda+1$ has an r-skeleton.
Theorem (O. Kalenda 2002)
The space $\mathcal{C}\left(\omega_{2}+1\right)$ is not Plichko.

Elementary substructures

Reflection Principle

Let $\varphi\left(x_{1} \ldots, x_{n}\right)$ be a formula and let a_{1}, \ldots, a_{n} be fixed sets such that $\varphi\left(a_{1}, \ldots, a_{n}\right)$ is true. Then there exists a regular cardinal χ such that

$$
\langle H(\chi), \in\rangle \models \varphi\left(a_{1}, \ldots, a_{n}\right) .
$$

Löwenheim-Skolem Theorem
Assume $A \subseteq H(\chi)$. Then there exists $M \subseteq H(\chi)$ such that $A \subseteq M$, $|M|=|A|+\aleph_{0}$ and $\langle M, \in\rangle \preceq\langle H(\chi), \in\rangle$, i.e.

$$
\begin{aligned}
& \forall \varphi\left(x_{1}, \ldots, x_{n}\right) \forall a_{1}, \ldots, a_{n} \in M, \\
& M \models \varphi\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow H(\chi) \models \varphi\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

Elementary substructures

Reflection Principle

Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula and let a_{1}, \ldots, a_{n} be fixed sets such that $\varphi\left(a_{1}, \ldots, a_{n}\right)$ is true. Then there exists a regular cardinal χ such that

$$
\langle H(\chi), \in\rangle \models \varphi\left(a_{1}, \ldots, a_{n}\right) .
$$

Elementary substructures

Reflection Principle

Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula and let a_{1}, \ldots, a_{n} be fixed sets such that $\varphi\left(a_{1}, \ldots, a_{n}\right)$ is true. Then there exists a regular cardinal χ such that

$$
\langle H(\chi), \in\rangle \models \varphi\left(a_{1}, \ldots, a_{n}\right) .
$$

Löwenheim-Skolem Theorem

Assume $A \subseteq H(\chi)$. Then there exists $M \subseteq H(\chi)$ such that $A \subseteq M$, $|M|=|A|+\aleph_{0}$ and $\langle M, \epsilon\rangle \preceq\langle H(\chi), \in\rangle$, i.e.

$$
\begin{aligned}
& \forall \varphi\left(x_{1}, \ldots, x_{n}\right) \forall a_{1}, \ldots, a_{n} \in M, \\
& M \models\left(a_{1}, \ldots, a_{n}\right) \Longleftrightarrow H(\chi) \models \varphi\left(a_{1}, \ldots, a_{n}\right) .
\end{aligned}
$$

Lemma

Iet X be a Banach space, let $D \subseteq X^{*}$ be r-norming and let χ be a big enough regular cardinal. Further, let $M \preceq H(\chi)$ be such that $D \in M$. Then

$$
\operatorname{cl}(X \cap M) \cap \perp(D \cap M)=\{0\}
$$

Moreover, the canonical projection
$P_{M}: \operatorname{cl}(X \cap M) \oplus{ }^{\perp}(D \cap M) \rightarrow \operatorname{cl}(X \cap M)$ has norm $\leqslant r$.

Lemma

Let X be a Banach space, let $D \subseteq X^{*}$ be r-norming and let χ be a big enough regular cardinal. Further, let $M \preceq H(\chi)$ be such that $D \in M$. Then

$$
\mathrm{cl}(X \cap M) \cap{ }^{\perp}(D \cap M)=\{0\} .
$$

Moreover, the canonical projection

$P_{M}: \mathrm{cl}(X \cap M) \oplus \perp(D \cap M) \rightarrow \mathrm{cl}(X \cap M)$ has norm $\leqslant r$.

Lemma

Let X be a Banach space, let $D \subseteq X^{*}$ be r-norming and let χ be a big enough regular cardinal. Further, let $M \preceq H(\chi)$ be such that $D \in M$. Then

$$
\mathrm{cl}(X \cap M) \cap{ }^{\perp}(D \cap M)=\{0\} .
$$

Moreover, the canonical projection $P_{M}: \mathrm{cl}(X \cap M) \oplus{ }^{\perp}(D \cap M) \rightarrow \mathrm{cl}(X \cap M)$ has norm $\leqslant r$.

Let $D \subseteq X$ be a norming set. We say that $\langle X, D\rangle$ generates projections

 if for every sufficiently closed countable $M \preceq H(\chi)$ we have that$$
X=\operatorname{cl}(X \cap M) \oplus^{\perp}(D \cap M)
$$

Theorem

Let X be a Banach space and let $D \subseteq X^{*}$ be a norming set. TFAE:

- $\langle X, D\rangle$ generates projections.
(2) There exists a projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$ in X such that

$$
D \subseteq \bigcup_{S \in \Gamma} P_{S}^{*} X^{*} .
$$

Let $D \subseteq X$ be a norming set. We say that $\langle X, D\rangle$ generates projections

if for every sufficiently closed countable $M \preceq H(\chi)$ we have that

$$
X=\mathrm{cl}(X \cap M) \oplus^{\perp}(D \cap M)
$$

Theorem

Iet X he a Banach space and let $D \subseteq X^{*}$ be a norming set. TFAE:

- $\langle X, D\rangle$ generates projections.
(2) There exists a projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$ in X such that

$$
D \subseteq \bigcup_{S \in \Gamma} P_{s}^{*} X^{*}
$$

Let $D \subseteq X$ be a norming set. We say that $\langle X, D\rangle$ generates projections if for every sufficiently closed countable $M \preceq H(\chi)$ we have that

$$
X=\mathrm{cl}(X \cap M) \oplus^{\perp}(D \cap M)
$$

(2) There exists a projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$ in X such that

Let $D \subseteq X$ be a norming set. We say that $\langle X, D\rangle$ generates projections if for every sufficiently closed countable $M \preceq H(\chi)$ we have that

$$
X=\operatorname{cl}(X \cap M) \oplus^{\perp}(D \cap M)
$$

Theorem
Let X be a Banach space and let $D \subseteq X^{*}$ be a norming set. TFAE:
(1) $\langle X, D\rangle$ generates projections.
(c) There exists a projectional skeleton $\left\{P_{s}\right\}_{s \in\ulcorner }$ in X such that

Let $D \subseteq X$ be a norming set. We say that $\langle X, D\rangle$ generates projections if for every sufficiently closed countable $M \preceq H(\chi)$ we have that

$$
X=\operatorname{cl}(X \cap M) \oplus^{\perp}(D \cap M)
$$

Theorem

Let X be a Banach space and let $D \subseteq X^{*}$ be a norming set. TFAE:
© $\langle X, D\rangle$ generates projections.
(3) There exists a projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$ in X such that

Let $D \subseteq X$ be a norming set. We say that $\langle X, D\rangle$ generates projections if for every sufficiently closed countable $M \preceq H(\chi)$ we have that

$$
X=\operatorname{cl}(X \cap M) \oplus^{\perp}(D \cap M)
$$

Theorem

Let X be a Banach space and let $D \subseteq X^{*}$ be a norming set. TFAE:
© $\langle X, D\rangle$ generates projections.
(3) There exists a projectional skeleton $\left\{P_{s}\right\}_{s \in \Gamma}$ in X such that

$$
D \subseteq \bigcup_{s \in \Gamma} P_{s}^{*} X^{*} .
$$

Bandlow's Property Ω

```
Theorem (I. Bandlow 1994)
Let K be a comnact. The following are properties are equivalent:
(1) \(K\) is Corson compact.
(2) \(\mathcal{C}_{p}(K)\) has Property \(\Omega\).
```


$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

$$
\forall f \in \mathcal{C}(K) \exists g \in \operatorname{cl}(\mathcal{C}(K) \cap M), \quad f-g \in{ }^{\perp}(K \cap M) .
$$

Bandlow's Property Ω

Theorem (I. Bandlow 1994)
Let K be a compact. The following are properties are equivalent:
O K is Corson compact.
(2) $\mathcal{C}_{p}(K)$ has Property Ω.

Property Ω :
$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

$$
\forall f \in \mathcal{C}(K) \exists g \in \mathrm{cl}(\mathcal{C}(K) \cap M),
$$

\square $g \in{ }^{\perp}(K \cap M)$.

Bandlow's Property Ω

Theorem (I. Bandlow 1994)
Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
(3) $C_{p}(K)$ has Property Ω.

Property Ω :
$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

$$
\forall f \in \mathcal{C}(K) \exists g \in \mathrm{cl}(\mathcal{C}(K) \cap M),
$$

\square $g \in{ }^{\perp}(K \cap M)$.

Bandlow's Property Ω

Theorem (I. Bandlow 1994)
Let K be a compact. The following are properties are equivalent:
(1) K is Corson compact.
(2) $\mathcal{C}_{p}(K)$ has Property Ω.

$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

$$
\forall f \in \mathcal{C}(K) \exists g \in \mathrm{cl}(\mathcal{C}(K) \cap M),
$$

Bandlow's Property Ω

Theorem (I. Bandlow 1994)
Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
(2) $\mathcal{C}_{p}(K)$ has Property Ω.

Property Ω :

$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

Bandlow's Property Ω

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
(2) $\mathcal{C}_{p}(K)$ has Property Ω.

Property Ω :

$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

Bandlow's Property Ω

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:
(1) K is Corson compact.
(2) $\mathcal{C}_{p}(K)$ has Property Ω.

Property Ω :

$\mathcal{C}_{p}(K)$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$ it holds that

$$
\forall f \in \mathcal{C}(K) \exists g \in \operatorname{cl}(\mathcal{C}(K) \cap M), \quad f-g \in{ }^{\perp}(K \cap M) .
$$

Let $D \subseteq X^{*}$ be a norming set. We say that $\langle X, D\rangle$ has Property Ω if for

 every sufficiently closed countable $M \preceq H(\chi)$:$$
\forall f \in X \exists g \in \mathrm{cl}(X \cap M), \quad f-g \in^{\perp}(D \cap M) .
$$

Claim

$\langle X, D\rangle$ has Property $\Omega \Longleftrightarrow\langle X, D\rangle$ generates projections.

```
Corollary
A Banach space X is weakly Lindelöf determined if and only if {X, X*)
has Property \Omega.
```


Let $D \subseteq X^{*}$ be a norming set. We say that $\langle X, D\rangle$ has Property Ω if

 every sufficiently closed countable $M \preceq H(\chi)$:$$
\forall f \in X \exists g \in \operatorname{cl}(X \cap M), \quad f-g \in{ }^{\perp}(D \cap M) .
$$

Corollary
 A Banach snace X is weakly Lindelöf determined if and only if $\left\langle X, X^{*}\right\rangle$

 has Property Ω.Let $D \subseteq X^{*}$ be a norming set. We say that $\langle X, D\rangle$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$:

$\langle X, D\rangle$ has Property $\Omega \longleftrightarrow\langle X, D\rangle$ generates projections.

Corollary
A Banach space X is weakly Lindelöf determined if and only if $\left\langle X, X^{*}\right\rangle$ has Property Ω.

Let $D \subseteq X^{*}$ be a norming set. We say that $\langle X, D\rangle$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$:

$$
\forall f \in X \exists g \in \operatorname{cl}(X \cap M), \quad f-g \in^{\perp}(D \cap M)
$$

(X D\rangle has Property $\Omega \longleftrightarrow\langle X, D\rangle$ generates projections.

A Banach space X is weakly Lindelöf determined if and only if $\left\langle X, X^{*}\right\rangle$ has Property Ω.

Let $D \subseteq X^{*}$ be a norming set. We say that $\langle X, D\rangle$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$:

$$
\forall f \in X \exists g \in \operatorname{cl}(X \cap M), \quad f-g \in^{\perp}(D \cap M) .
$$

Claim
$\langle X, D\rangle$ has Property $\Omega \Longleftrightarrow\langle X, D\rangle$ generates projections.

Corollary
A Banach space X is weakly Lindelöf determined if and only if $\left\langle X, X^{*}\right\rangle$ has Property Ω.

Let $D \subseteq X^{*}$ be a norming set. We say that $\langle X, D\rangle$ has Property Ω if for every sufficiently closed countable $M \preceq H(\chi)$:

$$
\forall f \in X \exists g \in \operatorname{cl}(X \cap M), \quad f-g \in^{\perp}(D \cap M)
$$

Claim

$\langle X, D\rangle$ has Property $\Omega \Longleftrightarrow\langle X, D\rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\left\langle X, X^{*}\right\rangle$ has Property Ω.

Theorem Let X be a W/CG space and let $M _H(\chi)$ be sufficiently closed. Then

$$
X=\operatorname{cl}(X \cap M) \oplus{ }^{\perp}\left(X^{*} \cap M\right) .
$$

Theorem
 Let X be a WCG space and let $M \preceq H(\chi)$ be sufficiently closed.

$X=c l(X \cap M) \oplus^{\perp}\left(X^{*} \cap M\right)$.

Theorem
Let X be a WCG space and let $M \preceq H(\chi)$ be sufficiently closed. Then

$$
X=\operatorname{cl}(X \cap M) \oplus^{\perp}\left(X^{*} \cap M\right) .
$$

- Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(C) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(5) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
(6) By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that

$$
\forall x \in \mathrm{cl}(K \cap M) \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon .
$$

(Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(B) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(3) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(0) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
© By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that

$$
\forall x \in \operatorname{cl}(K \cap M) \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon .
$$

(1) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
© Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(0) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
© By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that

$$
\forall x \in \mathrm{cl}(K \cap M) \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon .
$$

(1) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
© Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(0) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$
(- By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that
(3) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(3) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$

- By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that
(3) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(6) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
© By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that
(1) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(0. For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
(0) By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that

$$
\forall x \in \operatorname{cl}(K \cap M) \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon .
$$

(1) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(0. For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
(0) By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that

$$
\forall x \in \operatorname{cl}(K \cap M) \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon .
$$

(3) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

Proof.

(1) Suppose $\varphi \in X^{*} \backslash\{0\}$ is such that $(X \cap M) \subseteq \operatorname{ker}(\varphi)$ and ${ }^{\perp}\left(X^{*} \cap M\right) \subseteq \operatorname{ker}(\varphi)$.
(2) $\varphi \in \mathrm{cl}_{*}\left(X^{*} \cap M\right)$.
(3) Fix a weakly compact K which generates X.
(9) Suppose $p \in K$ is such that $|\varphi(p)|>\varepsilon>0$.
(6) For each $x \in \mathrm{cl}(K \cap M)$ choose $\psi_{x} \in X^{*} \cap M$ so that $\left|\psi_{x}(x)\right|<\varepsilon$ and $\left|\psi_{x}(p)\right|>\varepsilon$.
(0) By compactness, there are $x_{1}, \ldots, x_{n} \in \mathrm{cl}(K \cap M)$ such that

$$
\forall x \in \operatorname{cl}(K \cap M) \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon .
$$

(3) Hence $M \models \forall x \in K \exists i \leqslant n\left|\psi_{x_{i}}(x)\right|<\varepsilon$.
(3) This contradicts the elementarity of M.

References

围 H. Nothing, ...

