Banach spaces with projectional skeletons, II

Wiesław Kubiś

Instytut Matematyki Akademia Świętokrzyska Kielce, POLAND http://www.pu.kielce.pl/~wkubis/

36th Winter School in Abstract Analysis, Lhota nad Rohanovem, January 2008

• A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^*$ such that

```
|\{x \in G \colon \langle x, x^* \rangle \neq 0\}| \leqslant \aleph_0
```

```
for every x^* \in D.
```

• $\langle X, D \rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\langle X, X^* \rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if X = cl lin K for some weakly compact set K.

A (10) A (10)

• A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^*$ such that

```
|\{x \in G \colon \langle x, x^* \rangle \neq 0\}| \leqslant \aleph_0
```

```
for every x^* \in D.
```

• $\langle X, D \rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\langle X, X^* \rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if X = cl lin K for some weakly compact set K.

< 回 > < 回 > < 回 > -

• A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^*$ such that

$$|\{x \in G \colon \langle x, x^* \rangle \neq 0\}| \leqslant \aleph_0$$

for every $x^* \in D$.

• $\langle X, D \rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\langle X, X^* \rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if X = cl lin K for some weakly compact set K.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^*$ such that

$$|\{x \in G \colon \langle x, x^* \rangle \neq 0\}| \leqslant \aleph_0$$

for every $x^* \in D$.

• $\langle X, D \rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\langle X, X^* \rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if X = cl lin K for some weakly compact set K.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^*$ such that

$$|\{x \in G \colon \langle x, x^* \rangle \neq 0\}| \leqslant \aleph_0$$

for every $x^* \in D$.

• $\langle X, D \rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\langle X, X^* \rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if X = cl lin K for some weakly compact set K.

くぼう くほう くほう

• A Banach space X is Plichko if there are a linearly dense set $G \subseteq X$ and a norming space $D \subseteq X^*$ such that

$$|\{x \in G \colon \langle x, x^* \rangle \neq 0\}| \leqslant \aleph_0$$

for every $x^* \in D$.

• $\langle X, D \rangle$ will be called a Plichko pair.

- X is weakly Lindelöf determined (WLD) if $\langle X, X^* \rangle$ is a Plichko pair.
- X is weakly compactly generated (WCG) if X = cl lin K for some weakly compact set K.

BA 4 BA

Let *X* be a Banach space. A projectional skeleton in *X* is a family $\{P_s\}_{s\in\Gamma}$ of projections on *X* such that

- Γ is an up-directed partially ordered set.
- ② $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- ③ If $s_0 < s_1 < s_2 < ...$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = \operatorname{cl}(\bigcup_{n \in \omega} P_{s_n} X)$.

< 回 > < 回 > < 回 >

Let X be a Banach space. A projectional skeleton in X is a family $\{P_s\}_{s\in\Gamma}$ of projections on X such that

- Γ is an up-directed partially ordered set.
- **2** $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- If $s_0 < s_1 < s_2 < ...$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = \operatorname{cl}(\bigcup_{n \in \omega} P_{s_n} X)$.

A (10) A (10)

Let *X* be a Banach space. A projectional skeleton in *X* is a family $\{P_s\}_{s\in\Gamma}$ of projections on *X* such that

- Γ is an up-directed partially ordered set.
- 2 $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- ③ If $s_0 < s_1 < s_2 < ...$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = \operatorname{cl}(\bigcup_{n \in \omega} P_{s_n} X)$.

< 回 > < 回 > < 回 > -

Let *X* be a Banach space. A projectional skeleton in *X* is a family $\{P_s\}_{s\in\Gamma}$ of projections on *X* such that

- Γ is an up-directed partially ordered set.
- ⓐ $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- If $s_0 < s_1 < s_2 < ...$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = \operatorname{cl}(\bigcup_{n \in \omega} P_{s_n} X)$.

Let X be a Banach space. A projectional skeleton in X is a family $\{P_s\}_{s\in\Gamma}$ of projections on X such that

- Γ is an up-directed partially ordered set.
- **2** $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- If $s_0 < s_1 < s_2 < ...$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = \operatorname{cl}(\bigcup_{n \in \omega} P_{s_n} X)$.

くぼう くほう くほう

Let X be a Banach space. A projectional skeleton in X is a family $\{P_s\}_{s\in\Gamma}$ of projections on X such that

- Γ is an up-directed partially ordered set.
- **2** $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- If $s_0 < s_1 < s_2 < \dots$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = \operatorname{cl}(\bigcup_{n \in \omega} P_{s_n} X)$.

くぼう くほう くほう

Let *X* be a Banach space. A projectional skeleton in *X* is a family $\{P_s\}_{s\in\Gamma}$ of projections on *X* such that

- Γ is an up-directed partially ordered set.
- **2** $P_s X$ is separable for every $s \in \Gamma$.
- $X = \bigcup_{s \in \Gamma} P_s X.$
- If $s_0 < s_1 < s_2 < \dots$ then $t = \sup_{n \in \omega} s_n$ exists in Γ and $P_t X = cl(\bigcup_{n \in \omega} P_{s_n} X)$.

Let $\{P_s\}_{s\in\Gamma}$ be a projectional skeleton in *X*. Then there exists a closed and cofinal subset Π of Γ such that

 $\sup_{s\in\Pi}\|P_s\|<+\infty.$

Given a projectional skeleton $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$, we shall always assume that $\|\mathfrak{s}\| := \sup_{s \in \Gamma} \|P_s\| < +\infty$.

< ロ > < 同 > < 回 > < 回 >

Let $\{P_s\}_{s\in\Gamma}$ be a projectional skeleton in *X*. Then there exists a closed and cofinal subset Π of Γ such that

 $\sup_{\boldsymbol{s}\in\Pi}\|\boldsymbol{P}_{\boldsymbol{s}}\|<+\infty.$

Given a projectional skeleton $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$, we shall always assume that $\|\mathfrak{s}\| := \sup_{s \in \Gamma} \|P_s\| < +\infty$.

< 回 > < 三 > < 三 >

Let $\{P_s\}_{s\in\Gamma}$ be a projectional skeleton in *X*. Then there exists a closed and cofinal subset Π of Γ such that

 $\sup_{\boldsymbol{s}\in\Pi}\|\boldsymbol{P}_{\boldsymbol{s}}\|<+\infty.$

Given a projectional skeleton $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$, we shall always assume that $\|\mathfrak{s}\| := \sup_{s \in \Gamma} \|P_s\| < +\infty$.

Let X be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma

Let $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an up-directed set. Then the formula

$$P_S x = \lim_{s \in S} P_s x$$
 $(x \in X)$

well defines a projection on X whose range is

$$\mathsf{cl}\Big(\bigcup_{s\in S}\mathsf{P}_sX\Big).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let *X* be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma

Let $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an up-directed set. Then the formula

$$P_S x = \lim_{s \in S} P_s x$$
 $(x \in X)$

well defines a projection on X whose range is

$$\mathsf{cl}\Big(\bigcup_{s\in S}\mathsf{P}_sX\Big).$$

Let *X* be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma

Let $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an up-directed set. Then the formula

$$P_S x = \lim_{s \in S} P_s x$$
 $(x \in X)$

well defines a projection on X whose range is

Let *X* be a Banach space with a projectional skeleton. Then every separable subspace is contained in a complemented separable space.

Lemma

Let $\mathfrak{s} = \{P_s\}_{s \in \Gamma}$ be a projectional skeleton in X and let $S \subseteq \Gamma$ be an up-directed set. Then the formula

$$P_S x = \lim_{s \in S} P_s x$$
 $(x \in X)$

well defines a projection on X whose range is

$$\mathsf{cl}\Big(\bigcup_{s\in S}\mathsf{P}_sX\Big).$$

Theorem

Let *X* be a Banach space with a 1-projectional skeleton $\{P_s\}_{s\in\Gamma}$. Then *X* has a projectional resolution of the identity $\{P_\alpha\}_{\alpha\leqslant\kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a **PRI** on a Banach space *X* is a sequence of projections $\{P_{\alpha}\}_{\alpha \leq \kappa}$, where $\kappa = \text{dens } X$ and

■ $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

A (10) A (10)

Theorem

Let X be a Banach space with a 1-projectional skeleton $\{P_s\}_{s\in\Gamma}$. Then X has a projectional resolution of the identity $\{P_\alpha\}_{\alpha\leqslant\kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a PRI on a Banach space *X* is a sequence of projections $\{P_{\alpha}\}_{\alpha \leq \kappa}$, where $\kappa = \text{dens } X$ and

■ $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

Theorem

Let *X* be a Banach space with a 1-projectional skeleton $\{P_s\}_{s \in \Gamma}$. Then *X* has a projectional resolution of the identity $\{P_\alpha\}_{\alpha \leqslant \kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a PRI on a Banach space *X* is a sequence of projections $\{P_{\alpha}\}_{\alpha \leqslant \kappa}$, where $\kappa = \text{dens } X$ and

■ $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

イロト 不得 トイヨト イヨト 三日

Theorem

Let *X* be a Banach space with a 1-projectional skeleton $\{P_s\}_{s\in\Gamma}$. Then *X* has a projectional resolution of the identity $\{P_\alpha\}_{\alpha\leqslant\kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a PRI on a Banach space X is a sequence of projections $\{P_{\alpha}\}_{\alpha \leqslant \kappa}$, where $\kappa = \text{dens } X$ and

- $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

イロト 不得 トイヨト イヨト 三日

Theorem

Let *X* be a Banach space with a 1-projectional skeleton $\{P_s\}_{s\in\Gamma}$. Then *X* has a projectional resolution of the identity $\{P_\alpha\}_{\alpha\leqslant\kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a PRI on a Banach space *X* is a sequence of projections $\{P_{\alpha}\}_{\alpha \leq \kappa}$, where $\kappa = \text{dens } X$ and

■ $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

Theorem

Let *X* be a Banach space with a 1-projectional skeleton $\{P_s\}_{s\in\Gamma}$. Then *X* has a projectional resolution of the identity $\{P_\alpha\}_{\alpha\leqslant\kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a PRI on a Banach space *X* is a sequence of projections $\{P_{\alpha}\}_{\alpha \leq \kappa}$, where $\kappa = \text{dens } X$ and

■ $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

Theorem

Let *X* be a Banach space with a 1-projectional skeleton $\{P_s\}_{s\in\Gamma}$. Then *X* has a projectional resolution of the identity $\{P_\alpha\}_{\alpha\leqslant\kappa}$ such that $P_\alpha = P_{S_\alpha}$ for some up-directed set $S_\alpha \subseteq \Gamma$ ($\alpha \leqslant \kappa$).

Recall that a PRI on a Banach space *X* is a sequence of projections $\{P_{\alpha}\}_{\alpha \leq \kappa}$, where $\kappa = \text{dens } X$ and

● $P_{\delta}X = cl(\bigcup_{\xi < \delta} P_{\xi}X)$ whenever $\delta \leq \kappa$ is a limit ordinal.

Theorem

Let $\{P_{\alpha}\}_{\alpha < \kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^*$ be a norming space such that

$${\sf D} = igcup_{lpha < \kappa} {\sf P}^*_lpha {\sf D}$$

and $\langle P_{\alpha}X, P_{\alpha}^*D\rangle$ is a Plichko pair for each $\alpha < \kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.

- (a) *X* has a commutative projectional skeleton.
- (b) X is a Plichko space.

Theorem

Let $\{P_{\alpha}\}_{\alpha < \kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^*$ be a norming space such that

$$D = \bigcup_{lpha < \kappa} P^*_{lpha} D$$

and $\langle P_{\alpha}X, P_{\alpha}^*D\rangle$ is a Plichko pair for each $\alpha < \kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.

- (a) X has a commutative projectional skeleton.
- (b) X is a Plichko space.

A (10) A (10)

Theorem

Let $\{P_{\alpha}\}_{\alpha < \kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^*$ be a norming space such that

$${\it D} = igcup_{lpha < \kappa} {\it P}^*_lpha {\it D}$$

and $\langle P_{\alpha}X, P_{\alpha}^*D\rangle$ is a Plichko pair for each $\alpha < \kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.

- (a) X has a commutative projectional skeleton.
- (b) X is a Plichko space.

A I > A = A A

Theorem

Let $\{P_{\alpha}\}_{\alpha < \kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^*$ be a norming space such that

$${\it D} = igcup_{lpha < \kappa} {\it P}^*_lpha {\it D}$$

and $\langle P_{\alpha}X, P_{\alpha}^*D\rangle$ is a Plichko pair for each $\alpha < \kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.

(a) *X* has a commutative projectional skeleton.

(b) X is a Plichko space.

A (10) A (10)

Theorem

Let $\{P_{\alpha}\}_{\alpha < \kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^*$ be a norming space such that

$${\it D} = igcup_{lpha < \kappa} {\it P}^*_lpha {\it D}$$

and $\langle P_{\alpha}X, P_{\alpha}^*D\rangle$ is a Plichko pair for each $\alpha < \kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.

(a) X has a commutative projectional skeleton.

(b) X is a Plichko space

Theorem

Let $\{P_{\alpha}\}_{\alpha < \kappa}$ be a projectional sequence in a Banach space X and let $D \subseteq X^*$ be a norming space such that

$${\it D} = igcup_{lpha < \kappa} {\it P}^*_lpha {\it D}$$

and $\langle P_{\alpha}X, P_{\alpha}^*D\rangle$ is a Plichko pair for each $\alpha < \kappa$. Then $\langle X, D\rangle$ is a Plichko pair.

Corollary

Let X be a Banach space. The following properties are equivalent.

- (a) X has a commutative projectional skeleton.
- (b) X is a Plichko space.

→ ∃ →

The hierarchy:

WCG spaces \subseteq WLD spaces \subseteq Plichko spaces \subseteq spaces with a projectional skeleton

イロト イポト イヨト イヨト

The hierarchy:

WCG spaces \subseteq WLD spaces \subseteq Plichko spaces \subseteq spaces with a projectional skeleton

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

each r_s[K] is metrizable;

③ if $s_0 < s_1 < ...$ in Γ then $t = \sup_{n ∈ ω} s_n$ exists and

$$r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$$

for every $x \in K$;

• $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

< 回 > < 三 > < 三 >

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s \in \Gamma}$ satisfying

ach $r_s[K]$ is metrizable;

③ if $s_0 < s_1 < ...$ in Γ then $t = \sup_{n ∈ ω} s_n$ exists and

 $r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$

for every $x \in K$;

• $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

2 each $r_s[K]$ is metrizable;

③ if $s_0 < s_1 < ...$ in Γ then $t = \sup_{n ∈ ω} s_n$ exists and

 $r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$

for every $x \in K$;

• $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

each r_s[K] is metrizable;

③ if $s_0 < s_1 < ...$ in Γ then $t = \sup_{n ∈ ω} s_n$ exists and

 $r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$

for every $x \in K$;

•
$$x = \lim_{s \in \Gamma} r_s(x)$$
 for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

2 each $r_s[K]$ is metrizable;

③ if $s_0 < s_1 < ...$ in Γ then $t = \sup_{n ∈ ω} s_n$ exists and

 $r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$

```
for every x \in K;
```

```
• x = \lim_{s \in \Gamma} r_s(x) for every x \in K.
```

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

- 2 each $r_s[K]$ is metrizable;
- **③** if $s_0 < s_1 < \ldots$ in Γ then $t = \sup_{n \in \omega} s_n$ exists and

$$r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$$

for every $x \in K$;

• $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

- 2 each $r_s[K]$ is metrizable;
- **③** if $s_0 < s_1 < \ldots$ in Γ then $t = \sup_{n \in \omega} s_n$ exists and

$$r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$$

for every $x \in K$;

•
$$x = \lim_{s \in \Gamma} r_s(x)$$
 for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

A D A D A D A

Let *K* be a compact, let Γ be an up-directed poset. An r-skeleton in *K* is a family of retractions $\{r_s\}_{s\in\Gamma}$ satisfying

- 2 each $r_s[K]$ is metrizable;
- **③** if $s_0 < s_1 < \ldots$ in Γ then $t = \sup_{n \in \omega} s_n$ exists and

$$r_t(x) = \lim_{n \to \infty} r_{s_n}(x)$$

for every $x \in K$;

•
$$x = \lim_{s \in \Gamma} r_s(x)$$
 for every $x \in K$.

Proposition

Let $\{r_s\}_{s\in\Gamma}$ be an r-skeleton in a compact K. Then $\{r_s^*\}_{s\in\Gamma}$ is a projectional skeleton in C(K).

Example

Claim

Given an ordinal λ , the compact space $\lambda + 1$ has an r-skeleton.

Theorem (O. Kalenda 2002) The space $C(\omega_2 + 1)$ is not Plichko.

Example

Claim

Given an ordinal λ , the compact space $\lambda + 1$ has an r-skeleton.

Theorem (O. Kalenda 2002) The space $C(\omega_2 + 1)$ is not Plichko.

Example

Claim

Given an ordinal λ , the compact space $\lambda + 1$ has an r-skeleton.

Theorem (O. Kalenda 2002) The space $C(\omega_2 + 1)$ is not Plichko.

< 回 > < 三 > < 三 >

Elementary substructures

Reflection Principle

Let $\varphi(x_1, \ldots, x_n)$ be a formula and let a_1, \ldots, a_n be fixed sets such that $\varphi(a_1, \ldots, a_n)$ is true. Then there exists a regular cardinal χ such that

 $\langle H(\chi),\in\rangle\models\varphi(a_1,\ldots,a_n).$

Löwenheim-Skolem Theorem

Assume $A \subseteq H(\chi)$. Then there exists $M \subseteq H(\chi)$ such that $A \subseteq M$, $|M| = |A| + \aleph_0$ and $\langle M, \in \rangle \preceq \langle H(\chi), \in \rangle$, i.e.

$$\forall \varphi(x_1,\ldots,x_n) \forall a_1,\ldots,a_n \in M, \\ M \models \varphi(a_1,\ldots,a_n) \Longleftrightarrow H(\chi) \models \varphi(a_1,\ldots,a_n).$$

Elementary substructures

Reflection Principle

Let $\varphi(x_1, \ldots, x_n)$ be a formula and let a_1, \ldots, a_n be fixed sets such that $\varphi(a_1, \ldots, a_n)$ is true. Then there exists a regular cardinal χ such that

 $\langle H(\chi), \in \rangle \models \varphi(a_1, \ldots, a_n).$

Löwenheim-Skolem Theorem

Assume $A \subseteq H(\chi)$. Then there exists $M \subseteq H(\chi)$ such that $A \subseteq M$, $|M| = |A| + \aleph_0$ and $\langle M, \in \rangle \preceq \langle H(\chi), \in \rangle$, i.e.

$$\forall \varphi(x_1,\ldots,x_n) \forall a_1,\ldots,a_n \in M, \\ M \models \varphi(a_1,\ldots,a_n) \Longleftrightarrow H(\chi) \models \varphi(a_1,\ldots,a_n).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Elementary substructures

Reflection Principle

Let $\varphi(x_1, \ldots, x_n)$ be a formula and let a_1, \ldots, a_n be fixed sets such that $\varphi(a_1, \ldots, a_n)$ is true. Then there exists a regular cardinal χ such that

 $\langle H(\chi), \in \rangle \models \varphi(a_1, \ldots, a_n).$

Löwenheim-Skolem Theorem

Assume $A \subseteq H(\chi)$. Then there exists $M \subseteq H(\chi)$ such that $A \subseteq M$, $|M| = |A| + \aleph_0$ and $\langle M, \in \rangle \preceq \langle H(\chi), \in \rangle$, i.e.

$$\forall \varphi(x_1,\ldots,x_n) \forall a_1,\ldots,a_n \in M, \\ M \models \varphi(a_1,\ldots,a_n) \Longleftrightarrow H(\chi) \models \varphi(a_1,\ldots,a_n).$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lemma

Let X be a Banach space, let $D \subseteq X^*$ be r-norming and let χ be a big enough regular cardinal. Further, let $M \preceq H(\chi)$ be such that $D \in M$. Then

 $\operatorname{cl}(X \cap M) \cap {}^{\perp}(D \cap M) = \{0\}.$

Moreover, the canonical projection P_M : $cl(X \cap M) \oplus {}^{\perp}(D \cap M) \rightarrow cl(X \cap M)$ has norm $\leq r$.

Lemma

Let X be a Banach space, let $D \subseteq X^*$ be r-norming and let χ be a big enough regular cardinal. Further, let $M \preceq H(\chi)$ be such that $D \in M$. Then

 $\operatorname{cl}(X \cap M) \cap {}^{\perp}(D \cap M) = \{0\}.$

Moreover, the canonical projection P_M : $cl(X \cap M) \oplus {}^{\perp}(D \cap M) \rightarrow cl(X \cap M)$ has norm $\leq r$.

Lemma

Let X be a Banach space, let $D \subseteq X^*$ be r-norming and let χ be a big enough regular cardinal. Further, let $M \preceq H(\chi)$ be such that $D \in M$. Then

$$\mathsf{cl}(X \cap M) \cap {}^{\perp}(D \cap M) = \{0\}.$$

Moreover, the canonical projection $P_M: \operatorname{cl}(X \cap M) \oplus {}^{\perp}(D \cap M) \to \operatorname{cl}(X \cap M)$ has norm $\leq r$.

 $X = \operatorname{cl}(X \cap M) \oplus {}^{\perp}(D \cap M).$

Theorem

Let X be a Banach space and let $D \subseteq X^*$ be a norming set. TFAE:

- () $\langle X, D \rangle$ generates projections.
- If there exists a projectional skeleton $\{P_s\}_{s\in\Gamma}$ in X such that

$$D\subseteq \bigcup_{s\in\Gamma} P_s^*X^*.$$

A (10) A (10) A (10)

 $X = \operatorname{cl}(X \cap M) \oplus {}^{\perp}(D \cap M).$

Theorem

Let X be a Banach space and let $D \subseteq X^*$ be a norming set. TFAE:

- () $\langle X, D \rangle$ generates projections.
- If there exists a projectional skeleton $\{P_s\}_{s\in\Gamma}$ in X such that

$$D\subseteq \bigcup_{s\in\Gamma} P_s^*X^*.$$

< 回 > < 三 > < 三 >

$$X = \mathsf{cl}(X \cap M) \oplus {}^{\perp}(D \cap M).$$

Theorem

Let X be a Banach space and let $D \subseteq X^*$ be a norming set. TFAE:

- () $\langle X, D \rangle$ generates projections.
- If there exists a projectional skeleton $\{P_s\}_{s\in\Gamma}$ in X such that

$$D\subseteq \bigcup_{s\in\Gamma} P_s^*X^*.$$

A (10) × A (10) × A (10) ×

$$X = \mathsf{cl}(X \cap M) \oplus {}^{\perp}(D \cap M).$$

Theorem

Let X be a Banach space and let $D \subseteq X^*$ be a norming set. TFAE:

- (1) $\langle X, D \rangle$ generates projections.
- 3 There exists a projectional skeleton $\{P_s\}_{s\in\Gamma}$ in X such that

$$D\subseteq \bigcup_{s\in\Gamma} P_s^*X^*.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$X = \mathsf{cl}(X \cap M) \oplus {}^{\perp}(D \cap M).$$

Theorem

Let X be a Banach space and let $D \subseteq X^*$ be a norming set. TFAE:

- **1** $\langle X, D \rangle$ generates projections.
 - There exists a projectional skeleton $\{P_s\}_{s\in\Gamma}$ in X such that

$$D\subseteq \bigcup_{s\in\Gamma} P_s^*X^*.$$

A (10) A (10) A (10) A

$$X = \mathsf{cl}(X \cap M) \oplus {}^{\perp}(D \cap M).$$

Theorem

Let X be a Banach space and let $D \subseteq X^*$ be a norming set. TFAE:

- **()** $\langle X, D \rangle$ generates projections.
- 3 There exists a projectional skeleton $\{P_s\}_{s\in\Gamma}$ in X such that

$$D\subseteq \bigcup_{s\in\Gamma} P_s^*X^*.$$

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
- **2** $C_p(K)$ has Property Ω .

Property Ω:

 $C_p(K)$ has Property Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

$\forall f \in \mathcal{C}(K) \exists g \in cl(\mathcal{C}(K) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

< 回 > < 三 > < 三 >

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
- 2 $C_p(K)$ has Property Ω.

Property Ω :

 $C_p(K)$ has Property Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

$\forall f \in \mathcal{C}(K) \exists g \in cl(\mathcal{C}(K) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

K is Corson compact.

2 C_p(K) has Property Ω.

Property Ω :

 $C_p(K)$ has Property Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

 $\forall f \in \mathcal{C}(K) \exists g \in cl(\mathcal{C}(K) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
- **2** $C_p(K)$ has Property Ω .

Property Ω :

 $C_p(K)$ has Property Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

$\forall f \in \mathcal{C}(K) \exists g \in cl(\mathcal{C}(K) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

Bandlow's Property Ω

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
- **2** $C_p(K)$ has Property Ω .

Property Ω :

 $C_{p}(K)$ has **Property** Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

$\forall f \in \mathcal{C}(K) \exists g \in \mathsf{cl}(\mathcal{C}(K) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

Bandlow's Property Ω

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
- **2** $C_p(K)$ has Property Ω .

Property Ω :

 $C_p(K)$ has Property Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

$\forall \ f \in \mathcal{C} \left(K \right) \ \exists \ g \in \mathsf{cl}(\mathcal{C} \left(K \right) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

Bandlow's Property Ω

Theorem (I. Bandlow 1994)

Let K be a compact. The following are properties are equivalent:

- K is Corson compact.
- **2** $C_p(K)$ has Property Ω .

Property Ω :

 $C_p(K)$ has Property Ω if for every sufficiently closed countable $M \leq H(\chi)$ it holds that

 $\forall f \in \mathcal{C}(K) \exists g \in \mathsf{cl}(\mathcal{C}(K) \cap M), \quad f - g \in {}^{\perp}(K \cap M).$

 $\forall f \in X \exists g \in cl(X \cap M), f - g \in {}^{\perp}(D \cap M).$

Claim

 $\langle X, D \rangle$ has Property $\Omega \iff \langle X, D \rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\langle X, X^* \rangle$ has Property Ω .

A (10) × A (10) × A (10) ×

 $\forall f \in X \exists g \in cl(X \cap M), f - g \in {}^{\perp}(D \cap M).$

Claim

 $\langle X, D \rangle$ has Property $\Omega \iff \langle X, D \rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\langle X, X^* \rangle$ has Property Ω .

A (10) × A (10) × A (10) ×

 $\forall f \in X \exists g \in cl(X \cap M), f - g \in {}^{\perp}(D \cap M).$

Claim

 $\langle X, D \rangle$ has Property $\Omega \iff \langle X, D \rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\langle X, X^* \rangle$ has Property Ω .

A (10) A (10) A (10) A

$$orall f \in X \exists g \in \mathsf{cl}(X \cap M), \quad f - g \in {}^{\perp}(D \cap M).$$

Claim

 $\langle X, D \rangle$ has Property $\Omega \iff \langle X, D \rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\langle X, X^* \rangle$ has Property Ω .

$$orall f \in X \exists g \in \mathsf{cl}(X \cap M), \quad f - g \in {}^{\perp}(D \cap M).$$

Claim

 $\langle X, D \rangle$ has Property $\Omega \iff \langle X, D \rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\langle X, X^* \rangle$ has Property Ω .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$orall f \in X \exists g \in \mathsf{cl}(X \cap M), \quad f - g \in {}^{\perp}(D \cap M).$$

Claim

 $\langle X, D \rangle$ has Property $\Omega \iff \langle X, D \rangle$ generates projections.

Corollary

A Banach space X is weakly Lindelöf determined if and only if $\langle X, X^* \rangle$ has Property Ω .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Theorem

Let X be a WCG space and let $M \leq H(\chi)$ be sufficiently closed. Then

 $X = \operatorname{cl}(X \cap M) \oplus {}^{\perp}(X^* \cap M).$

イロト イヨト イヨト イヨト

Theorem

Let X be a WCG space and let $M \preceq H(\chi)$ be sufficiently closed. Then

 $X = \operatorname{cl}(X \cap M) \oplus {}^{\perp}(X^* \cap M).$

Theorem

Let X be a WCG space and let $M \leq H(\chi)$ be sufficiently closed. Then

 $X = \operatorname{cl}(X \cap M) \oplus {}^{\perp}(X^* \cap M).$

イロト イポト イヨト イヨト

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- $@ \varphi \in \mathsf{cl}_*(X^* \cap M).$
- If X = X Fix a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- Solution For each x ∈ cl(K ∩ M) choose ψ_x ∈ X^{*} ∩ M so that |ψ_x(x)| < ε and |ψ_x(p)| > ε.
- **(**) By compactness, there are $x_1, \ldots, x_n \in cl(K \cap M)$ such that

 $\forall x \in \mathsf{cl}(K \cap M) \exists i \leqslant n \ |\psi_{x_i}(x)| < \varepsilon.$

This contradicts the elementarity of *M*.

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- If X is a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- Solution For each x ∈ cl(K ∩ M) choose ψ_x ∈ X* ∩ M so that |ψ_x(x)| < ε and |ψ_x(p)| > ε.
- **(**) By compactness, there are $x_1, \ldots, x_n \in cl(K \cap M)$ such that

 $\forall \ x \in \mathsf{cl}(K \cap M) \ \exists \ i \leqslant n \ |\psi_{x_i}(x)| < \varepsilon.$

■ Hence $M \models \forall x \in K \exists i \leq n | ψ_{x_i}(x) | < ε$.

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in \mathsf{cl}_*(X^* \cap M).$
- If X is a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- Solution For each x ∈ cl(K ∩ M) choose ψ_x ∈ X* ∩ M so that |ψ_x(x)| < ε and |ψ_x(p)| > ε.
- **(**) By compactness, there are $x_1, \ldots, x_n \in cl(K \cap M)$ such that

 $\forall \ x \in \mathsf{cl}(K \cap M) \ \exists \ i \leqslant n \ |\psi_{x_i}(x)| < \varepsilon.$

■ Hence $M \models \forall x \in K \exists i \leq n | ψ_{x_i}(x) | < ε$.

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in \mathsf{cl}_*(X^* \cap M).$
- Six a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- Solution 5 For each x ∈ cl(K ∩ M) choose ψ_x ∈ X^{*} ∩ M so that |ψ_x(x)| < ε and |ψ_x(p)| > ε.
- **I** By compactness, there are $x_1, ..., x_n \in cl(K ∩ M)$ such that

 $orall \ x \in {
m cl}(K \cap M) \ \exists \ i \leqslant n \ |\psi_{x_i}(x)| < arepsilon.$

```
O Hence M ⊨ ∀ x ∈ K ∃ i ≤ n |\psi_{x_i}(x)| < ε.</p>
O This contradicts the elementarity of M
```

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in \mathsf{cl}_*(X^* \cap M).$
- Six a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- Solution For each x ∈ cl(K ∩ M) choose ψ_x ∈ X^{*} ∩ M so that |ψ_x(x)| < ε and |ψ_x(p)| > ε.
- **I** By compactness, there are $x_1, ..., x_n \in cl(K ∩ M)$ such that

 $orall x \in \mathsf{cl}(K \cap M) \exists i \leqslant n \ |\psi_{x_i}(x)| < arepsilon.$

```
Hence M \models \forall x \in K \exists i \leq n |\psi_{x_i}(x)| < \varepsilon.
This contradicts the elementarity of M.
```

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in cl_*(X^* \cap M).$
- Six a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- So For each $x \in cl(K \cap M)$ choose $\psi_x \in X^* \cap M$ so that $|\psi_x(x)| < \varepsilon$ and $|\psi_x(p)| > \varepsilon$.
- **③** By compactness, there are $x_1, ..., x_n \in cl(K ∩ M)$ such that

 $orall x \in \mathsf{cl}(K \cap M) \exists i \leqslant n \; |\psi_{x_i}(x)| < arepsilon.$

```
O Hence M \models \forall x \in K \exists i \leq n |\psi_{x_i}(x)| < \varepsilon.
O This contradicts the elementarity of M.
```

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in cl_*(X^* \cap M).$
- Six a weakly compact K which generates X.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- So For each $x \in cl(K \cap M)$ choose $\psi_x \in X^* \cap M$ so that $|\psi_x(x)| < \varepsilon$ and $|\psi_x(p)| > \varepsilon$.
- **(**) By compactness, there are $x_1, \ldots, x_n \in cl(K \cap M)$ such that

$$orall \mathbf{x} \in \mathsf{cl}(\mathbf{K} \cap \mathbf{M}) \exists i \leqslant n \ |\psi_{\mathbf{x}_i}(\mathbf{x})| < arepsilon.$$

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in \mathsf{cl}_*(X^* \cap M).$
- Fix a weakly compact *K* which generates *X*.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- So For each $x \in cl(K \cap M)$ choose $\psi_x \in X^* \cap M$ so that $|\psi_x(x)| < \varepsilon$ and $|\psi_x(p)| > \varepsilon$.
- **(**) By compactness, there are $x_1, \ldots, x_n \in cl(K \cap M)$ such that

$$\forall \ x \in \mathsf{cl}(K \cap M) \ \exists \ i \leqslant n \ |\psi_{x_i}(x)| < \varepsilon.$$

2 Hence
$$M \models \forall x \in K \exists i \leq n |\psi_{x_i}(x)| < \varepsilon$$
.

This contradicts the elementarity of M.

- Suppose $\varphi \in X^* \setminus \{0\}$ is such that $(X \cap M) \subseteq \ker(\varphi)$ and $^{\perp}(X^* \cap M) \subseteq \ker(\varphi)$.
- 2 $\varphi \in \mathsf{cl}_*(X^* \cap M).$
- Fix a weakly compact *K* which generates *X*.
- Suppose $p \in K$ is such that $|\varphi(p)| > \varepsilon > 0$.
- So For each $x \in cl(K \cap M)$ choose $\psi_x \in X^* \cap M$ so that $|\psi_x(x)| < \varepsilon$ and $|\psi_x(p)| > \varepsilon$.
- **(**) By compactness, there are $x_1, \ldots, x_n \in cl(K \cap M)$ such that

$$\forall \ x \in \mathsf{cl}(K \cap M) \ \exists \ i \leqslant n \ |\psi_{x_i}(x)| < \varepsilon.$$

$$T Hence M \models \forall x \in K \exists i \leq n |\psi_{x_i}(x)| < \varepsilon.$$

This contradicts the elementarity of M.

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

Projectional skeletons, I

■ ト イ ヨ ト ヨ つ へ へ January 2008 18 / 19

<ロ> <四> <ヨ> <ヨ>

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

Projectional skeletons, I

■ ト イ ヨ ト ヨ つ へ へ January 2008 18 / 19

<ロ> <四> <ヨ> <ヨ>

References

W.Kubiś (http://www.pu.kielce.pl/~wkubis/)

Projectional skeletons,

■トイヨト ヨークへの January 2008 19/19

イロト イヨト イヨト イヨト